Caracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseq

dc.contributor.advisorRugeles Silva, Paula Andrea
dc.contributor.advisorLópez Álvarez, Diana Carolina
dc.contributor.authorTarazona Pulido, Lina Maria
dc.contributor.googlescholarhttps://scholar.google.com/citations?hl=es&user=J-X7K-AAAAAJspa
dc.contributor.orcidhttps://orcid.org/0009-0003-3606-1446spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Lina-Tarazona-Pulidospa
dc.contributor.researchgroupGrupo de Investigación en Diversidad Biológicaspa
dc.date.accessioned2024-07-25T16:04:41Z
dc.date.available2024-07-25T16:04:41Z
dc.date.issued2024-03-15
dc.descriptionIlustraciones, fotografías, tablasspa
dc.description.abstractLas investigaciones sobre la genética de plantas medicinales que pueden ser de interés por su potencial farmacológico son escazas, se realizó una revisión bibliográfica donde se destaca el uso de tecnologías Ómicas en la investigación de plantas medicinales en Colombia, y sobre la información existente de la etnobotánica, genómica, fitocompuestos y medicina tradicional que se les conoce. Las especies Lippia alba y Petiveria alliacea, son de interés para el programa GAT por el potencial anticancerígeno que pueden tener, por lo que es importante conocer su diversidad genética y estructura poblacional. Se colectaron muestras foliares de 31 individuos de P. alliacea y 17 de L. alba en diferentes regiones de Colombia. Se extrajo el ADN y se construyeron librerías RADseq utilizando la enzima de restricción PstI para su secuenciación, posteriormente se siguió un flujo bioinformático para la canalización de los archivos fasta obtenidos, que permitió identificar miles de polimorfismos de un solo nucleótido (SNPs) para cada una. Con los cuales se identificó que en las poblaciones de L. alba existe una variación genética entre poblaciones de 3.4%, con un FST de 0.062, mientras que P. alliacea tuvo un 75% de variación entre poblaciones y un FST de 0.747. Adicionalmente los valores de diversidad genética obtenidos incluyendo valores de Ho y He y el valor r de la prueba de mantel podrían permitir pensar que los diferentes modos reproductivos que tienen estas especies, así como el aprovechamiento antropogénico de estas influyeron en la variación genética y la estructura de la población obtenida. (Texto tomado de la fuente)spa
dc.description.abstractResearch on the genetics of medicinal plants, which may be of interest due to their pharmacological potential, is scarce. A literature review was conducted highlighting the use of Omics technologies in medicinal plant research in Colombia, along with existing information on ethnobotany, genomics, phytochemicals, and traditional medicine associated with these plants. The species Lippia alba and Petiveria alliacea are of interest to the GAT program due to their potential anticancer properties, making it important to understand their genetic diversity and population structure. Leaf samples were collected from 31 individuals of P. alliacea and 17 of L. alba in different regions of Colombia. DNA was extracted, and RADseq libraries were constructed using the restriction enzyme PstI for sequencing. Subsequently, a bioinformatics workflow was followed to process the obtained fasta files, allowing for the identification of thousands of single nucleotide polymorphisms (SNPs) for each species. It was identified that in L. alba populations, there is a genetic variation of 3.4% between populations, with an FST of 0.062, while P. alliacea exhibited a 75% variation between populations and an FST of 0.747. Additionally, the values of genetic diversity obtained, including Ho and He values, and the r value of the Mantel test, could suggest that the different reproductive modes of these species, as well as their anthropogenic exploitation, influenced the genetic variation and population structure observed.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Biológicasspa
dc.description.methodsSe colectaron muestras foliares de 31 individuos de P. alliacea y 17 de L. alba en diferentes regiones de Colombia. Se extrajo el ADN y se construyeron librerías RADseq utilizando la enzima de restricción PstI para su secuenciación, posteriormente se siguió un flujo bioinformático para la canalización de los archivos fasta obtenidos, que permitió identificar miles de polimorfismos de un solo nucleótido (SNPs) para cada una.spa
dc.format.extentxi, 112 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86616
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicasspa
dc.relation.referencesAbasi, F., Abdel-Massih, R. M., Aubert, E., Aubouy, A., Cabrera-Barraza, J., Camara, A., Cerra-Dominguez, J., Chan, K. W. K., Chassagne, F., Chen, X., David, B., De Canha, M. N., Deharo, E., Dembetembe, T. T., Dénou, A., Díaz-Castillo, F., El Beyrouthy, M., Fechter, P., Gibango, L., ... Wolfender, J.-L. (2022). Medicinal Plants as Anti-Infectives Current Knowledge and New Perspectives. En Medicinal Plants as Anti-Infectives. Academic Press. https://doi.org/10.1016/B978-0-323-90999-0.00021-5spa
dc.relation.referencesAgüero-Hernández, A. L., Rosales-López, C., Herrera, C., Vargas-Picado, A., Muñoz, R., & Abdelnour-Esquivel, A. (2020). Hypoglycemic effect of Kalanchoe pinnata (Lam) Pers. Leaf extract. Pharmacognosy Journal, 12(3), 557-561. https://doi.org/10.5530/PJ.2020.12.84spa
dc.relation.referencesArticle, R. (2016). Techniques and Progress to Explore Biofuels in the Postgenomics World. 20(7), 387-399. https://doi.org/10.1089/omi.2016.0065spa
dc.relation.referencesAraya, S., Martins, A. M., Junqueira, N. T. V, Costa, A. M., & Faleiro, F. G. (2017). Microsatellite marker development by partial sequencing of the sour passion fruit genome ( Passiflora edulis Sims ). https://doi.org/10.1186/s12864-017-3881-5spa
dc.relation.referencesBallesteros-Ramírez, R., Durán, M. I., & Fiorentino, S. (2021). Genotoxicity and mutagenicity assessment of a standardized extract (P2Et) obtained from Caesalpinia spinosa. Toxicology Reports, 8, 258. https://doi.org/10.1016/J.TOXREP.2020.12.024spa
dc.relation.referencesBallesteros-Vivas, D., Alvarez-Rivera, G., León, C., Morantes, S. J., Ibánez, E., Parada- Alfonso, F., Cifuentes, A., & Valdés, A. (2020a). F oodomics evaluation of the anti- proliferativepotential of Passiflora mollissima seeds. Food Research International, 130. https://doi.org/10.1016/J.FOODRES.2019.108938spa
dc.relation.referencesBallesteros-Vivas, D., Alvarez-Rivera, G., León, C., Morantes, S. J., Ibánez, E., Parada- Alfonso, F., Cifuentes, A., & Valdés, A. (2020b). Foodomics evaluation of the anti- proliferative potential of Passiflora mollissima seeds. Food Research International, 130(July 2019), 108938. https://doi.org/10.1016/j.foodres.2019.108938spa
dc.relation.referencesBartolome, A. P., Villaseñor, I. M., & Yang, W. C. (2013). Bidens pilosa L. (Asteraceae): Botanical Properties, Traditional Uses, Phytochemistry, and Pharmacology. Evidence- based Complementary and Alternative Medicine : eCAM, 2013, 51. https://doi.org/10.1155/2013/340215spa
dc.relation.referencesBernal, H. (2011). Pautas para el conocimiento, conservación y uso sostenible de plantas medicinales nativas en Colombia.spa
dc.relation.referencesBernal, R., Galeano, G., Rodríguez, A., Sarmiento, H., & Gutiérrez, M. (2017). Nombres Comunes Plantas de Colombia. http://www.biovirtual.unal.edu.co/nombrescomunes/spa
dc.relation.referencesBernal, R., Gradstein, S. R., & Celis, M. (2019). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales. Universidad Nacional de Colombia. http://catalogoplantasdecolombia.unal.edu.cospa
dc.relation.referencesBoutanaev, A. M., Moses, T., Zi, J., Nelson, D. R., Mugford, S. T., Peters, R. J., & Osbourn, A. (2014). Investigation of terpene diversification across multiple sequenced plant genomes. PNAS plus, 10, 81-88. https://doi.org/10.1073/pnas.1419547112spa
dc.relation.referencesBoutanaev, A. M., Moses, T., Zi, J., Nelson, D. R., Mugford, S. T., Peters, R. J., & Osbourn, A. (2015). Investigation of terpene diversification across multiple sequenced plant genomes. Proceedings of the National Academy of Sciences of the United States of America, 112(1), E81-E88. https://doi.org/10.1073/PNAS.1419547112/SUPPL_FILE/PNAS.1419547112.SD04.TXTspa
dc.relation.referencesBryant, L., Patole, C., & Cramer, R. (2016). Data in Brief Proteomic analysis of the medicinal plant Artemisia annua: Data from leaf and trichome extracts. Data in Brief, 7, 325-331. https://doi.org/10.1016/j.dib.2016.02.038spa
dc.relation.referencesBustillos, A., & Cortez, J. C. (2021). Anti-metastic and anti-proliferative activity of ilex guayusa, uncaria tomentosa and croton lechleri, in the mcf7 cell line. Investigacion Clinica (Venezuela), 62, 86-94.spa
dc.relation.referencesBystriakova, N., Tovar, C., Monro, A., Moat, J., Hendrigo, P., Carretero, J., Torres-Morales, G., & Diazgranados, M. (2021). Colombia’s bioregions as a source of useful plants. PLOS ONE, 16(8), e0256457. https://doi.org/10.1371/JOURNAL.PONE.0256457spa
dc.relation.referencesBystriakova, N., Tovar, C., Monro, A., Moat, J., Hendrigo, P., Carretero, J., Torres-Morales, G., & Diazgranados, M. (2021). Colombia’s bioregions as a source of useful plants. PLOS ONE, 16(8), e0256457. https://doi.org/10.1371/JOURNAL.PONE.0256457spa
dc.relation.referencesCamargo, J. E. R., Alfonso, A. N. T., Rojas-Rozo, R. A., de Castro, C., & de Murcia, T. R. (2010). In vitro cytotoxicity of extracts and fractions of Bursera tomentosa (Jacq.) Triana & Planch., Burseraceae, against human tumor cell. Revista Brasileira de Farmacognosia, 20(4), 588-593. https://doi.org/10.1590/S0102-695X2010000400019spa
dc.relation.referencesCañigueral, S., Delacassa, E., & L Bandoni, A. (2003). Plantas Medicinales y Fitoterapia:¿Indicadores de Dependencia o Factores de Desarrollo? Acta Farm. Bonaerense, 22, 78-265.spa
dc.relation.referencesCardona, C. C. C., Puerta, R. P., & Coronado, Y. M. (2021). Caracterización molecular con marcadores ISSR de la colección de cítricos de la Universidad de los Llanos. https://doi.org/10.3/JQUERY-UI.JSspa
dc.relation.referencesCarmona-Hernandez, J. C., Taborda-Ocampo, G., & González-Correa, C. H. (2021). Folin- Ciocalteu Reaction Alternatives for Higher Polyphenol Quantitation in Colombian Passion Fruits. International Journal of Food Science, 2021, 1-10. https://doi.org/10.1155/2021/8871301spa
dc.relation.referencesCarolina Arboleda Echavarría, D. C., Jaramillo Yepes, F., & Herman Palacio Torres, Q. (2012). Determinación del potencial antioxidante en extractos de vinagre Guadua angustifolia Kunth para aplicaciones alimenticias. Revista Cubana de Plantas Medicinales, 17(4), 330-342.spa
dc.relation.referencesCarqueijeiro, I., Koudounas, K., de Bernonville, T. D., Sepúlveda, L. J., Mosquera, A., Bomzan, D. P., Oudin, A., Lanoue, A., Besseau, S., Cruz, P. L., Kulagina, N., Stander, E. A., Eymieux, S., Burlaud-Gaillard, J., Blanchard, E., Clastre, M., Atehortùa, L., St-Pierre, B., Giglioli-Guivarc’h, N., ... Courdavault, V. (2021). Alternative splicing creates a pseudo- strictosidine b-D-glucosidase modulating alkaloid synthesis in Catharanthus roseus. Plant Physiology, 185(3), 836-856. https://doi.org/10.1093/PLPHYS/KIAA075spa
dc.relation.referencesCarraz, M., Lavergne, C., Jullian, V., Wright, M., Gairin, J. E., Gonzales de la Cruz, M., & Bourdy, G. (2015). Antiproliferative activity and phenotypic modification induced by selected Peruvian medicinal plants on human hepatocellular carcinoma Hep3B cells. Journal of Ethnopharmacology, 166, 185-199. https://doi.org/10.1016/j.jep.2015.02.028spa
dc.relation.referencesCastañeda, R., Cáceres, A., Cruz, S. M., Aceituno, J. A., Marroquín, E. S., Barrios Sosa, A. C., Strangman, W. K., & Williamson, R. T. (2023). Nephroprotective plant species used in traditional Mayan Medicine for renal-associated diseases. Journal of Ethnopharmacology, 301, 115755. https://doi.org/10.1016/j.jep.2022.115755spa
dc.relation.referencesCastellanos, C., Valderrama, N., Bernal, Y., & García, N. (2019). Plantas alimenticias y medicinales de Colombia. http://i2d.humboldt.org.co/ceiba/resource.do?r=ls_colombia_magnoliophyta_2014#anchor -projectspa
dc.relation.referencesCastellanos-Castro, C., & Diazgranados, M. (2022). Catalogue of Useful Plants of Colombia (R. Negrão, A. Monro, C. Castellanos-Castro, & M. Diazgranados, Eds.). Kew Publishing Royal Botanic Gardens, Kew.spa
dc.relation.referencesChakraborty, S., Hosen, I., Shekhar, H. U., & Ahmed, M. (2018). Onco-Multi-OMICS Approach: A New Frontier in Cancer Research.spa
dc.relation.referencesChunhong, H., Qian, L., Jinhua, L., & Yongqing, Z. (2013). Advances in the Researcha of chemical constituents in Thalictrum Plants (pp. 54-58).spa
dc.relation.referencesClarke, R. C., & Merlin, M. D. (2017). Critical Reviews in Plant Sciences Cannabis Domestication , Breeding History , Present-day Genetic Diversity , and Future Prospects. Critical Reviews in Plant Sciences, 35(5-6), 293-327. https://doi.org/10.1080/07352689.2016.1267498spa
dc.relation.referencesClevenger, J., Chavarro, C., Pearl, S. A., Ozias-Akins, P., & Jackson, S. A. (2015). Single Nucleotide Polymorphism Identification in Polyploids: A Review, Example, and Recommendations. Molecular plant, 8(6), 831-846. https://doi.org/10.1016/J.MOLP .2015.02.002spa
dc.relation.referencesColPlantA. (2023, febrero 20). Useful Plants of Colombia. Facilitated by the Royal Botanic Gardens, Kew. https://colplanta.org/cite-usspa
dc.relation.referencesCordoba-tovar, L., Ríos-geovo, V., Largacha-viveros, M. F., Salas-moreno, M., Marrugo- negrete, L., Andr, P., Mosquera, L., & Jonathan, M. P. (2022). Acta Ecologica Sinica Cultural belief and medicinal plants in treating COVID 19 patients of Western Colombia. 42(October 2021), 476-484. https://doi.org/10.1016/j.chnaes.2021.10.011spa
dc.relation.referencesCrettol, S., Petrovic, N., & Murray, M. (2010). Pharmacogenetics of Phase I and Phase II Drug Metabolism. current pharmaceutical design, 16, 204-219. https://doi.org/10.1007/978- 1-4419-0840-7_1spa
dc.relation.referencesDeCarlo, A., Dosoky, N. S., Satyal, P., Sorensen, A., & Setzer, W. N. (2019). The Essential Oils of the Burseraceae. Essential Oil Research, 61-145. https://doi.org/10.1007/978-3- 030-16546-8_4spa
dc.relation.referencesEaton, D. A. R., & Ree, R. H. (2013). Inferring phylogeny and introgression using RADseq data: An example from flowering plants (Pedicularis: Orobanchaceae). Systematic biology, 62(5), 689-706. https://doi.org/10.1093/SYSBIO/SYT032spa
dc.relation.referencesEf, M. T., Chest, T., & Plants, R. M. (2022). Biodiversity and Chemodiversity: Pharmacophylogeny of. 28(12), 1111-1126.spa
dc.relation.referencesElshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS one, 6(5). https://doi.org/10.1371/JOURNAL.PONE.0019379spa
dc.relation.referencesElufioye, T. O., Habtemariam, S., & Adejare, A. (2020). Chemistry and Pharmacology of Alkylamides from Natural Origin. Revista Brasileira de Farmacognosia, 30, 622-640. https://doi.org/10.1007/s43450-020-00095-5spa
dc.relation.referencesEstrella-Parra, E., Flores-Cruz, M., Blancas-Flores, G., Koch, S. D., & Alarcón-Aguilar, F. J. (2019). The Tillandsia genus: History, uses, chemistry, and biological activity. Boletín latinoamericano y del caribe de plantas medicinales y aromáticas, 18, 239-264.spa
dc.relation.referencesFonseca-Benitez, A., Morantes Medina, S. J., Ballesteros-Vivas, D., Parada-Alfonso, F., & Sandra J Perdomo. (2022). Passiflora mollissima Seed Extract Induced Antiproliferative and Cytotoxic Effects on CAL 27 Spheroids. Advances in Pharmacological and Pharmaceutical Sciences, 2022. https://doi.org/10.1155/2022/4602413spa
dc.relation.referencesGámez-Espinosa, E., Deyá, C., Cabello, M., & Bellotti, N. (2021). Nanoparticles synthesised from Caesalpinia spinosa: Assessment of the antifungal effects in protective systems. Advances in Natural Sciences: Nanoscience and Nanotechnology, 12(1), 015001. https://doi.org/10.1088/2043-6254/ABDFC1spa
dc.relation.referencesGandra, J., Kumar, H., Kumar, S. A., Doma, M., & Deepthi, Y. (2022). Industrial Crops & Products Metabolomic and proteomic signature of Gloriosa superba leaves treated with mercuric chloride and phenylalanine , a precursor of colchicine alkaloid. Industrial Crops & Products, 178(July 2021), 114557. https://doi.org/10.1016/j.indcrop.2022.114557spa
dc.relation.referencesGarcía, L. T., Leal, A. F., Moreno, É. M., Stashenko, E. E., & Arteaga, H. J. (2017). Differential anti-proliferative effect on K562 leukemia cells of Lippia alba (Verbenaceae) essential oils produced under diverse growing, collection and extraction conditions. Industrial Crops and Products, 96, 140-148. https://doi.org/10.1016/J.INDCROP.2016.11.057spa
dc.relation.referencesGilmore, S., & Peakall, R. (2003). Isolation of microsatellite markers in Cannabis sativa L. (marijuana). Molecular Ecology Notes, 3(1), 105-107. https://doi.org/10.1046/J.1471- 8286.2003.00367.Xspa
dc.relation.referencesGlécio, P., Lima, C., Coelho-Ferreira, M., Da, R., & Santos, S. (2016). Perspectives on Medicinal Plants in Public Markets across the Amazon: A Review. Economic Botany. https://doi.org/10.1007/s12231-016-9338-yspa
dc.relation.referencesGnocchi, D., Del Coco, L., Girelli, C. R., Castellaneta, F., Cesari, G., Sabbà, C., Fanizzi, F. P., & Mazzocca, A. (2021). 1H-NMR metabolomics reveals a multitarget action of Crithmum maritimum ethyl acetate extract in inhibiting hepatocellular carcinoma cell growth. Scientific Reports, 11(1), 1-13. https://doi.org/10.1038/s41598-020-78867-1spa
dc.relation.referencesGomide, M. da S., Lemos, F. de O., Lopes, M. T. P., Alves, T. M. de A., Viccini, L. F., & Coelho, C. M. (2013). The effect of the essential oils from five different Lippia species on the viability of tumor cell lines. Revista Brasileira de Farmacognosia, 23(6), 895-902. https://doi.org/10.1590/S0102-695X2013000600006spa
dc.relation.referencesGong, X., Yang, M., He, C. nian, Bi, Y. qiong, Zhang, C. hong, Li, M. hui, & Xiao, P. gen. (2022). Plant Pharmacophylogeny: Review and Future Directions. Chinese Journal of Integrative Medicine, 28(6), 567-574. https://doi.org/10.1007/s11655-020-3270-9spa
dc.relation.referencesGonulalan, E. M., Nemutlu, E., Bayazeid, O., Koçak, E., & Yalçın, F. N. (2020). Phytomedicine Metabolomics and proteomics profiles of some medicinal plants and correlation with BDNF activity. Phytomedicine, 74(January 2019), 152920. https://doi.org/10.1016/j.phymed.2019.152920spa
dc.relation.referencesGuo, L., Winzer, T., Yang, X., Li, Y., Ning, Z., He, Z., Teodor, R., Lu, Y., Bowser, T. A., Graham, I. A., & Ye, K. (2018). The opium poppy genome and morphinan production. Science, 362(6412), 343-347. https://doi.org/10.1126/science.aat4096spa
dc.relation.referencesGuzman, E., & Molina, J. (2018). The predictive utility of the plant phylogeny in identifying sources of cardiovascular drugs. Pharmaceutical Biology, 56(1), 154-164. https://doi.org/10.1080/13880209.2018.1444642spa
dc.relation.referencesHao, D. C., Chen, S. L., Xiao, P. G., & Liu, M. (2012). Application of High-Throughput Sequencing in Medicinal Plant Transcriptome Studies. Drug Development Research, 73(8), 487-498. https://doi.org/10.1002/DDR.21041spa
dc.relation.referencesHao, D. C., Ge, G. B., & Xiao, P. G. (2018). Anticancer Drug Targets of Salvia Phytometabolites: Chemistry, Biology and Omics. Current drug targets, 19(1), 1-20. https://doi.org/10.2174/1389450117666161207141020spa
dc.relation.referencesHao, D. C., Gu, X. J., Xiao, P. G., & Peng, Y. (2013). Phytochemical and biological research of fritillaria medicine resources. Chinese Journal of Natural Medicines, 11(4), 330-344. https://doi.org/10.1016/S1875-5364(13)60050-3spa
dc.relation.referencesHao, D. C., Gu, X.-J., & Xiao, P. G. (2015). High-throughput sequencing in medicinal plant transcriptome studies. En Medicinal Plants. Elsevier Ltd. https://doi.org/10.1016/b978-0- 08-100085-4.00002-5spa
dc.relation.referencesHao, D. C., & Xiao, P. G. (2015a). Genomics and evolution in traditional medicinal plants: Road to a healthier life. Evolutionary Bioinformatics, 11, 197-212. https://doi.org/10.4137/EBO.S31326spa
dc.relation.referencesHao, D. C., & Xiao, P. G. (2015b). Genomics and evolution in traditional medicinal plants: Road to a healthier life. Evolutionary Bioinformatics, 11, 197-212. https://doi.org/10.4137/EBO.S31326spa
dc.relation.referencesHao, D. C., & Yang, L. (2016). Drug metabolism and disposition diversity of Ranunculales phytometabolites: A systems perspective. En Expert Opinion on Drug Metabolism and Toxicology (Vol. 12, Número 9). https://doi.org/10.1080/17425255.2016.1201068spa
dc.relation.referencesHao, D., Ge, G., & Xiao, P. (2017). Anticancer Drug Targets of Salvia Phytometabolites: Chemistry, Biology and Omics. Current Drug Targets, 19(1), 1-20. https://doi.org/10.2174/1389450117666161207141020spa
dc.relation.referencesHao, D., Gu, X., Xiao, P., Liang, Z., Xu, L., & Peng, Y. (2013). Recent Advance in Chemical and Biological Studies on Cimicifugeae Pharmaceutical Resources. Chinese Herbal Medicines, 5(2), 81-95. https://doi.org/10.3969/j.issn.1674-6348.2013.02.001spa
dc.relation.referencesHao, D., Gu, X., Xiao, P., Liang, Z., Xu, L., & Peng, Y. (2013). Research progress in the phytochemistry and biology of Ilex pharmaceutical resources. Acta Pharmaceutica Sinica B, 3(1), 8-19. https://doi.org/10.1016/j.apsb.2012.12.008spa
dc.relation.referencesHao, D., & Xiao, P. (2020). Pharmaceutical resource discovery from traditional medicinal plants: Pharmacophylogeny and pharmacophylogenomics. Chinese Herbal Medicines, 12(2), 104-117. https://doi.org/10.1016/j.chmed.2020.03.002spa
dc.relation.referencesHao, D.-C. C., Gu, X. J., & Xiao, P . G. (2017). Anemone medicinal plants: Ethnopharmacology, phytochemistry and biology. Acta Pharmaceutica Sinica B, 7(2), 146- 158. https://doi.org/10.1016/j.apsb.2016.12.001spa
dc.relation.referencesHAO, D.-C. C., Gu, X.-J. J., XIAO, P.-G. G., & Peng, Y. (2013). Phytochemical and biological research of Fritillaria Medicine Resources. Chinese Journal of Natural Medicines, 11(4), 330-344. https://doi.org/10.1016/S1875-5364(13)60050-3spa
dc.relation.referencesHao, D.-C., & Xiao, P.-G. (2018). Deep in shadows: Epigenetic and epigenomic regulations of medicinal plants. Chinese Herbal Medicines, 10(3), 239-248. https://doi.org/10.1016/j.chmed.2018.02.003spa
dc.relation.referencesHe, D., Li, Y., Tang, H., Ma, R., Li, X., & Wang, L. (2015). Six new cassane diterpenes from the twigs and leaves of Tara (Caesalpinia spinosa Kuntze). Fitoterapia, 105, 273-277. https://doi.org/10.1016/J.FITOTE.2015.07.018spa
dc.relation.referencesHite, D. A. M. W., Uang, J. E. N. A. N. H., Dolfo, O. R. A., Uñoz, J. A. R. A., & Adriñán, S. A. M. (2021). The Origins of Coca: Museum Genomics Reveals Multiple Independent Domestications from Progenitor Erythroxylum gracilipes. 70(1), 1-13. https://doi.org/10.1093/sysbio/syaa074spa
dc.relation.referencesIPNI. (2023, febrero). International Plant Names Index. The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Herbarium. https://www.ipni.org/citeusspa
dc.relation.referencesIUCN. (2023). The IUCN Red List of Threatened Species. https://www.iucnredlist.org/spa
dc.relation.referencesJiang, C., Fei, X., Pan, X., Huang, H., Qi, Y., Wang, X., Zhao, Q., Li, F., Zhang, L., Shao, Q., Li, X., & Wu, Z. (2021a). Tissue-specific transcriptome and metabolome analyses reveal a gene module regulating the terpenoid biosynthesis in Curcuma wenyujin. Industrial Crops and Products, 170, 113758. https://doi.org/10.1016/j.indcrop.2021.113758spa
dc.relation.referencesJiang, C., Fei, X., Pan, X., Huang, H., Qi, Y., Wang, X., Zhao, Q., Li, F., Zhang, L., Shao, Q., Li, X., & Wu, Z. (2021b). Tissue-specific transcriptome and metabolome analyses reveal a gene module regulating the terpenoid biosynthesis in Curcuma wenyujin. Industrial Crops and Products, 170, 113758. https://doi.org/10.1016/j.indcrop.2021.113758spa
dc.relation.referencesKasper, J., Melzig, M., & Jenett-Siems, K. (2010). New Phenolic Compounds of Acmella ciliata. Planta Medica, 76(06), 633-635. https://doi.org/10.1055/s-0029-1240621spa
dc.relation.referencesKiselev, K. V., Tyunin, A. P., & Karetin, Y. A. (2015). Salicylic acid induces alterations in the methylation pattern of the VaSTS1, VaSTS2, and VaSTS10 genes in Vitis amurensis Rupr. Cell cultures. Plant Cell Reports, 34(2), 311-320. https://doi.org/10.1007/s00299-014- 1708-2spa
dc.relation.referencesKoehler-Santos, P., Lorenz-Lemke, A. P., Muschner, V. C., Bonatto, S. L., Salzano, F. M., & Freitas, L. B. (2006). Molecular genetic variation in Passiflora alata (Passifloraceae), an invasive species in southern Brazil. Biological Journal of the Linnean Society, 88(4), 611- 630. https://doi.org/10.1111/J.1095-8312.2006.00647.Xspa
dc.relation.referencesLan, H., Wang, H., Gao, M., Luo, G., Zhang, J., Yi, E., Liang, C., Xiong, X., Chen, X., Wu, Q., Chen, R., Lin, B., Qian, D., & Hong, W. (2021). Analysis and Construction of a Competitive Endogenous RNA Regulatory Network of Baicalin-Induced Apoptosis in Human Osteosarcoma Cells. BioMed Research International, 2021. https://doi.org/10.1155/2021/9984112spa
dc.relation.referencesLasso, P., Rojas, L., Arévalo, C., Urueña, C., Murillo, N., Barreto, A., Costa, G. M., & Fiorentino, S. (2022). Tillandsia usneoides Extract Decreases the Primary Tumor in a Murine Breast Cancer Model but Not in Melanoma. Cancers, 14(21). https://doi.org/10.3390/CANCERS14215383/S1spa
dc.relation.referencesLeal Garzón, D. A., & Modesti Costa, G. (2021). Caracterización fitoquímica de especies vegetales en Colombia y evaluación de su actividad antifúngica contra Candida albicans. Pontificia Universidad Javeriana.spa
dc.relation.referencesLeonti, M., Casu, L., de Oliveira Martins, D. T., Rodrigues, E., & Benítez, G. (2020). Ecological Theories and Major Hypotheses in Ethnobotany: Their Relevance for Ethnopharmacology and Pharmacognosy in the Context of Historical Data. Revista Brasileira de Farmacognosia, 30(4), 451-466. https://doi.org/10.1007/s43450-020-00074- wspa
dc.relation.referencesLi, P., Chen, J., Zhang, W., Fu, B., & Wang, W. (2017). Transcriptome inference and systems approaches to polypharmacology and drug discovery in herbal medicine. Journal of Ethnopharmacology, 195(June), 127-136. https://doi.org/10.1016/j.jep.2016.10.020spa
dc.relation.referencesLi, S.-Y., Wang, W.-J., Li, Q.-Y., Yang, P.-H., Li, X.-L., Yan, Y., Yuan, Y., Feng, Y.-B., & Hong, M. (2022a). Using omics approaches to dissect the therapeutic effects of Chinese herbal medicines on gastrointestinal cancers. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.884822spa
dc.relation.referencesLi, S.-Y., Wang, W.-J., Li, Q.-Y., Yang, P.-H., Li, X.-L., Yan, Y., Yuan, Y., Feng, Y.-B., & Hong, M. (2022b). Using omics approaches to dissect the therapeutic effects of Chinese herbal medicines on gastrointestinal cancers. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.884822spa
dc.relation.referencesLin, L. L., Hsia, C. R., Hsu, C. L., Huang, H. C., & Juan, H. F. (2015). Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells. BMC Genomics, 16(1), 1-17. https://doi.org/10.1186/s12864-015-1230-0spa
dc.relation.referencesLin, X., Feng, C., Lin, T., Harris, A., Li, Y., & Kang, M. (2022). Jackfruit genome and population genomics provide insights into fruit evolution and domestication history in. Horticulture Research, 9(173), 1-13.spa
dc.relation.referencesLiu, X., Wu, W.-Y., Jiang, B.-H., Yang, M., & Guo, D.-A. (2013). Pharmacological tools for the development of traditional Chinese medicine. Trends in Pharmacological Sciences, 34(11), 620-628. https://doi.org/10.1016/j.tips.2013.09.004spa
dc.relation.referencesLiu, Z., Ma, L., & Zhou, G. (2011). The Main Anticancer Bullets of the Chinese Medicinal Herb, Thunder God Vine. 5283-5297. https://doi.org/10.3390/molecules16065283spa
dc.relation.referencesLowe, H. I. C., Toyang, N. J., Watson, C. T., Ayeah, K. N., & Bryant, J. (2017). HLBT-100: A highly potent anti-cancer flavanone from Tillandsia recurvata (L.) L. Cancer Cell International, 17(1). https://doi.org/10.1186/S12935-017-0404-Zspa
dc.relation.referencesLucena de Vasconcelos, A., Lucena de Vasconcelos, A., Azevedo Ximenes, E., & Perrelli Randau, K. (2013). Tillandsia recurvata L. (Bromeliaceae): Aspectos farmacognósticos.: EBSCOhost. Revista de Ciências Farmacêuticas Básica e Aplicada, 34, 151-159.spa
dc.relation.referencesMa, J., Huang, J., Hua, S., Zhang, Y., Zhang, Y., Li, T., Dong, L., Gao, Q., & Fu, X. (2019). The ethnopharmacology, phytochemistry and pharmacology of Angelica biserrata – A review. Journal of Ethnopharmacology, 231, 152-169. https://doi.org/10.1016/j.jep.2018.10.040spa
dc.relation.referencesMa, R., Yang, P., Jing, C., Fu, B., Teng, X., & Zhao, D. (2023). Plant Physiology and Biochemistry Comparison of the metabolomic and proteomic profiles associated with triterpene and phytosterol accumulation between wild and cultivated ginseng. Plant Physiology and Biochemistry, 195(December 2022), 288-299. https://doi.org/10.1016/j.plaphy.2023.01.020spa
dc.relation.referencesManica-Cattani, M. F., Zacaria, J., Pauletti, G., Atti-Serafini, L., & Echeverrigaray, S. (2009). Genetic variation among South Brazilian accessions of Lippia alba Mill. (Verbenaceae) detected by ISSR and RAPD markers. Brazilian Journal of Biology, 69(2), 375-380. https://doi.org/10.1590/S1519-69842009000200020spa
dc.relation.referencesMarulanda, M. L., López, A. M., & Claroz, J. L. (2007). Analyzing the genetic diversity of Guadua spp. In Colombia using rice and sugarcane microsatellites. Crop Breeding and Applied Biotechnology, 7(1), 43-51. https://doi.org/10.12702/1984-7033.V07N01A07spa
dc.relation.referencesMazzari, A. L. D. A., & Prieto, J. M. (2014). Herbal medicines in Brazil: Pharmacokinetic profile and potential herb-drug interactions. Frontiers in Pharmacology, 5 JUL(July), 1-12. https://doi.org/10.3389/fphar.2014.00162spa
dc.relation.referencesMiller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome research, 17(2), 240-248. https://doi.org/10.1101/GR.5681207spa
dc.relation.referencesMinisterio de la protección social. (2008). Vademécum Colombiano de plantas medicinales (1.a ed.).spa
dc.relation.referencesMiranda-Nuñez, J. E., Zamilpa-Alvarez, A., Fortis-Barrera, A., Alarcon-Aguilar, F. J., Loza- Rodriguez, H., Gomez-Quiroz, L. E., Salas-Silva, S., Flores-Cruz, M., Zavala-Sanchez, M. A., & Blancas-Flores, G. (2021). GLUT4 translocation in C2C12 myoblasts and primary mouse hepatocytes by an antihyperglycemic flavone from Tillandsia usneoides. Phytomedicine, 89, 153622. https://doi.org/10.1016/J.PHYMED.2021.153622spa
dc.relation.referencesMishra, A., Medhi, K., Malaviya, P., & Thakur, I. S. (2019). Bioresource Technology Omics approaches for microalgal applications: Prospects and challenges. Bioresource Technology, 291(June), 121890. https://doi.org/10.1016/j.biortech.2019.121890spa
dc.relation.referencesMonzote, L., Scull, R., Cos, P., & Setzer, W. N. (2017). Essential Oil from Piper aduncum: Chemical Analysis, Antimicrobial Assessment, and Literature Review. Medicines, 4(3), 49. https://doi.org/10.3390/MEDICINES4030049spa
dc.relation.referencesMoreno, J., Aparicio, R., Velasco, J., Rojas, L. B., Usubillaga, A., & Lue-Merú, M. (2010). Chemical Composition and Antibacterial Activity of the Essential Oil from Fruits of Bursera tomentosa. Natural Product Communications , 5, 311-313.spa
dc.relation.referencesMuhammad, S., Gilani, U., Ahmed, S., Hasan, M. M., & Ghousia Baig, S. (2019). Ethnopharmacognosy, phytochemistry and pharmacology of genus Caesalpinia: A review. ~ 2222 ~ Journal of Pharmacognosy and Phytochemistry, 8(4).spa
dc.relation.referencesMuñoz Florez, J. E., Londoño, X., Rugeles, P., Andrés, Posso, M., Franco, ;, Vallejo, A., : F., & Arango, J. E. (2010). Diversidad y estructura genética de Guadua angustifolia en la Ecorregión Cafetera colombiana.spa
dc.relation.referencesMuthuramalingam, P., Akassh, S., Rithiga, S. B., Prithika, S., Gunasekaran, R., Shin, H., Kumar, R., Baskar, V., & Kim, J. (2023). Integrated omics profiling and network pharmacology uncovers the prognostic genes and multi-targeted therapeutic bioactives to combat lung cancer. European Journal of Pharmacology, 940, 175479. https://doi.org/10.1016/j.ejphar.2022.175479spa
dc.relation.referencesNegi, A., Singh, K., Jaiswal, S., Kokkat, J. G., Angadi, U. B., Iquebal, M. A., Umadevi, P., Rai, A., & Kumar, D. (2022). Rapid Genome-Wide Location-Specific Polymorphic SSR Marker Discovery in Black Pepper by GBS Approach. Frontiers in Plant Science, 13, 1445. https://doi.org/10.3389/FPLS.2022.846937/BIBTEXspa
dc.relation.referencesNegrão, R., Monro, A. K., Castellanos-Castro, C., & Diazgranados, M. (2022). Catalogue of Useful Plants of Colombia.spa
dc.relation.referencesNoorolahi, S. M., Sadeghi, S., Mohammadi, M., Azadi, M., Rahimi, N. A., Vahabi, F., Arjmand, M., Hosseini, H., Mosallatpur, S., & Zamani, Z. (2016). Metabolomic profiling of cancer cells to Aloe vera extract by 1HNMR spectroscopy. Journal of Metabolomics, 2(1), 1-7. https://doi.org/10.7243/2059-0008-2-1spa
dc.relation.referencesOlivier, M., Asmis, R., Hawkins, G. A., Howard, T. D., & Cox, L. A. (2019). The Need for Multi-Omics Biomarker Signatures in Precision Medicine. International Journal of Molecular Sciences, 20(4781), 1-13.spa
dc.relation.referencesOtto, L. G., Mondal, P., Brassac, J., Preiss, S., Degenhardt, J., He, S., Reif, J. C., & Sharbel, T. F. (2017). Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping. BMC Genomics, 18(1), 1-18. https://doi.org/10.1186/s12864-017-3991-0spa
dc.relation.referencesPájaro-González, Y., Oliveros-Díaz, A., Cabrera-Barraza, J., Cerra-Dominguez, J., & Díaz- Castillo, F. (2022a). A review of medicinal plants used as antimicrobials in Colombia. Medicinal Plants as Anti-Infectives, 3-57. https://doi.org/10.1016/B978-0-323-90999- 0.00005-7spa
dc.relation.referencesPájaro-González, Y., Oliveros-Díaz, A., Cabrera-Barraza, J., Cerra-Dominguez, J., & Díaz- Castillo, F. (2022b). A review of medicinal plants used as antimicrobials in Colombia. Medicinal Plants as Anti-infectives: Current Knowledge and New Perspectives, 3-57. https://doi.org/10.1016/B978-0-323-90999-0.00005-7spa
dc.relation.referencesPalazzotto, E., & Weber, T. (2018). ScienceDirect Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Current Opinion in Microbiology, 45, 109-116. https://doi.org/10.1016/j.mib.2018.03.004spa
dc.relation.referencesPandita, D., Pandita, A., Wani, S. H., Abdelmohsen, S. A. M., Alyousef, H. A., Abdelbacki, A. M. M., Al-Yafrasi, M. A., Al-Mana, F. A., & Elansary, H. O. (2021a). Crosstalk of multi- omics platforms with plants of therapeutic importance. Cells, 10(6). https://doi.org/10.3390/cells10061296spa
dc.relation.referencesPandita, D., Pandita, A., Wani, S. H., Abdelmohsen, S. A. M., Alyousef, H. A., Abdelbacki, A. M. M., Al-Yafrasi, M. A., Al-Mana, F. A., & Elansary, H. O. (2021b). Crosstalk of multi- omics platforms with plants of therapeutic importance. Cells, 10(6). https://doi.org/10.3390/cells10061296spa
dc.relation.referencesPanossian, A., Seo, E.-J., Wikman, G., & Efferth, T. (2015a). Synergy assessment of fixed combinations of Herba Andrographidis and Radix Eleutherococci extracts by transcriptome- wide microarray profiling. Phytomedicine, 22(11), 981-992. https://doi.org/10.1016/j.phymed.2015.08.004spa
dc.relation.referencesPanossian, A., Seo, E.-J., Wikman, G., & Efferth, T. (2015b). Synergy assessment of fixed combinations of Herba Andrographidis and Radix Eleutherococci extracts by transcriptome- wide microarray profiling. Phytomedicine, 22(11), 981-992. https://doi.org/10.1016/j.phymed.2015.08.004spa
dc.relation.referencesPedrete, T. A., Hauser-davis, R. A., & Moreira, J. C. (2019). International Journal of Biological Macromolecules Proteomic characterization of medicinal plants used in the treatment of diabetes. international journal of biological macromolecules, 140, 294-302. https://doi.org/10.1016/j.ijbiomac.2019.08.035spa
dc.relation.referencesPérez, D., Matiz-Guerra, L. C., Pérez, D., & Matiz-Guerra, L. C. (2017). Uso de las plantas por comunidades campesinas en la ruralidad de Bogotá D.C., Colombia. Caldasia, 39(1), 68. https://doi.org/10.15446/caldasia.v39n1.59932spa
dc.relation.referencesPrieto-Rodríguez, J. A., Lévuok-Mena, K. P., Cardozo-Muñoz, J. C., Parra-Amin, J. E., Lopez-Vallejo, F., Cuca-Suárez, L. E., & Patiño-Ladino, O. J. (2022). In Vitro and In Silico Study of the α-Glucosidase and Lipase Inhibitory Activities of Chemical Constituents from Piper cumanense (Piperaceae) and Synthetic Analogs. Plants, 11(17), 2188. https://doi.org/10.3390/PLANTS11172188/S1spa
dc.relation.referencesQuintero, W. L., Moreno, E. M., Pinto, S. M. L., Sanabria, S. M., Stashenko, E., & García, L. T. (2021). Immunomodulatory, trypanocide, and antioxidant properties of essential oil fractions of Lippia alba (Verbenaceae). BMC Complementary Medicine and Therapies, 21(1). https://doi.org/10.1186/S12906-021-03347-6spa
dc.relation.referencesRan, D., Hong, W., Yan, W., & Mengdie, W. (2021). Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. Journal of Ethnopharmacology, 273, 113958. https://doi.org/10.1016/j.jep.2021.113958spa
dc.relation.referencesRao, T., Tan, Z., Peng, J., Guo, Y., Chen, Y., Zhou, H., & Ouyang, D. (2019). The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective. Pharmacological Research, 146, 104283. https://doi.org/10.1016/j.phrs.2019.104283spa
dc.relation.referencesRivas Mena, K. E., Muñoz, D. L., Pino Benítez, C. N., & Balcázar Morales, N. (2015). Antioxidant activity, total phenolic content and cytotoxicity of polar extracts from colombian antidiabetic plants. Revista Cubana de Plantas Medicinales, 20(3), 277-289.spa
dc.relation.referencesRocha, D., Santos, C., Bajay, M., Campos, J., Blank, A., Pinheiro, J., & Zucchi, M. (2015). Development of a novel set of microsatellite markers for Lippia alba (Verbenaceae). Genetics and Molecular Research, 14(1), 971-974. https://doi.org/10.4238/2015.February.3.4spa
dc.relation.referencesRowe, H. C., Renaut, S., & Guggisberg, A. (2011). RAD in the realm of next-generation sequencing technologies. Molecular ecology, 20(17), 3499-3502. https://doi.org/10.1111/J.1365-294X.2011.05197.Xspa
dc.relation.referencesRubin, B. E. R., Ree, R. H., & Moreau, C. S. (2012). Inferring Phylogenies from RAD Sequence Data. PLOS ONE, 7(4), e33394. https://doi.org/10.1371/JOURNAL.PONE.0033394spa
dc.relation.referencesRugeles-Silva, P. A., Posso-Terranova, A. M., Londoño, X., Marín, N. B.-, & Muñoz-Flórez, J. E. (2012). Caracterización molecular de Guadua angustifolia Kunth mediante marcadores moleculares RAMs. Acta Agronómica, 61(4), 325-330. https://doi.org/10.15446/ACAGspa
dc.relation.referencesRuiz-Vásquez, L., Ruiz Mesia, L., Caballero Ceferino, H. D., Ruiz Mesia, W., Andrés, M. F., Díaz, C. E., & Gonzalez-Coloma, A. (2022). Antifungal and Herbicidal Potential of Piper Essential Oils from the Peruvian Amazonia. Plants, 11(14), 1793. https://doi.org/10.3390/plants11141793spa
dc.relation.referencesSahoo, S., & S., B. (2019). Pharmacogenomic assessment of herbal drugs in affective disorders. Biomedicine & Pharmacotherapy, 109, 1148-1162. https://doi.org/10.1016/j.biopha.2018.10.135spa
dc.relation.referencesSantos, F. R. C., Lima, P. F., Priolli, R. H. G., Siqueira, W. J., & Colombo, C. A. (2012). Isolation and characteristics of eight novel polymorphic microsatellite loci in Lippia alba (Verbenaceae). American Journal of Botany, 99(8), e301-e303. https://doi.org/10.3732/AJB.1100578spa
dc.relation.referencesSantos, N., Pascon, R., Vallim, M., Figueiredo, C., Soares, M., Lago, J., & Sartorelli, P. (2016). Cytotoxic and Antimicrobial Constituents from the Essential Oil of Lippia alba (Verbenaceae). Medicines, 3(3), 22. https://doi.org/10.3390/medicines3030022spa
dc.relation.referencesSeebaluck, R., Gurib-Fakim, A., & Mahomoodally, F. (2015). Medicinal plants from the genus Acalypha (Euphorbiaceae)–A review of their ethnopharmacology and phytochemistry. Journal of Ethnopharmacology, 159, 137-157. https://doi.org/10.1016/J.JEP .2014.10.040spa
dc.relation.referencesSequeda-Castañeda, L. G., Modesti Costa, G. 1, Celis, C., Gamboa, F., Gutiérrez, S., & Luengas, P. (2016, diciembre 30). (PDF) Ilex guayusa (Aquifoliaceae): Amazon and Andean Native Plant. Pharmacology online. https://www.researchgate.net/publication/311981728_Ilex_guayusa_Aquifoliaceae_Amaz on_and_Andean_Native_Plantspa
dc.relation.referencesShan, Y., Wang, F., Wei, Z., & Lu, Y. (2021). Synthetic lethality theory approaches to effective substance discovery and functional mechanisms elucidation of anti-cancer phytomedicine. Phytomedicine, 91, 153718. https://doi.org/10.1016/j.phymed.2021.153718spa
dc.relation.referencesShen, Y., Sun, Z., Shi, P., Wang, G., Wu, Y., Li, S., Zheng, Y., Huang, L., Lin, L., Lin, X., & Yao, H. (2018). Anticancer effect of petroleum ether extract from Bidens pilosa L and its constituent’s analysis by GC-MS. Journal of Ethnopharmacology, 217, 126-133. https://doi.org/10.1016/J.JEP .2018.02.019spa
dc.relation.referencesShipa, S. J., Khandokar, L., Bari, M. S., Qais, N., Rashid, M. A., Haque, M. A., & Mohamed, I. N. (2022). An insight into the anti-ulcerogenic potentials of medicinal herbs and their bioactive metabolites. Journal of Ethnopharmacology, 293, 115245. https://doi.org/10.1016/J.JEP.2022.115245spa
dc.relation.referencesShyamli, P. S., Pradhan, S., Panda, M., & Parida, A. (2021). De novo Whole-Genome Assembly of Moringa oleifera Helps Identify Genes Regulating Drought Stress Tolerance. 12(December), 1-14. https://doi.org/10.3389/fpls.2021.766999spa
dc.relation.referencesSiB Colombia. (2023, febrero 28). Sistema de Información sobre Biodiversidad de Colombia. https://cifras.biodiversidad.co/spa
dc.relation.referencesSilveira, N., Saar, J., Santos, A. D. C., Barison, A., Sandjo, L. P., Kaiser, M., Schmidt, T. J., & Biavatti, M. W. (2016). A New Alkamide with an Endoperoxide Structure from Acmella ciliata (Asteraceae) and Its in Vitro Antiplasmodial Activity. Molecules, 21(6). https://doi.org/10.3390/MOLECULES21060765spa
dc.relation.referencesSingh, G., Passsari, A. K., Singh, P., Leo, V. V., Subbarayan, S., Kumar, B., Singh, B. P., lalhlenmawia, H., & Kumar, N. S. (2017). Pharmacological potential of Bidens pilosa L. and determination of bioactive compounds using UHPLC-QqQLIT-MS/MS and GC/MS. BMC Complementary and Alternative Medicine, 17(1). https://doi.org/10.1186/S12906-017- 2000-0spa
dc.relation.referencesSingh, P. K., Sharma, H., Srivastava, N., Bhagyawant, S. S., Singh, P. K., Sharma, H., Srivastava, N., & Bhagyawant, S. S. (2014). Analysis of Genetic Diversity among Wild and Cultivated Chickpea Genotypes Employing ISSR and RAPD Markers. American Journal of Plant Sciences, 5(5), 676-682. https://doi.org/10.4236/AJPS.2014.55082spa
dc.relation.referencesSmit, R., Du Toit, E. S., & Vorster, B. J. (2013). RAPD and SSR genetic diversity analysis of Moringa oleifera. South African Journal of Botany, 86, 182. https://doi.org/10.1016/J.SAJB.2013.02.162spa
dc.relation.referencesSumner, L. W., Lei, Z., Nikolau, B. J., & Saito, K. (2015a). Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 32(2), 212-229. https://doi.org/10.1039/c4np00072bspa
dc.relation.referencesSun, Q., Gong, T., Liu, M., Ren, S., Yang, H., Zeng, S., Zhao, H., Chen, L., Ming, T., Meng, X., & Xu, H. (2022). Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. Phytomedicine, 94, 153805. https://doi.org/10.1016/j.phymed.2021.153805spa
dc.relation.referencesSumner, L. W., Lei, Z., Nikolau, B. J., & Saito, K. (2015b). Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Natural Product Reports, 32(2), 212-229. https://doi.org/10.1039/c4np00072bspa
dc.relation.referencesSuzuki, M., Nakabayashi, R., Ogata, Y., Sakurai, N., Tokimatsu, T., Goto, S., Suzuki, M., Jasinski, M., Martinoia, E., Otagaki, S., Matsumoto, S., Saito, K., & Shiratake, K. (2015). Multiomics in grape berry skin revealed specific induction of the stilbene synthetic pathway by ultraviolet-C irradiation. En Plant Physiology (Vol. 168, Número 1). https://doi.org/10.1104/pp.114.254375spa
dc.relation.referencesTan, J., Tian, Y., Cai, R., Yi, T., Jin, D., & Guo, J. (2019). Antiproliferative and Proapoptotic Effects of a Protein Component Purified from Aspongopus chinensis Dallas on Cancer Cells In Vitro and In Vivo. 2019. https://doi.org/10.1155/2019/8934794spa
dc.relation.referencesTang, X., Guo, J., Chen, L., & Ho, P. C. (2020). Journal of Pharmaceutical and Biomedical Analysis Application for proteomics analysis technology in studying animal-derived traditional Chinese medicine: A review. Journal of Pharmaceutical and Biomedical Analysis, 191, 113609. https://doi.org/10.1016/j.jpba.2020.113609spa
dc.relation.referencesTanuja, & Parani, M. (2023). Whole transcriptome analysis identifies full-length genes for neoandrographolide biosynthesis from Andrographis alata, an alternate source for antiviral compounds. Gene, 851(October 2022), 146981. https://doi.org/10.1016/j.gene.2022.146981spa
dc.relation.referencesValdiani, A., Abdul, M., Soon, K., & Tan, G. (2012). Nain-e Havandi Andrographis paniculata present yesterday , absent today: A plenary review on underutilized herb of Iran ’ s pharmaceutical plants. Mol Biol Rep, 39, 5409-5424. https://doi.org/10.1007/s11033- 011-1341-xspa
dc.relation.referencesValdivia, C., Marquez, N., Eriksson, J., Vilaseca, A., Muñoz, E., & Sterner, O. (2008). Bioactive alkenylphenols from Piper obliquum. Bioorganic & Medicinal Chemistry, 16(7), 4120-4126. https://doi.org/10.1016/j.bmc.2008.01.018spa
dc.relation.referencesTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595. https://doi.org/10.1093/genetics/123.3.585spa
dc.relation.referencesVega-Vela, N. E., & Sánchez, M. I. C. (2012). Genetic structure along an altitudinal gradient in Lippia origanoides, a promising aromatic plant species restricted to semiarid areas in northern South America. Ecology and Evolution, 2(11), 2669-2681. https://doi.org/10.1002/ece3.360spa
dc.relation.referencesWickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer. https://doi.org/10.1007/978-0-387-98141-3spa
dc.relation.referencesWingett, S. W., & Andrews, S. (2018). FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research, 7, 1338. https://doi.org/10.12688/f1000research.15931.2spa
dc.relation.referencesZheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high- performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326-3328. https://doi.org/10.1093/bioinformatics/bts606spa
dc.relation.referencesBaird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A., & Johnson, E. A. (2008). Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers. PLOS ONE, 3(10), e3376. https://doi.org/10.1371/journal.pone.0003376spa
dc.relation.referencesBohonak, A. J. (2002). IBD (Isolation by Distance): A Program for Analyses of Isolation by Distance. Journal of Heredity, 93(2), 153-154. https://doi.org/10.1093/jhered/93.2.153spa
dc.relation.referencesBradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. https://doi.org/10.1093/bioinformatics/btm308spa
dc.relation.referencesCatchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22(11), 3124- 3140. https://doi.org/10.1111/mec.12354spa
dc.relation.referencesCatchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: Building and Genotyping Loci De Novo From Short-Read Sequences. G3 Genes|Genomes|Genetics, 1(3), 171-182. https://doi.org/10.1534/g3.111.000240spa
dc.relation.referencesDarriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772-772. https://doi.org/10.1038/nmeth.2109spa
dc.relation.referencesDavey, J. W., & Blaxter, M. L. (2010). RADSeq: Next-generation population genetics. Briefings in Functional Genomics, 9(5-6), 416-423. https://doi.org/10.1093/bfgp/elq031spa
dc.relation.referencesDíaz-Arce, N., & Rodríguez-Ezpeleta, N. (2019). Selecting RAD-Seq Data Analysis Parameters for Population Genetics: The More the Better? Frontiers in Genetics, 10. https://www.frontiersin.org/articles/10.3389/fgene.2019.00533spa
dc.relation.referencesExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.xspa
dc.relation.referencesGarcía Barriga, H. (1974). Flora medicinal de Colombia: Botánica médica. Instituto de Ciencias Naturales.spa
dc.relation.referencesLetunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293- W296. https://doi.org/10.1093/nar/gkab301spa
dc.relation.referencesMaruki, T., & Lynch, M. (2017). Genotype Calling from Population-Genomic Sequencing Data. G3: Genes|Genomes|Genetics, 7(5), 1393-1404. https://doi.org/10.1534/g3.117.039008spa
dc.relation.referencesMcDermott, J. M., & McDonald, B. A. (1993). Gene Flow in Plant Pathosystems. Annual Review of Phytopathology, 31(1), 353-373. https://doi.org/10.1146/annurev.py.31.090193.002033spa
dc.relation.referencesMedicinal Plants as anti-infectives. Current Knowledge and New Perspectives. (2022). Academic Press is an imprint of Elsevier. https://www.sciencedirect.com/science/article/pii/B9780323909990000215?via%3spa
dc.relation.referencesParis, J. R., Stevens, J. R., & Catchen, J. M. (2017). Lost in parameter space: A road map for stacks. Methods in Ecology and Evolution, 8(10), 1360-1373. https://doi.org/10.1111/2041-210X.12775spa
dc.relation.referencesPurcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. American Journal of Human Genetics, 81(3), 559-575.spa
dc.relation.referencesRavinet, M., Westram, A., Johannesson, K., Butlin, R., André, C., & Panova, M. (2016). Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale. Molecular Ecology, 25(1), 287-305. https://doi.org/10.1111/mec.13332spa
dc.relation.referencesValoyes, D. C., & Palacios Palacios, L. (2020). Patrones de uso de las plantas medicinales en el Chocó y Cauca (Colombia). Ciencia en Desarrollo, 11(2), 85-96. https://doi.org/10.19053/01217488.V11.N2.2020.10583spa
dc.relation.referencesXiao, M., Zhang, Y., Chen, X., Lee, E. J., Barber, C. J. S., Chakrabarty, R., Desgagné- Penix, I., Haslam, T. M., Kim, Y. B., Liu, E., MacNevin, G., Masada-Atsumi, S., Reed, D. W., Stout, J. M., Zerbe, P., Zhang, Y., Bohlmann, J., Covello, P. S., De Luca, V., ... Sensen, C. W. (2013). Transcriptome analysis based on next- generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 166(3), 122-134. https://doi.org/10.1016/J.JBIOTEC.2013.04.004spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocProcesamiento de señales genómicas
dc.subject.agrovocGenomic signal processing
dc.subject.agrovocMarcador genético
dc.subject.agrovocGenetic markers
dc.subject.agrovocVariación genética
dc.subject.agrovocGenetic variation
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalDiversidad genéticaspa
dc.subject.proposalEstructura poblacionalspa
dc.subject.proposalSNPsspa
dc.subject.proposalPST1spa
dc.subject.proposalÓmicasspa
dc.subject.proposalGenetic diversityeng
dc.subject.proposalPopulation structureeng
dc.subject.proposalOmicseng
dc.titleCaracterización genómica de las poblaciones de Petiveria alliacea L. y Lippia alba (Mill.) de diferentes departamentos de Colombia utilizando Radseqspa
dc.title.translatedGenomic characterization of populations of Petiveria alliacea L. and Lippia alba (Mill.) from different departments of Colombia using RADseqeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleAproximación biológica, fitoquímica y agronómica para la gestión de recursos vegetales con potencial farmacológico: Aporte a cadena de valor para el sector de los fitomedicamentos en Colombiaspa
oaire.fundernamePontificia Universidad Javerianaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1070970724.2024.pdf
Tamaño:
4.5 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Biológicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: