Modelación numérica bidimensional de la socavación local en pilas de puente incluyendo efectos de flujo secundario

dc.contributor.advisorEscobar Vargas, Jorge Alberto
dc.contributor.advisorOrdoñez Ordoñez, Jaime Iván
dc.contributor.authorDurán Santana, Leandro
dc.contributor.researchgroupGrupo de Investigación en Ingeniería de Recursos Hidrícos - GIREHspa
dc.date.accessioned2021-07-01T16:31:38Z
dc.date.available2021-07-01T16:31:38Z
dc.date.issued2021
dc.descriptionilustracionesspa
dc.description.abstractLa socavación local en pilas de puentes es un proceso físico complejo debido a que el comportamiento del campo de flujo alrededor de la pila es tridimensional con procesos turbulentos, acción de flujos secundarios y estructuras vorticosas difíciles de predecir, todo esto actuando en un lecho que puede ser variable en el tiempo y en el espacio. Esta complejidad dificulta el desarrollo de modelos matemáticos y numéricos que tengan un grado aceptable de precisión, ahora bien, los modelos que permiten representar el proceso de la socavación local con esta precisión son costosos computacionalmente, lo que los vuelve imprácticos en los ejercicios habituales de ingeniería. Por lo tanto, el objetivo de esta investigación es construir un modelo numérico que permita representar la socavación local en pilas de puentes con un costo computacional moderado y sin comprometer su precisión. Para ello el modelo se basó en las ecuaciones bidimensionales de aguas someras y se le incluyó el efecto asociado a los flujos secundarios que se presentan alrededor de la pila. A partir de los resultados de un modelo tridimensional hidrodinámico se propone una parametrización de estos flujos secundarios que está en función del número de Froude, la profundidad del flujo y el diámetro de la pila. Adicionalmente, se propone un esfuerzo de corte modificado que tiene en cuenta tanto los flujos horizontales como los flujos secundarios o verticales. El modelo numérico que se propone en esta investigación se implementó en el solver morfodinámico Sisyphe y fue acoplado con el solver hidrodinámico Telemac2D. Finalmente, el modelo se validó con resultados reportados en la literatura de un canal de laboratorio de sección transversal rectangular, esta validación reveló que el modelo está en la capacidad de reproducir la profundidad de socavación en equilibrio al frente de la pila, al igual que este reprodujo relativamente bien el hueco de socavación, a excepción de la zona aguas abajo donde se presentó subestimación de las profundidades de socavación.spa
dc.description.abstractLocal scour in bridge piers is a complex physical process because flow field behavior around the pile is three-dimensional with turbulent processes, secondary flow action and vortex structures that are difficult to predict, all this acting on a bed that can be variable in time and space. This complexity makes it difficult to develop mathematical and numerical models that have an acceptable degree of precision, however, the models that allow representing the local scour process with this precision are computationally expensive, which makes them impractical in normal engineering exercises. Therefore, the objective of this research is to construct a numerical model that allows to represent the local scour in bridge piers with a moderate computational cost and without compromising its precision. For this, the model was based on the two-dimensional equations of shallow waters and the effect associated with the secondary flows that occur around the pile was included. Based on the results of a three-dimensional hydrodynamic model, a parameterization of these secondary flows is proposed, which is a function of Froude number, depth flow and diameter of the pile. Additionally, a modified shear stress is proposed that considers both horizontal flows and secondary or vertical flows. Numerical model proposed in this research was implemented in the Sisyphe morphodynamic solver and was coupled with the Telemac2D hydrodynamic solver. Finally, the model was validated with results reported in the literature of a rectangular cross-sectional laboratory channel, this validation revealed that the model can reproduce the equilibrium depth of scour in at the front of the pile, just like this reproduced the scour hole relatively well, except for the downstream area where scour depths were underestimated.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.description.researchareaHidráulica Fluvialspa
dc.format.extent175 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79751
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAlamgir, K. (2005). M.Sc. Thesis. Modelling local scour around bridge piers using TELEMAC. Cape Town: University of Cape Town.spa
dc.relation.referencesAlcrudo, F. (2007). Aerodinamica. Area de Mecanica de Fluidos. Zaragoza: PS-Universidad de Zaragoza.spa
dc.relation.referencesAnderson, J. (2005). Ludwig Prantls Boundary layer. Physics Today, (ef).spa
dc.relation.referencesArmitage, N., & McGahey, C. (2003). A unit stream power model for the prediction of local scour in rivers. South Africa: Water Research Commission.spa
dc.relation.referencesAta, R. (2018). Telemac2d User Manual. Paris: Telemac-Mascaret, version v8p0.spa
dc.relation.referencesBadia, M. B. (2011). Tesina. Estudio Experimental de la erosion local en pilas de puente cuadradas. Influencia de la anchura de la pila. Barcelona, España: Escuela tecnica de Barcelona.spa
dc.relation.referencesBaker, R. (1986). M.Sc. Thesis. Local Scour at Bridge piers in non-uniform sediment. . Auckland: University of Auckland, New Zeland.spa
dc.relation.referencesBresch, D. N. (2010). Matehmatical drivation of viscous shallow-water equations with zero surface tension. Hal <Hal-00456181.spa
dc.relation.referencesBreusers, H. N. (1965). Scouring around drilling platforms. Journal Hydraulic Research, 276.spa
dc.relation.referencesBreusers, H. N. (1977). Local Scour Around Cylindrical Piers. Journal of Hydraulic Research, 15, 211-250.spa
dc.relation.referencesBrownlie, W. (1983). Flow depth in sand-bed channels. Journal of Hydarulic Engineering, 959-990.spa
dc.relation.referencesChauchat, J., Cheng, Z., Nagel, T., Bonamy, C., & Hsu, T. (2017). SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport. Geoscientific Model Development, 4367-4392.spa
dc.relation.referencesChiew, Y., & Melville, B. W. (1987). Local Scour around birdge piers. Journal of Hydraulic Research, 15-25.spa
dc.relation.referencesDargahi, B. (1989). The turbulent flow field around a circular cylinder. Experiment in fluids, 1-12.spa
dc.relation.referencesDargahi, B. (1990). Controlling Mechanism of Local Scouring. Journal of Hydraulic Engineering, Pag. 1197-1214.spa
dc.relation.referencesDebnath, K., & Chaudhuri, S. (2012). Local scour around non-circular piers in clay-sand mixed cohesive sediment beds. Engineering Geology, 1-14.spa
dc.relation.referencesEscauriaza, C., & Sotiropoulos, F. (2011b). Lagrangian model of bed-load transport in turbulent junction flow. Jorunal Fluid Mechanics, 36-76.spa
dc.relation.referencesEttema, R. (1976). M.Sc. Thesis. Influence of material gradation on local scour. Auckland: University of Auckland, New Zealand.spa
dc.relation.referencesExcauriaza, C., & Sotiropoulos, F. (2011a). Initial stages of erosion and bed form development in a turbulent flow around a cylindrical pier. Journal of Geophysical Research, 1-24.spa
dc.relation.referencesEzzeldin, M., Moharram, S., Sarhan, T., & Elhamrawy, A. (2006). Scour around pile group of small bridge. Tenth Internacional Water Technology Conference. (págs. 985-1002). Alexandria: IWTC10.spa
dc.relation.referencesGarcia, M. (2008). Sedimentation Engineering. Iilinois: Manual 110, American Society of Civil Engineers.spa
dc.relation.referencesGe, L., & Sotiropoulos, F. (2005). Unsteady RANS modeling of complex hydraulic engineering flows. Journal Hydraulic Engineering, 131(9), 800-808.spa
dc.relation.referencesHeidarpour, M., Afzalimehr, H., & Izadinia, E. (2010). Reduction of local scour around bridge pier groups using collars. Internacional Journal of Sediment Research, 411-422.spa
dc.relation.referencesHervouet, J. (2007). Hydrodynamics of Free Surface Flows. Paris, Francia: Jhon Wiley & Sons.spa
dc.relation.referencesJain, S. C., & Fisher, E. E. (1979). Scour around circular bridge piers at high Froude numbers. Springfield, Virginia: Report. Federal Highway Administration NTIS.spa
dc.relation.referencesKalim, .. M., & K., O. (2002). Simulation of flow around piers. Jorunal of Hydraulic Research, 161-174.spa
dc.relation.referencesKhosronejad, A., Kang, S., & Sotiropoulos, F. (2012). Experimental and Computacional investigation of local scour around bridge piers. Advances in Water Resources, 37, 73-85.spa
dc.relation.referencesKirkil, G., Constantinescu, G., & Ettema, R. (2008). Coherent Structures in the Flow Field around a Circular Cylinder with Scour Hole. Journal of Hydraulic Engineering, 572-587.spa
dc.relation.referencesKirkil, G., Constantinescu, G., & Ettema, R. (2009). Detached Eddy Simulation Investigation of Turbulence at a Circular Pier with Scour Hole. Journal of Hydraulic Engineering, 888-901.spa
dc.relation.referencesKothayari, U., Garde, R., & Raju, K. (1992). Temporal variation of scour around circular bridge piers. Journal of Hydraulic Engineering, 1091-1106.spa
dc.relation.referencesKothyari, U., & Kumar, A. (2010). Temporal variation of scour around circular bridge piers. Journal of Hydraulic Engineering, 35-48.spa
dc.relation.referencesKundu, P., & Cohen, I. (2002). Fluid Mechanics. San Diego: Academic Press.spa
dc.relation.referencesLaursen, E. M. (1960). Scour at bridge crossings. Proceedings American Society Civil Engineers, 86, 39-54.spa
dc.relation.referencesLaursen, E. M., & Toch, A. (1956). Scour around bridge piers and abutments. Ames: Bulletin N°4, Iowa Highway Research Board.spa
dc.relation.referencesLee, S., & Sturm, T. W. (2009). Effect of Sediment Size Scaling on Physical Modeling of Bridge Pier Scour. Journal of Hydraulic Engineering, 793-802.spa
dc.relation.referencesMelville, B. W. (1975). Local scour at bridge sites. Univ. of Auckland, Rep 117.spa
dc.relation.referencesMelville, B. W. (1984). Live-Bed Scour at Bridge Piers. Journal of Hydraulic Engineering, 1234-1247.spa
dc.relation.referencesMelville, B. W. (1997). Pier and abutment scour: Integrated approach. Journal of the Hydraulic Division, ASCE., 123(2), 125-136.spa
dc.relation.referencesMelville, B. W., & Sutherland, A. J. (1988). Design method for local scour at bridge piers. Journal of the Hydraulic Division, ASCE, 118(9), 1306-1310.spa
dc.relation.referencesMelville, B., & Chiew, Y. (1999). Time-Scale for local scour at bridge piers. Journal of Hydraulic Engineering, 59-65.spa
dc.relation.referencesMia, F., & Nago, H. (2003). Design method of time-dependent local scour at circular brige pier. Journal of Hydraulic Engineering, 420-427.spa
dc.relation.referencesMohammed, Y. S. (2015). Experimental invertigaticon of local scour around multi-vents bridge piers. Alexandria Engineering Journal, 54, 197-203.spa
dc.relation.referencesMorales, D. S. (2011). Tesis. Estudio de las causas y soluciones estructurales del colapso total o parcial de los puentes vehiculares de Colombia desde 1986 al 2011, y la evaluacion de las consecuencias del derrumbamiento de uno de ellos. Bogota, Colombia: Pontificia Universidad Javeriana.spa
dc.relation.referencesMostafa, A., & Moussa, A. (2017). Evaluation of local scour around bridge piers for various geometrical shapes using mathematical models. Journal Ain Shams Engineering, 1-10.spa
dc.relation.referencesNadaoka, K., & Yagi, H. (1990). Single-phase fluid modeling of sheet-flow toward the development of numerical movile bed. Proceedings of the 22th internacional conference coastal engineering. ASCE., 2346-2359.spa
dc.relation.referencesNagata, N., Hosoda, T., Nakato, T., & Muramoto, Y. (2005). Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. Journal Hydraulic Engineering, 131(12), 1074-87.spa
dc.relation.referencesNagel, T., Chauchat, J., Bonamy, C., Liu, X., Cheng, Z., & Hsu, T.-J. (2020). Three-dimensional scour simulations with a two-phase flow model. Advances in Water Resources, 1-20.spa
dc.relation.referencesNeill, C. R. (1964a). Local scour around bridge piers. Alberta, Canada: Research Council of Alberta.spa
dc.relation.referencesNurtjahyo, P. Y. (2002). Ph.D. Thesis. Numerical simulation of pier scour and contraction scour. Texas: Department of Civil Engineering. Texas A&M University.spa
dc.relation.referencesOlsen, N. R., & Melaaen, M. C. (1993). Three-dimensional calculation of scour around cylinders. Journal Hydraulic Engineers, 119(9), 1048-1054.spa
dc.relation.referencesOlsen, N., & Kjellesvig, H. (1998). Three-dimensional numerical flow modeling for estimation of maximum local scour depth. Journal of Hydraulic Research, 579-590.spa
dc.relation.referencesPerez, C. P. (2012). Msc. Thesis. Modelacion Numerica de la Hidrodinamica de la erosion en pilas de puentes con esviaje empleando la dinamica de fluidos computacional CFD. Mexico. D.F: Facultad de Ingenieria. Universidad Nacional Autonoma de Mexico.spa
dc.relation.referencesPetryk, S. (1969). Drag on cylinders in open chanels flows. Colorado: Colorado State University Ft. Collins.spa
dc.relation.referencesPope, S. (2000). Turbulent Flows. Ithaca: Cambrige University Press.spa
dc.relation.referencesPosey, C. J. (1949). Why bridges fail in floods. Civil Engineering, 42-90.spa
dc.relation.referencesRandle, T. J., Yang, C. T., & Daraio, J. (2006). Erosion and Reservoir Sedimentation. En U. D. Reclamantion, Erosion and Sedimentation Manual (págs. 2.1-2.86). Denver, United State: U.S. Department of the Interior Bureau of Reclamantion.spa
dc.relation.referencesRaudkivi, A. (1986a). Functional Trends of Scour at Bridge Piers. Jorunal of Hydraulic Engineering, pag. 1-13.spa
dc.relation.referencesRaudkivi, A., & Ettema, R. (1986b). Clear water scour at cylindrical piers. Journal of Hydraulics Engineering, 109(3), 338-350.spa
dc.relation.referencesRhodes, J., & Trent, R. (1993). Economics of floods, scour, and bridge failures. Hydraulic Engineering, 928-933.spa
dc.relation.referencesRichardson, E., Simons, D., & Lagasse, P. (2001). River engineering for highway encroachments—Highways in the river environment. Hydraulic Design Series 6 Pub, No FHWA NHI 01-004, na.spa
dc.relation.referencesRichardson, J. E., & Panchang, V. G. (1998). Three-dimensional simulation of scour inducing flow at bridge piers. Journal Hydraulics Engineering, 124(5), 530-540.spa
dc.relation.referencesRichardson, J. R., & Richardson, E. V. (2008). Bridge Scour Evaluation. En M. R. Garcia, Sedimentation Engineering (págs. 505-542). Reston, United States: American Society of Civil Engineers.spa
dc.relation.referencesRocha, A. (1998). Introduccion a la Hidraulica Fluvial. Lima, Peru: Universidad Nacional de Ingenieria.spa
dc.relation.referencesRoper, A. (1965). M.Sc. Thesis wake region of a circular in a turbulent boundary layer. Colorado: Colorado State University Ft. Collins.spa
dc.relation.referencesRoper, A., Schneider, V., & Shen, H. (1967). Analytical approach to local scour. Proc. 12th IAHR Congress, pag. 151-161.spa
dc.relation.referencesRoulund, A., Sumer, B., & Fredsoe, J. (2005). Numercial and experimental investigation of flow and scour around a circular pile. Journal Fluid Mechanics, 534, 351-401.spa
dc.relation.referencesSalaheldin, T., Imran, J., & Chaudhry, M. (2004). Numerical Modeling of Three-Dimensional Flow Field Around Circular Piers. Journal of Hydraulic Engineering, 91-100.spa
dc.relation.referencesSandoval, A. A. (2012). Tesis. Estimacion de la socavacion en puentes para su uso en el calculo del riesgo fisico. Ciudad de Mexixo, Mexico: Universidad Nacional Autonoma de Mexico.spa
dc.relation.referencesShen, H., & Schneider, V. (1970). Efect of Bridge Pier Shape on Local Scour. Prepr. No. 1238, ASCE Nat. Meeting on Transport Eng.spa
dc.relation.referencesSheppard, D., Melville, B., & Demir, H. (2014). Evaluation of Existing Ecuacion for Local Scour at Bridge Piers. Journal of Hydraulic Engineering, 14-23.spa
dc.relation.referencesShields, A. (1936). Application of similarity principles and turbulence research to bed load movement. California Intitute of Technology, (Translated from German).spa
dc.relation.referencesShirole, A. M., & Holt, R. C. (1991). Planning for a Comprehensive Bridge Safety Assurance Program. Transportation Research Record 1290.spa
dc.relation.referencesSumer, B. (2007). Mathematical modelling of scour: A review. Journal of Hydraulic Research, 723-735.spa
dc.relation.referencesSumer, B., & Mutlu, E. (2006). Hydrodynamics Around Cylindrical structures. Singapore World Scientific, et.spa
dc.relation.referencesTalmon, A., Struiksma, N., & M., v. M. (1995). Laboratory measurements of the direction of sediment transport on transverse alluvial-bed slopes. Journal of Hydraulic Research, 495-517.spa
dc.relation.referencesTassi, P. (2018). Sisyphe User Manual. Paris, Francia: Telemac-Mascaret, version v8p0.spa
dc.relation.referencesTison, L. J. (1940). Erosion autour de piles de pont en riviere. Ann. des Travaux. Publics de Belgique, 813-871.spa
dc.relation.referencesTseng, M., Yen, C. L., & Song, C. C. (2000). Computation of three-dimensional flow around square and circular piers. Internacional Journal for Numerical Methods in Fluids, 207-227.spa
dc.relation.referencesUnger, J., & Hager, W. H. (2007). Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp Fluids, 1-19.spa
dc.relation.referencesVanoni, V. (1975). Sedimentation Engineering. New York: Manual 54, American Society of Civil Engineers.spa
dc.relation.referencesVersteeg, H., & Malalasekera, W. (1995). An Introduction to Computational Fluid Dynamics. Essex, UK: Addison Wesley Longman Limited.spa
dc.relation.referencesVittal, N. K. (1994). Clear-Water Scour around bridge pier Group. Journal of Hydraulic Engineering, 120, 1309-18.spa
dc.relation.referencesWang, S. S., & Jia, Y. (1999). Computational simulations of local scour at bridge crossings-capabilities and limitations. Proceedings of the 1999 international water resources engineering conference., (ef).spa
dc.relation.referencesXiong, W., Cai, C., Kong, B., & Kong, X. (2016). CFD Simulations and Analyses for Bridge-Scour Development Using a Dynamic-Mesh Updating Technique. Journal of Computing in Civil Engineering, 1-11.spa
dc.relation.referencesYanmaz, M., & Alanbilek, D. (1991). Study of Time-Dependent local socur around bridge piers. Journal of Hydraulic Engineering, 1247-1268.spa
dc.relation.referencesZhao, M., Cheng, L., & Zang, Z. (2010). Experimental and numerical investigation of local scour around a submerged vertical circular cylinder in steady currents. Coastal Engineering, 709-721.spa
dc.rightsDerechos reservados del autorspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.proposalSocavación Localspa
dc.subject.proposalFlujos Secundariosspa
dc.subject.proposalMorfodinámicaspa
dc.subject.proposalSisyphe
dc.subject.proposalLocal Scoureng
dc.subject.proposalSecondary Flowseng
dc.subject.proposalMorphodynamiceng
dc.subject.unescoIngeniería hidráulica
dc.titleModelación numérica bidimensional de la socavación local en pilas de puente incluyendo efectos de flujo secundariospa
dc.title.translatedTwo-Dimensional Numerical Modeling of Local Scour in Bridge Piles including Secondary Flow Effectseng
dc.title.translatedTwo-dimensional numerical modeling of local scour in bridge piles including secondary flow effectseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022383263.2021 (3).pdf
Tamaño:
33.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: