Hadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamics

dc.contributor.advisorFazio, Angelo Raffaelespa
dc.contributor.advisorReyes Rojas, Edilson Alfonsospa
dc.contributor.authorQuintero Soto, Sebastianspa
dc.contributor.researchgroupGrupo de Campos y Particulasspa
dc.date.accessioned2022-02-01T16:27:21Z
dc.date.available2022-02-01T16:27:21Z
dc.date.issued2021
dc.descriptionilustraciones, gráficasspa
dc.description.abstractIn this thesis, we study the energy-energy correlation event shape variable for the electron-positron annihilation in quantum chromodynamics. We begin with the computation of the distribution at leading order in the strong coupling constant $\alpha_s$. At this perturbative order, the observable is computed by the usual methods of the real corrections applied to the electron-positron annihilation into a quark and antiquark pair. We find a strongly peaking behaviour of the distribution for two limiting values of the angle between the jets. This occurs when two partons are collinear or one parton is soft. We also find that the distribution is not symmetrical between these two values. At next-to-leading order, we first show explicitly how the infrared divergences cancel, as expected from the Kinoshita-Lee-Nauenberg theorem. On the side of the virtual correction diagrams, we discuss infrared regularization and present the divergent part, which exhibits poles in the dimensional regularizer parameter $\epsilon$ up to order 2. For the real emission diagrams, we extract the most singular terms from the matrix elements of the corresponding processes involving four partons in the final state. These expressions diverge when more than one variable goes to zero. By most singular terms, we refer to those that diverge only when one Mandelstam variable vanishes. We isolate different divergent terms using partial fractioning. We add these singular terms with the divergent part of the virtual correction and show that they exactly cancel each other out. This implies that the observable is infrared finite when both corrections are included. With the aim of performing a more complete computation, the real corrections are calculated with reverse unitarity from three-loop diagrams. In order to get familiar with the available modern techniques for that, we considered one type of contributing diagram and obtained its analytic expression with the FeynArts code. Then we perform the Dirac and color algebra with the FeynCalc code, while reducing the Feynman integrals to scalar integrals and implementing the dimensional regularization scheme with Mathematica. We use Integration-by-Parts to reduce the integrals required for the calculation to a single master integral. This is done with the Reduze and LiteRed codes. Finally, we solve this master integral with the method of differential equations in conjunction with the help of the Fuchsia software, which automatically implements the solution of systems of Fuchsian differential equations. The contribution was calculated and it was found that the resulting expression presents the same characteristics as the leading order contribution, such as the strongly peaking behavior at the soft-collinear limits and the order two poles.eng
dc.description.abstractEn esta tesis, se estudia la variable de forma de evento conocida como la correlación energía-energía para la aniquilación electrón-positrón en cromodinámica cuántica. Se comienza con el cálculo de la distribución a orden principal en la constante de acople fuerte $\alpha_s$. A este orden perturbativo, el observable es calculado con los métodos usuales de las correcciones reales aplicado a la aniquilación electrón-positrón que va en una pareja de quark y antiquark. Encontramos un comportamiento que crece rápidamente para dos valores límites del ángulo entre los jets. Esto ocurre cuando dos partones son colineales o uno de ellos es suave. También encontramos que la distribución no es simétrica entre estos dos valores. Al siguiente orden del principal, primero mostramos explícitamente como las divergencias infrarrojas se cancelan, como es esperado por el teorema Kinoshita-Lee-Nauenberg. Del lado de los diagramas de las correcciones virtuales, discutimos la regularización infraroja y presentamos la parte divergente, la cual exhibe polos en el parámetro regularizador dimensional $\epsilon$ hasta orden 2. Para los diagramas de las emisiones reales, extraemos la parte más singular de los elementos de matriz de los correspondientes procesos que involucran cuatro partones en el estado final. Estas expresiones divergen cuando mas de una variable se va a cero. Con la parte mas divergente, nos referimos a esas que divergen solo cuando una variable de Mandelstam se va a cero. Aislamos los diferentes términos divergentes usando fracciones parciales. Agregamos estos términos singulares a la parte divergente de la corrección virtual y mostramos que ellos se cancelan exactamente. Esto implica que el observable es finito en el infrarrojo cuando ambas correcciones son incluidas. Con el objetivo de realizar un cálculo más completo, las contributiones reales fueron calculadas con unitariedad reversa desde diagramas a tres loops. Para familiarizarse con las técnicas modernas disponibles que hacen esto, consideramos un tipo de diagrama que contribuye y obtuvimos su expresión analítica con el código FeynArts. Después realizamos el álgebra de Dirac y de color con el código FeynCalc, mientras reducimos las integrales de Feynman a integrales escalares e implementamos el esquema de regularización dimensional con Mathematica. Usamos Integración-por-Partes para reducir las integrales requeridas para el cálculo a una sola integral maestra. Esto fue hecho con los códigos Reduze y LiteRed. Finalmente, solucionamos esta integral maestra con el método de ecuaciones diferenciales en conjunto con la ayuda del software Fuchsia, el cual implementa automáticamete soluciones de los sistemas de ecuaciones diferenciales Fuchsianas. La contribución fue calculada y se encontró que la expresión resultante presenta las mismas características que la contribución al orden principal, tales como el comportamiento rápidamente creciente en los límites suaves o colineales y los polos de orden 2. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaFísica de Altas Energias - Fenomenologíaspa
dc.format.extentv, 107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80836
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesC. L. Basham, L. S. Brown, S. D. Ellis y S. T. Love, Physical Review D 17 (1978)spa
dc.relation.referencesG. Kramer y H. Spiesberger, Zeitschrift f ur Physik C73 (1997)spa
dc.relation.referencesE. W. N. Glover y M. R. Sutton, Physics Letters B342 (1995)spa
dc.relation.referencesD. Richards, W. Stirling y S. Ellis, Physics Letters B 119, 193 (1982)spa
dc.relation.referencesZ. Kunszt, P. Nason, G. Marchesini y B. R. Webber, en LEP Physics Workshop (ago. de 1989)spa
dc.relation.referencesS. Catani y M. Seymour, Physics Letters B 378, 287 (1996)spa
dc.relation.referencesS. Catani y M. Seymour, Nuclear Physics B 485, 291 (1997)spa
dc.relation.referencesK. A. Clay y S. D. Ellis, Physical Review Letters 74 (1995)spa
dc.relation.referencesL. J. Dixon, M.-X. Luo, V. Shtabovenko, T.-Z. Yang y H. X. Zhu, Physical Review Letters 120 (2018)spa
dc.relation.referencesM. Born y N. Nagendra Nath, Proceedings Indian Academy of Science, 318 (1936)spa
dc.relation.referencesE. Fermi y C. N. Yang, Physical Review 76, 1739 (1949)spa
dc.relation.referencesM. Gell-Mann, Physics Letters 8, 214 (1964)spa
dc.relation.referencesP. F. Smith, Annual Review of Nuclear and Particle Science 39, 73 (1989)spa
dc.relation.referencesP. Langacker y H. Pagels, Physical Review D 19 (1979)spa
dc.relation.referencesJ. Collins, Foundations of Perturbative QCD, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge University Press, 2011), pp. 12-13spa
dc.relation.referencesJ. Steinberger, Physical Review 76, 1180 (1949)spa
dc.relation.referencesP. A. Zyla et al. (Particle Data Group), Progress of Theoretical and Experimental Physics 2020 (2020)spa
dc.relation.referencesR. E. Taylor, Reviews of Modern Physics 63, 573 (1991)spa
dc.relation.referencesH. W. Kendall, Review of Modern Physics 63, 597 (1991)spa
dc.relation.referencesJ. I. Friedman, Review of Modern Physics 63, 615 (1991)spa
dc.relation.referencesL. Faddeev y V. Popov, Physics Letters B 25 (1967)spa
dc.relation.referencesD. Gross y J. Smith, A review of asymptotic freedom (United Kingdom: Science Reasearch Council, Rutherford Laboratory, 1974)spa
dc.relation.referencesF. Tkachov, Physics Letters B 100, 65 (1981)spa
dc.relation.referencesK. Chetyrkin, A. Kataev y F. Tkachov, Nuclear Physics B 174, 345 (1980)spa
dc.relation.referencesW. Celmaster y R. J. Gonsalves, Physical Review Letters 44, 560 (1980)spa
dc.relation.referencesJ. G. K orner, G. Schierholz y J. Willrodt, Nuclear Physics B 185, 365 (1981)spa
dc.relation.referencesJ. Campbell, J. Huston y F. Krauss, The black book of quantum chromodynamics: a primer for the LHC era (Oxford University Press, Oxford, 2018), pp. 25spa
dc.relation.referencesJ. Jauch y F. Rohrlich, Helvetiva Physica Acta 27, 613spa
dc.relation.referencesL. Landau, Nuclear Physics 13, 181 (1959)spa
dc.relation.referencesJ. M. Jauch y F. Rohrlich, The Theory of Photons and Electrons: The Relativistic Quantum Field Theory of Charged Particles with Spin One-Half, 2nd (Springer Publishing Company, Incorporated, 2012)spa
dc.relation.referencesP. Nason, Lecture notes for the XI Jorge Andre Swieca Summer School, Particles and Fields (2001)spa
dc.relation.referencesF. E. Low, Physical Review 110, 974 (1958)spa
dc.relation.referencesF. Bloch y A. Nordsieck, Physical Review 52 (1937)spa
dc.relation.referencesM. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, 2014), pp. 369-372spa
dc.relation.referencesA. Khalil y W. A. Horowitz, Journal of Physics: Conference Series 889, 012002 (2017)spa
dc.relation.referencesT. Kinoshita, Journal of Mathematical Physics 3 (1962)spa
dc.relation.referencesT. D. Lee y M. Nauenberg, Physical Review 133 (1964)spa
dc.relation.referencesG. Hanson et al, Physical Review Letters 35 (1975)spa
dc.relation.referencesThe cms detector j CMS Experiment - CERN Accelerating science (https://cms.cern/)spa
dc.relation.referencesG. F. Sterman y S. Weinberg, Physical Review Letters 39 (1977)spa
dc.relation.referencesG. Sterman, Physical Review D 17 (1978)spa
dc.relation.referencesW. Bartel et al (JADE collaboration), Zeitschrift f ur Physik C 33, 23-31 (1986)spa
dc.relation.referencesS. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock y B. R. Webber, Physics Letters B269 (1991)spa
dc.relation.referencesM. Cacciari, G. Salam y G. Soyez, Journal of High Energy Physics (2008)spa
dc.relation.referencesS. Kluth, P. Movilla Fern andez, S. Bethke, C. Pahl y P. Pfeifenschneider, The European Physical Journal C 21 (2001)spa
dc.relation.referencesR. Nisius, QCD results from the LHC, 2012 (Unpublished)spa
dc.relation.referencesE. Farhi, Physical Review Letters 39 (1977)spa
dc.relation.referencesS. Brandt, C. Peyrou, R. Sosnowski y A. Wroblewski, Physics Letters 12 (1964)spa
dc.relation.referencesS. Bethke, Nuclear Physics B - Proceedings Supplements 121 (2003)spa
dc.relation.referencesA. Kardos, S. Kluth, G. Somogyi, Z. Tulip ant y A. Verbytskyi, The European Physical Journal C 78 (2018)spa
dc.relation.referencesG. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour y B. R. Webber, Journal of High Energy Physics 01 (2001)spa
dc.relation.referencesG. P. Korchemsky y G. F. Sterman, Nuclear Physics B437 (1995)spa
dc.relation.referencesG. Luisoni y S. Marzani, Journal of Physics G 42, 103101 (2015)spa
dc.relation.referencesR. K. Ellis, W. J. Stirling y B. R.Webber, QCD and collider physics, vol. 8 (Cambridge Monographs on Particle Physics, Nuclear Physics y Cosmology, 1996), pp. 72-73spa
dc.relation.referencesC. L. Basham, L. S. Brown, S. D. Ellis y S. T. Love, Physical Review Letters 41 (1978)spa
dc.relation.referencesK. Fabricius, I. Schmitt, G. Kramer y G. Schierholz, Zeitschrift f ur Physik C11 (1981)spa
dc.relation.referencesJ. A. M. Vermaseren, K. J. F. Gaemers y S. J. Oldham, Nuclear Physics B187 (1981)spa
dc.relation.referencesF. Csikor, G. P ocsik y A. T oth, Physical Review D 28 (1983)spa
dc.relation.referencesC. L. Basham, L. S. Brown, S. D. Ellis y S. T. Love, Physical Review D19 (1979)spa
dc.relation.referencesV. Del Duca, C. Duhr, A. Kardos, G. Somogyi y Z. Tr ocs anyi, Physical Review Letters 117 (2016)spa
dc.relation.referencesZ. Tulip ant, A. Kardos y G. Somogyi, The European Physical Journal C 77 (2017)spa
dc.relation.referencesG. F. Sterman, An Introduction to quantum  eld theory (Cambridge University Press, 1993)spa
dc.relation.referencesD. G. Richards, W. J. Stirling y S. D. Ellis, Energy-energy correlations to second order in quantum chromodynamics, 1983 (unpublished)spa
dc.relation.referencesT. Ziegenhagen, Deutsches Elektronen-Synchrotron (1997)spa
dc.relation.referencesM. E. Peskin y D. V. Schroeder, An Introduction to quantum field theory (Addison- Wesley, 1995), pp. 377spa
dc.relation.referencesR. Ellis, D. Ross y A. Terrano, Nuclear Physics B 178 (1981)spa
dc.relation.referencesV. V. Sudakov, Journal of Experimental and Theoretical Physics 3, 65 (1956)spa
dc.relation.referencesC. Anastasiou y K. Melnikov, Nuclear Physics B 646, 220 (2002)spa
dc.relation.referencesC. Anastasiou, L. Dixon, K. Melnikov y F. Petriello, Physical Review Letters 91 (2003)spa
dc.relation.referencesT. Hahn, Computer Physics Communications 140, 418 (2001)spa
dc.relation.referencesR. Mertig, M. B ohm y A. Denner, Computer Physics Communications 64, 345 (1991)spa
dc.relation.referencesV. Shtabovenko, R. Mertig y F. Orellana, Computer Physics Communications 207, 432 (2016)spa
dc.relation.referencesV. Shtabovenko, R. Mertig y F. Orellana, Computer Physics Communications 256, 107478 (2020)spa
dc.relation.referencesC. Studerus, Computer Physics Communications 181, 1293 (2010)spa
dc.relation.referencesA. von Manteu el y C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction, 2012 (unpublished)spa
dc.relation.referencesR. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, 2012 (Unpublished)spa
dc.relation.referencesR. N. Lee, Journal of Physics: Conference Series 523, 012059 (2014)spa
dc.relation.referencesO. Gituliar y V. Magerya, Computer Physics Communications 219, 329 (2017)spa
dc.relation.referencesR. Cutkosky, Journal of Mathematical Physics 429 (1960)spa
dc.relation.referencesJ. Plemelj, Problems in the sense of Riemann and Klein (INTERSCIENCE PUBLUSHERS, 1964)spa
dc.relation.referencesD. Radnell, E. Schippers y W. Staubach, Annales- Academiae Scientiarum Fennicae Mathematica 41 (2015)spa
dc.relation.referencesA. Grozin, International Journal of Modern Physics A 26 (2011)spa
dc.relation.referencesS. Laporta, International Journal of Modern Physics A15 (2000)spa
dc.relation.referencesM.-x. Luo, V. Shtabovenko, T.-Z. Yang y H. X. Zhu, Journal of High Energy Physics 2019 (2019)spa
dc.relation.referencesL. J. Dixon, M.-x. Luo, V. Shtabovenko, T.-Z. Yang y H. X. Zhu, Analytic calculation of Energy-Energy Correlation in e+e annihilation at NLO, 2018 (Unpublished)spa
dc.relation.referencesA. Smirnov y F. Chukharev, Computer Physics Communications 247, 106877 (2020)spa
dc.relation.referencesO. Gituliar y S. Moch, Acta Physica Polonica B48 (2017)spa
dc.relation.referencesJ. M. Henn, Physical Review Letters 110 (2013)spa
dc.relation.referencesR. N. Lee, Journal of High Energy Physics 2015 (2015)spa
dc.relation.referencesThe Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), https://www.sagemath.org (2017)spa
dc.relation.referencesV. A. Smirnov, Feynman integral calculus (Berlin, Germany: Springer (2006) 283 p, 2006)spa
dc.relation.referencesE. Remiddi y J. A. M. Vermaseren, International Journal of Modern Physics A 15, 725 (2000)spa
dc.relation.referencesE. Panzer, Computer Physics Communications 188, 148 (2015)spa
dc.relation.referencesA. Ali, J. K orner, Z. Kunszt, E. Pietarinen, G. Kramer, G. Schierholz y J. Willrodt, Nuclear Physics B 167 (1980)spa
dc.relation.referencesG. Kramer y B. Lampe, Deutsches Elektronen-Synchrotron (1986)spa
dc.relation.referencesG. Kramer y H. Spiesberger, Zeitschrift f ur Physik C73 (1997)spa
dc.relation.referencesN. Falck y G. Kramer, Zeitschrift f ur Physik C (1989)spa
dc.relation.referencesA. Ali y F. Barreiro, Physics Letters B 118, 155 (1982).spa
dc.relation.referencesA. Banfi , Hadronic Jets (Morgan & Claypool Publishers, 2016), pp. 30-33.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcCromodinámica cuánticaspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lemParticles (Nuclear physics)eng
dc.subject.lembHadronseng
dc.subject.lembHadronesspa
dc.subject.lembPartículas (Física nuclear)spa
dc.subject.lembQuantum chromodynamicseng
dc.subject.proposalEvent shape variableseng
dc.subject.proposalInfrared divergenceseng
dc.subject.proposalIBPeng
dc.subject.proposalReverse unitarityeng
dc.subject.proposalPerturbative QCDeng
dc.subject.proposalEnergy-energy correlationeng
dc.subject.proposalVariables de forma de eventospa
dc.subject.proposalCorrelación energía-energíaspa
dc.subject.proposalDivergencias Infrarojasspa
dc.subject.proposalUnitariedad reversaspa
dc.subject.proposalQCD perturbativospa
dc.titleHadronic energy-energy correlation from electron-positron annihilation at next-to-leading order in quantum chromodynamicseng
dc.title.translatedCorrelación energía-energía hadrónica de la aniquilación electrón-positrón a orden siguiente al principal en cromodinámica cuánticaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1088310076.2021.pdf
Tamaño:
2.11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: