Cognitive impairment inference in Parkinson's disease patients from spatiotemporal gait assessments using machine learning

dc.contributor.advisorRomero Castro, Edgar Eduardo
dc.contributor.authorSerna Soto, Jose Elkin
dc.contributor.cvlacSerna Soto, Jose Elkin [0001593674]spa
dc.contributor.researchgroupCim@Labspa
dc.date.accessioned2025-03-25T14:46:07Z
dc.date.available2025-03-25T14:46:07Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractCognitive decline is a significant complication in Parkinson’s disease (PD), severely impacting patients’ quality of life. Early identification of these deficits is crucial to improving clinical intervention and disease prognosis. This study investigates the relationship between spatiotemporal gait characteristics and cognitive decline in early-stage PD patients. Data from 48 patients were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database, categorised into two groups: patients without cognitive impairment (PD) and those exhibiting some degree of cognitive decline (PD-CD). Seven machine learning algorithms were implemented, optimising hyperparameters and addressing class imbalance. Model performance was evaluated using Recall, Precision, F1-score, and Accuracy, prioritising sensitivity to assess the classifiers’ ability to detect the minority class. The results indicate that spatiotemporal gait characteristics significantly differentiate PD and PD-CD groups. Among the evaluated models, the Multilayer Perceptron (MLP) and the Cognitive Assessment through Gait in Parkinson’s Disease (CoGait-PD) demonstrated the highest performance, achieving accuracy scores of 0.78 ± 0.08 and 0.77 ± 0.05, respectively. Both models balanced sensitivity and precision, excelling in identifying positive cases and reducing false negatives. These findings suggest that gait characteristics may serve as non-invasive biomarkers for early detection of cognitive decline in PD patients. Additionally, machine learning models, particularly CoGait-PD and MLP, show strong potential for clinical assessment. Further studies are recommended to validate these findings and explore their applicability in clinical settings.eng
dc.description.abstractEl deterioro cognitivo es una de las complicaciones más relevantes en la enfermedad de Parkinson (PD), afectando significativamente la calidad de vida de los pacientes. La identificación temprana de estos déficits es crucial para mejorar la intervención clínica y el pronóstico de la enfermedad. Este estudio analiza la relación entre las características espaciotemporales de la marcha y el deterioro cognitivo en pacientes con PD en etapa temprana. Se utilizaron datos de 48 pacientes de la base de datos de la Parkinson’s Progression Markers Initiative (PPMI), dividiendo la muestra en dos grupos: pacientes sin deterioro cognitivo (PD) y aquellos con algún grado de deterioro cognitivo (PD-DC). Para el análisis, se implementaron siete algoritmos de aprendizaje automático, optimizando sus hiperparámetros y abordando el desequilibrio de clases. El desempeño de los modelos se evaluó mediante métricas como Recall, Precisión, F1-score y Exactitud (Accuracy), priorizando la sensibilidad para evaluar la capacidad de detección de la clase minoritaria. Los resultados indicaron que las características espaciotemporales de la marcha permiten diferenciar significativamente entre los grupos PD y PD-DC. Entre los modelos evaluados, el Perceptrón Multicapa (MLP) y el Cognitive Assessment through Gait in Parkinson’s Disease (CoGait-PD) presentaron el mejor desempeño, alcanzando valores de exactitud de 0.78 ± 0.08 y 0.77 ± 0.05, respectivamente. Estos modelos lograron un equilibrio entre sensibilidad y precisión, destacándose en la identificación de casos positivos y reduciendo falsos negativos. Los hallazgos sugieren que las características de la marcha pueden servir como biomarcadores no invasivos para la detección temprana del deterioro cognitivo en pacientes con PD. Además, los modelos de aprendizaje automático, particularmente CoGait-PD y MLP, muestran un alto potencial en la evaluación clínica. Se recomienda realizar estudios adicionales para validar estos hallazgos y explorar su aplicabilidad en entornos clínicos (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Biomédicaspa
dc.description.researchareaMotion and Biosignal Analysisspa
dc.format.extentxiv, 40 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87725
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Ingeniería Biomédicaspa
dc.relation.references[1] W. H. Organization, Parkinson disease: a public health approach. Technical Brief. World Health Organization, 2022.spa
dc.relation.references[2] N. Maserejian, L. Vinikoor-Imler, and A. Dilley, “Estimation of the 2020 global population of parkinson’s disease (pd),” MDS Abstracts, 2020. Accessed: 2024- 08-28.spa
dc.relation.references[3] Lancet, “What next in parkinson’s disease?,” The Lancet, vol. 403, no. 10370, p. 219, 2024. Accessed: 2024-08-28.spa
dc.relation.references[4] D. Aarsland, B. Creese, M. Politis, K. R. Chaudhuri, D. Weintraub, C. Ballard, et al., “Cognitive decline in parkinson disease,” Nature Reviews Neurology,vol. 13, no. 4, pp. 217–231, 2017.spa
dc.relation.references[5] D. Aarsland, K. Bronnick, C. Williams-Gray, D. Weintraub, K. Marder, J. Kulisevsky, D. Burn, P. Barone, J. Pagonabarraga, L. Allcock, et al., “Mild cognitive impairment in parkinson disease: a multicenter pooled analysis,” Neurology, vol. 75, no. 12, pp. 1062–1069, 2010.spa
dc.relation.references[6] C. C. Janvin, J. P. Larsen, D. Aarsland, and K. Hugdahl, “Subtypes of mild cognitive impairment in parkinson’s disease: progression to dementia,” Movement disorders: official journal of the Movement Disorder Society, vol. 21, no. 9, pp. 1343–1349, 2006.spa
dc.relation.references[7] C. Williams-Gray, T. Foltynie, C. Brayne, T. Robbins, and R. Barker, “Evolution of cognitive dysfunction in an incident parkinson’s disease cohort,” Brain, vol. 130, no. 7, pp. 1787–1798, 2007.spa
dc.relation.references[8] C. H. Williams-Gray, J. R. Evans, A. Goris, T. Foltynie, M. Ban, T. W. Robbins, C. Brayne, B. S. Kolachana, D. R. Weinberger, S. J. Sawcer, et al., “The distinct cognitive syndromes of parkinson’s disease: 5 year follow-up of the campaign cohort,” Brain, vol. 132, no. 11, pp. 2958–2969, 2009.spa
dc.relation.references[9] R. Morris, S. Lord, R. A. Lawson, S. Coleman, B. Galna, G. W. Duncan, T. K. Khoo, A. J. Yarnall, D. J. Burn, and L. Rochester, “Gait rather than cognition predicts decline in specific cognitive domains in early parkinson’s disease,” Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, vol. 72, no. 12, pp. 1656–1662, 2017.spa
dc.relation.references[10] J. Verghese, C. Wang, R. B. Lipton, R. Holtzer, and X. Xue, “Quantitative gait dysfunction and risk of cognitive decline and dementia,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 78, no. 9, pp. 929–935, 2007.spa
dc.relation.references[11] M. M. Mielke, R. O. Roberts, R. Savica, R. Cha, D. I. Drubach, T. Christianson, V. S. Pankratz, Y. E. Geda, M. M. Machulda, R. J. Ivnik, et al., “Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the mayo clinic study of aging,” Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, vol. 68, no. 8, pp. 929–937, 2013.spa
dc.relation.references[12] S. Lord, B. Galna, S. Coleman, A. Yarnall, D. Burn, and L. Rochester, “Cognition and gait show a selective pattern of association dominated by phenotype in incident parkinson’s disease,” Frontiers in aging neuroscience, vol. 6, p. 249, 2014.spa
dc.relation.references[13] A.-M. De Cock, E. Fransen, S. Perkisas, V. Verhoeven, O. Beauchet, M. Vandewoude, and R. Remmen, “Comprehensive quantitative spatiotemporal gait analysis identifies gait characteristics for early dementia subtyping in community dwelling older adults,” Frontiers in neurology, vol. 10, p. 313, 2019.spa
dc.relation.references[14] R. Morris, S. Lord, J. Bunce, D. Burn, and L. Rochester, “Gait and cognition: mapping the global and discrete relationships in ageing and neurodegenerative disease,” Neuroscience & Biobehavioral Reviews, vol. 64, pp. 326–345, 2016.spa
dc.relation.references[15] C. Baiano, P. Barone, L. Trojano, and G. Santangelo, “Prevalence and clinical aspects of mild cognitive impairment in parkinson’s disease: A meta-analysis,” Movement Disorders, vol. 35, no. 1, pp. 45–54, 2020.spa
dc.relation.references[16] A. Moncada-Torres, M. C. van Maaren, M. P. Hendriks, S. Siesling, and G. Geleijnse, “Explainable machine learning can outperform cox regression predictions and provide insights in breast cancer survival,” Scientific reports, vol. 11, no. 1, p. 6968, 2021.spa
dc.relation.references[17] G. Álvarez Hernández, “Limitaciones metodológicas de la epidemiología moderna y una alternativa para superarlas: la epidemiología sociocultural,” Región y sociedad, vol. 20, no. SPE2, pp. 51–75, 2008.spa
dc.relation.references[18] I. Martínez-Baz, I. Delfrade, and J. Etxeberria, “Characteristics and statistical methods used in original articles published in public health journals in spain,” in Anales Del Sistema Sanitario de Navarra, vol. 41, pp. 347–354, 2018.spa
dc.relation.references[19] D. A. Morales, Y. Vives-Gilabert, B. Gómez-Ansón, E. Bengoetxea, P. Larrañaga, C. Bielza, J. Pagonabarraga, J. Kulisevsky, I. Corcuera-Solano, and M. Delfino, “Predicting dementia development in parkinson’s disease using bayesian network classifiers,” Psychiatry Research: NeuroImaging, vol. 213, no. 2, pp. 92–98, 2013.spa
dc.relation.references[20] S. N. Gomperts, J. J. Locascio, D. Rentz, A. Santarlasci, M. Marquie, K. A. Johnson, and J. H. Growdon, “Amyloid is linked to cognitive decline in patients with parkinson disease without dementia,” Neurology, vol. 80, no. 1, pp. 85–91, 2013.spa
dc.relation.references[21] P.-H. Chen, T.-Y. Hou, F.-Y. Cheng, and J.-S. Shaw, “Prediction of cognitive degeneration in parkinson’s disease patients using a machine learning method,” Brain Sciences, vol. 12, no. 8, p. 1048, 2022.spa
dc.relation.references[22] F. Pieruccini-Faria, S. E. Black, M. Masellis, E. E. Smith, Q. J. Almeida, K. Z. Li, L. Bherer, R. Camicioli, and M. Montero-Odasso, “Gait variability across neurodegenerative and cognitive disorders: Results from the canadian consortium of neurodegeneration in aging (ccna) and the gait and brain study,” Alzheimer’s & Dementia, vol. 17, no. 8, pp. 1317–1328, 2021.spa
dc.relation.references[23] P.-H. Chen, C.-W. Lien, W.-C. Wu, L.-S. Lee, and J.-S. Shaw, “Gait-based machine learning for classifying patients with different types of mild cognitive impairment,” Journal of medical systems, vol. 44, pp. 1–6, 2020.spa
dc.relation.references[24] D. Trabassi, M. Serrao, T. Varrecchia, A. Ranavolo, G. Coppola, R. De Icco, C. Tassorelli, and S. F. Castiglia, “Machine learning approach to support the detection of parkinson’s disease in imu-based gait analysis,” Sensors, vol. 22, no. 10, p. 3700, 2022.spa
dc.relation.references[25] A. Shahzad, A. Dadlani, H. Lee, and K. Kim, “Automated prescreening of mild cognitive impairment using shank-mounted inertial sensors based gait biomarkers,” IEEE Access, vol. 10, pp. 15835–15844, 2022.spa
dc.relation.references[26] S. Toledo-Cortés, D. H. Useche, H. Müller, and F. A. González, “Grading diabetic retinopathy and prostate cancer diagnostic images with deep quantum ordinal regression,” Computers in biology and medicine, vol. 145, p. 105472, 2022.spa
dc.relation.references[27] I. H. Sarker, “Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions,” SN Computer Science, vol. 2, no. 6, p. 420, 2021.spa
dc.relation.references[28] K. Marek, D. Jennings, S. Lasch, A. Siderowf, C. Tanner, T. Simuni, C. Coffey, K. Kieburtz, E. Flagg, S. Chowdhury, et al., “The parkinson progression marker initiative (ppmi),” Progress in neurobiology, vol. 95, no. 4, pp. 629–635, 2011.spa
dc.relation.references[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.spa
dc.relation.references[31] S. Lerman and C. Manski, “On the use of simulated frequencies to approximate choice probabilities,” Structural analysis of discrete data with econometric applications, vol. 10, pp. 305–319, 1981.spa
dc.relation.references[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.spa
dc.relation.references[33] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Software available from tensorflow.org.spa
dc.relation.references[34] Z. Li, J. Zhu, J. Liu, M. Shi, P. Liu, J. Guo, Z. Hu, S. Liu, and D. Yang, “Using dual-task gait to recognize alzheimer’s disease and mild cognitive impairment: a cross-sectional study,” Frontiers in Human Neuroscience, vol. 17, 2023.spa
dc.relation.references[35] T. Krasovsky, A. Lamontagne, A. G. Feldman, and M. F. Levin, “Effects of walking speed on gait stability and interlimb coordination in younger and older adults,” Gait & posture, vol. 39, no. 1, pp. 378–385, 2014.spa
dc.relation.references[36] J. A. Cohen and J. Verghese, “Gait and dementia,” Handbook of clinical neurology, vol. 167, pp. 419–427, 2019.spa
dc.relation.references[37] E. I. Baron, M. M. Koop, M. C. Streicher, A. B. Rosenfeldt, and J. L. Alberts, “Altered kinematics of arm swing in parkinson’s disease patients indicates declines in gait under dual-task conditions,” Parkinsonism & related disorders, vol. 48, pp. 61–67, 2018.spa
dc.relation.references[38] V. N. Poole, S. Oveisgharan, L. Yu, R. J. Dawe, S. E. Leurgans, S. Zhang, K. Arfanakis, A. S. Buchman, and D. A. Bennett, “Volumetric brain correlates of gait associated with cognitive decline in community-dwelling older adults,” Frontiers in Aging Neuroscience, vol. 15, 2023.spa
dc.relation.references[39] I. Hoang, M. Ranchet, R. Derollepot, F. Moreau, and L. Paire-Ficout, “Measuring the cognitive workload during dual-task walking in young adults: a combination of neurophysiological and subjective measures,” Frontiers in human neuroscience, vol. 14, p. 592532, 2020.spa
dc.relation.references[40] W. Wright, V. Gurfinkel, J. Nutt, F. Horak, and P. Cordo, “Axial hypertonicity in parkinson’s disease: direct measurements of trunk and hip torque,” Experimental neurology, vol. 208, no. 1, pp. 38–46, 2007.spa
dc.relation.references[41] M. Mancini, F. B. Horak, C. Zampieri, P. Carlson-Kuhta, J. G. Nutt, and L. Chiari, “Trunk accelerometry reveals postural instability in untreated parkinson’s disease,” Parkinsonism & related disorders, vol. 17, no. 7, pp. 557–562, 2011.spa
dc.relation.references[42] M. Duncan, J. Cholfin, and L. Restrepo, “Clinical reasoning: a 72-year-old man with rapid cognitive decline and unilateral muscle jerks,” Neurology, vol. 82, no. 22, pp. e194–e197, 2014.spa
dc.relation.references[43] A. Mirelman, A. Weiss, A. S. Buchman, D. A. Bennett, N. Giladi, and J. M. Hausdorff, “Association between performance on timed up and go subtasks and mild cognitive impairment: further insights into the links between cognitive and motor function,” Journal of the American Geriatrics Society, vol. 62, no. 4, pp. 673–678, 2014.spa
dc.relation.references[44] A. Pantall, P. Suresparan, L. Kapa, R. Morris, A. Yarnall, S. Del Din, and L. Rochester, “Postural dynamics are associated with cognitive decline in parkinson’s disease,” Frontiers in neurology, vol. 9, p. 1044, 2018.spa
dc.relation.references[45] T. Chen, Y. Fan, X. Zhuang, D. Feng, Y. Chen, P. Chan, and Y. Du, “Postural sway in patients with early parkinson’s disease performing cognitive tasks while standing,” Neurological research, vol. 40, no. 6, pp. 491–498, 2018.spa
dc.relation.references[46] C. J. Lamoth, F. J. van Deudekom, J. P. van Campen, B. A. Appels, O. J. de Vries, and M. Pijnappels, “Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people,” Journal of neuroengineering and rehabilitation, vol. 8, pp. 1–9, 2011.spa
dc.relation.references[47] T. Doi, H. Makizako, H. Shimada, D. Yoshida, K. Ito, T. Kato, H. Ando, and T. Suzuki, “Brain atrophy and trunk stability during dual-task walking among older adults,” Journals of Gerontology Series A: Biomedical Science and Medical Sciences, vol. 67, no. 7, pp. 790–795, 2012.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsEstudio Comparativospa
dc.subject.decsComparative Studyeng
dc.subject.decsComorbilidadspa
dc.subject.decsComorbidityeng
dc.subject.decsMachine Learningeng
dc.subject.decsPronósticospa
dc.subject.decsPrognosiseng
dc.subject.proposalDeterioro cognitivospa
dc.subject.proposalEvaluación de la marchaspa
dc.subject.proposalAprendizaje automático interpretablespa
dc.subject.proposalBiomarcadores no invasivosspa
dc.subject.proposalEnfermedad de Parkinsonspa
dc.subject.proposalCognitive impairmenteng
dc.subject.proposalGait assessmenteng
dc.subject.proposalInterpretive machine learningeng
dc.subject.proposalNon-invasive biomarkerseng
dc.subject.proposalParkinson's diseaseeng
dc.titleCognitive impairment inference in Parkinson's disease patients from spatiotemporal gait assessments using machine learningeng
dc.title.translatedInferencia de deterioro cognitivo en pacientes con enfermedad de Parkinson a partir de evaluaciones espaciotemporales de la marcha mediante aprendizaje automáticospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
75104416.2025.pdf
Tamaño:
990.39 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría Ingeniería Biomédica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: