En 5 hora(s) y 11 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Diseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativos

dc.contributor.advisorGómez Mendoza, Juan Bernardo
dc.contributor.authorChaves Osorio, José Andrés
dc.date.accessioned2021-07-29T15:46:54Z
dc.date.available2021-07-29T15:46:54Z
dc.date.issued2021
dc.descriptionDocumento en PDF a color.
dc.descriptionfiguras, tablaseng
dc.description.abstractThis doctoral thesis was designed and implemented using a strategy of explorer agents and a management and monitoring system to obtain the shortest and safest paths. The strategy was simulated using Matlab R2016 in 10 test environments. The comparisons were made between the results obtained by considering each robot's work and contrasting it with the results obtained by implementing the cooperative-collaborative strategy. For this purpose, were used two path planning algorithms, they are the A* and the Greedy Best First Search (GBFS). Some changes were made to these classic algorithms to improve their performance to guarantee interactions and comparisons between them, transforming them into Incremental Heuristic (IH) algorithms, which gave rise to a couple of agents with new path planners called IH-A* and IH-GBFS. The cooperative strategy was implemented with IH-A* and IH-GBFS algorithms to obtain the shortest paths. The cooperative process was used 300 times in 100 complete tests (3 times in 10 tests in each of 10 environments), which allowed determining that the strategy decreased the original path (without cooperation) in 79% of the cases. In 20.50% of cases, the author identified that the cooperative process, reduced to less than half the original path. The collaborative strategy was implemented to obtain the safer path, using a communications system that allows the interaction among the explorer agents, the test environment, and the management and monitoring system to generate early warnings and compare the risk between paths. In this work, the risk is due to hidden marks found by the explorer agents; for this reason, it is implemented a potential risk function that allows obtaining the path risk estimated. The path risk estimated metric is the one that facilitates the evaluation and comparison of risk between paths to find safer paths. The AWMRs operates using a kinematic model, a controller, a path planner, and sensors that allow them to navigate through the environment gently and safely. Simultaneously with the explorer agents, the administration and monitoring system as a user interface that facilitates the presentation and consolidation of results were implemented. Subsequently, 16 tests were carried out, implementing the complete cooperative-collaborative strategy in four different environments, which had hidden marks. When analyzing the results, it was determined that the Shortest Safest Estimated Path was found in 62.5% of the tests. A WMR and a square test stage were built. In the test scenario, 240 path tracking tests were carried out (the WMR travelled 24 different paths; the WMR travelled each path ten times). The path data were obtained using odometry with encoders onboard the robot and image processing through an external camera. The author apply a tracking error analysis on the WMR path, travelling a circumference of 3.64 m in length. When comparing the path obtained with the WMR kinematic model with the data obtained using image processing, a Mean Absolute Percentage Error (MAPE) of 2,807% was obtained; and with the odometry data, the MAPE was 1,224%. As a general conclusion, this study has numerically identified the relevance of the implementation of the cooperative-collaborative strategy in robotic teamwork to find shortest and safest paths, a strategy applied in test environments that have obstacles and hidden marks. The cooperative-collaborative strategy can be used in different applications that involve displacement in a dangerous place or environment, such as a minefield or a region at risk of spreading COVID-19 (Texto tomado de la fuente).eng
dc.description.abstractEsta tesis doctoral fue diseñada e implementada utilizando una estrategia de agentes exploradores y un sistema de gestión y seguimiento para obtener caminos más cortos y seguros. La estrategia se simuló utilizando Matlab R2016 en 10 entornos de prueba. Las comparaciones se realizaron entre los resultados obtenidos al considerar el trabajo realizado por cada robot y contrastarlo con los resultados obtenidos al implementar la estrategia cooperativa-colaborativa. Para ello, se utilizaron dos algoritmos de planificación de rutas, que son el A* y el Greedy Best First Search (GBFS). Se realizaron algunos cambios a estos algoritmos clásicos para mejorar su rendimiento para garantizar interacciones y comparaciones entre ellos, transformándolos en algoritmos Heurísticos Incrementales (IH), lo que dio lugar a un par de agentes con nuevos planificadores de rutas denominados IH-A * e IH- GBFS. La estrategia cooperativa se implementó con algoritmos IH-A * e IH-GBFS para obtener los caminos más cortos. El proceso cooperativo se utilizó 300 veces en 100 pruebas completas (3 veces en 10 pruebas en cada uno de los 10 entornos), lo que permitió determinar que la estrategia disminuyó la trayectoria original (sin cooperación) en el 79% de los casos. En el 20,50% de los casos, el autor identificó que el proceso cooperativo, redujo la distancia entre inicio y meta a menos de la mitad del recorrido original. La estrategia colaborativa se implementó para obtener el camino más seguro, utilizando un sistema de comunicaciones que permite la interacción entre los agentes exploradores, el entorno de prueba y el sistema de gestión y monitoreo para generar alertas tempranas y comparar el riesgo entre caminos. En este trabajo, el riesgo se debe a las marcas ocultas encontradas por los agentes exploradores; por ello, se implementa una función de riesgo potencial que permite obtener el riesgo de ruta estimado. La métrica estimada de riesgo de ruta es la que facilita la evaluación y comparación de riesgo entre rutas para encontrar rutas más seguras. Los robots autónomos móviles con ruedas (en inglés AWMR) operan utilizando un modelo cinemático, un controlador, un planificador de rutas y sensores que les permiten navegar por el entorno de manera suave y segura. Simultáneamente con los agentes exploradores, el autor implementó un sistema de administración y monitoreo como interfaz de usuario que facilita la presentación y consolidación de resultados. Posteriormente, se realizaron 16 pruebas, implementando la estrategia cooperativa-colaborativa completa en cuatro entornos diferentes, que tenían marcas ocultas. Al analizar los resultados, se determinó que una ruta estimada más corta y más segura se obtenía en el 62.5% de las pruebas. Se construyeron un WMR y un escenario de prueba cuadrado. En el escenario de prueba, se llevaron a cabo 240 pruebas de seguimiento de ruta (el WMR recorrió 24 rutas diferentes; el WMR recorrió cada ruta diez veces). Los datos de la trayectoria se obtuvieron utilizando odometría con encoders a bordo del robot y procesamiento de imágenes a través de una cámara externa. El autor aplica un análisis de error de seguimiento en la ruta recorrida por el WMR, generando una circunferencia de 3,64 m de longitud. Al comparar la ruta obtenida con el modelo cinemático del WMR con los datos obtenidos usando el procesamiento de imágenesse obtuvo un error de porcentaje absoluto medio (MAPE) de 2.807%; y con los datos de odometría, el MAPE fue de 1,224%. Como conclusión general, este estudio ha identificado numéricamente la relevancia de la implementación de la estrategia cooperativa-colaborativa en el trabajo en equipo robótico para encontrar caminos más cortos y seguros, estrategia aplicada en entornos de prueba que poseen obstáculos y marcas ocultas. La estrategia cooperativa-colaborativa puede ser utilizada en diferentes aplicaciones que involucran el desplazamiento en un lugar o entorno peligroso, como pueden ser un campo minado o una región en riesgo de propagación de COVID-19.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ingeniería Automáticaspa
dc.format.extent206 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79865
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automáticaspa
dc.relation.references[1] M. Sánchez, M. Rodríguez, S. Bayarri, P. Redorta, F. Rodríguez, E. Fernández, and V. Mavrich, “Historia de la robótica: de arquitas de tarento al robot da vinci (parte i),” Actas urológicas españolas. 31(2):69-76., 2007.spa
dc.relation.references[2] M. Sanchez, P. Jiménez, M. Rodriguez, S. Bayarri, F. Monllau, R. Palou, and M. Villavicencio, “Historia de la robótica: de arquitas de tarento al robot da vinci (parte ii),” Actas urológicas españolas, vol. 31, no. 3, pp. 185–196, 2007.spa
dc.relation.references[3] T. L. Chen et al., “Robots for humanity: using assistive robotics to empower people with disabilities,” IEEE Robotics & Automation Magazine, vol. 20, no. 1, pp. 30–39, 2013.spa
dc.relation.references[4] K. Fu, R. González, and G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, R. U. Herbert Freman, Ed. Mc Graw-Hill, 1990.spa
dc.relation.references[5] A. K. Guruji, H. Agarwal, and D. Parsediya, “Time-efficient a* algorithm for robot path planning,” Procedia Technology, vol. 23, pp. 144–149, 2016.spa
dc.relation.references[6] P. Muntean, “Mobile robot navigation on partially known maps using a fast a star algorithm version,” arXiv preprint arXiv:1604.08708, 2016.spa
dc.relation.references[7] F. Kuhnt, M. Pfeiffer, P. Zimmer, D. Zimmerer, J. M. Gomer, V. Kaiser, R. Kohlhaas, and J. M. Zollner, “Robust environment perception for the audi autonomous driving cup,” in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016, pp. 1424–1431.spa
dc.relation.references[8] F. Duchovn, A. Babinec, M. Kajan, P. Bevno, M. Florek, T. Fico, and L. Jurivsica, “Path planning with modified a star algorithm for a mobile robot,” Procedia Engineering, vol. 96, pp. 59–69, 2014.spa
dc.relation.references[9] D. J. M. Sanchez, “Evaluación e implementación de técnicas de navegación en un robot móvil,” Universidad Nacional Experimental del Tachira, Tech. Rep., 2009.spa
dc.relation.references[10] D. Lopez, F. Gomez, F. Cuesta, and A. Ollero, “Planificación de trayectorias con el algoritmo rrt. aplicación a robots no holónomos,” RIAII, vol. 3, no. 3, pp. 56–67, 2006.spa
dc.relation.references[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, P. Hall, Ed. Prentice Hall, 2010.spa
dc.relation.references[12] B. Avron, F. Edward, and R. C, The Handbook of Artificial Intelligence, Volume 1. JSTOR, 1982, vol. 1. [Online]. Available: https://ia601202.us.archive.org/3/items/handbookofartific01barr/handbookofartific01barr.pdfspa
dc.relation.references[13] J. Roberto, “Inteligencia artificial: Introducción y tareas de búsqueda,” 2010.spa
dc.relation.references[14] S. Russell and P. Norvig, “A modern approach,” Intelligence, Artificial, 2003.spa
dc.relation.references[15] M. T. Thoa, C. Cosmin, T. D. Trung, and D. K. Robin, “Heuristic approaches in robot path planning: A survey,” Robotics and Autonomous Systems, vol. 86, pp.13–28, 2016.spa
dc.relation.references[16] L. E. Hajjami, E. M. Mellouli, and M. Berrada, “Neural network based sliding mode lateral control for autonomous vehicle,” in 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 2020, pp. 1–6.spa
dc.relation.references[17] R. Martinez, N. De Freitas, E. Brochu, J. Castellanos, and A. Doucet, “A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot,” Autonomous Robots, vol. 27, no. 2, pp. 93–103, 2009.spa
dc.relation.references[18] T. Alam and L. Bobadilla, “Multi-robot coverage and persistent monitoring in sensing-constrained environments,” Robotics, vol. 9, no. 2, p. 47, 2020.spa
dc.relation.references[19] M. Aljehani and M. Inoue, “Performance evaluation of multi-uav system in post-disaster application: Validated by hitl simulator,” IEEE Access, vol. 7, pp.64 386–64 400, 2019.spa
dc.relation.references[20] Z. Beck, L. Teacy, A. Rogers, and N. Jennings, “Collaborative online planning for automated victim search in disaster response,” Robotics and Autonomous Systems, vol. 100, pp. 251–266, 2018.spa
dc.relation.references[21] K. Rama, S. B. Prakash, B. Sowmya, A. G. Sai, and A. Chakravarthy, “Design of a rescue robot assist at fire disaster,” Stainless Steel, vol. 1510, p. 2750, 2012.spa
dc.relation.references[22] C. Winai and B. Andreas, “Using rescue robots to increase construction site safety,” ISARC2006, pp. 241–245, 2006.spa
dc.relation.references[23] Rubio, L. Ríos, A. Torres et al., “Implementación de sensores extereoceptivos para una plataforma móvil utilizando microcontroladores,” 2008.spa
dc.relation.references[24] E. Minca, F. Dragomir, O. E. Dragomir, and A. E. Mihai, “Temporal recurrent modelling appllied to manufacturing flexible lines served by collaborative robots,” in Control Conference (ASCC), 2011 8th Asian. IEEE, 2011, pp. 749–754.spa
dc.relation.references[25] D. García, F. Bravo, and M. del Toro, “Comparativa entre planificadores de trayectorías para su uso combinado en la generación de maniobras,” 2007.spa
dc.relation.references[26] E. González, “Diseño de una estrategia que permita a un sistema robótico real de bajo costo generar una ruta segura a fin de desplazarse autónomamente entre dos puntos conocidos,” mathesis, Enero 2019.spa
dc.relation.references[27] H. C. Vargas, “Generación de trayectorias para un robot móvil khepera ii usando tócnicas de aprendizaje automático,” Master’s thesis, Instituto Politecnico nacional, 2007.spa
dc.relation.references[28] D. A. Lopez et al., “Nuevas aportaciones en algoritmos de planificación para la ejecución de maniobras en robots autónomos no holónomos,” 2011.spa
dc.relation.references[29] S. Fortune and G. Wilfong, “Planning constrained motion,” Annals of Mathematics and Artificial Intelligence, vol. 3, no. 1, pp. 21–82, 1991.spa
dc.relation.references[30] J. C. Latombe, Robot motion planning. Springer Science & Business Media, 2012, vol. 124.spa
dc.relation.references[31] J. Laumond, P. Jacobs, M. Taix, and R. Murray, “A motion planner for nonholonomic mobile robots,” Robotics and Automation, IEEE Transactions on, vol. 10, no. 5, pp. 577–593, 1994.spa
dc.relation.references[32] S. M. LaValle, “Rapidly-exploring random trees a new tool for path planning,” 1998.spa
dc.relation.references[33] B. James and V. Manuela, “Real-time randomized path planning for robot navigation,” in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, vol. 3. IEEE, 2002, pp. 2383–2388.spa
dc.relation.references[34] S. Garrido, L. Moreno, D. Blanco, and M. L. Muñoz, “Sensor-based global planning for mobile robot navigation,” Robotica, vol. 25, no. 02, pp. 189–199, 2007.spa
dc.relation.references[35] G. Santiago, M. Luis, B. D, and M. Fernando, “Exploratory navigation based on voronoi transform and fast marching,” in Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on. IEEE, 2007, pp. 1–6.spa
dc.relation.references[36] N. Nils, “A mobile automaton: An application of artificial intelligence techniques,” DTIC Document, Tech. Rep., 1969.spa
dc.relation.references[37] A. Franz, “Voronoi diagrams: a survey of a fundamental geometric data structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3, pp. 345–405, 1991.spa
dc.relation.references[38] N. Ahuja, R. Chien, R. Yen, and N. Bridwell, “Interference detection and collision avoidance among three dimensional objects.” in AAAI, 1980, pp. 44–48.spa
dc.relation.references[39] H. Vincent, “Fast collision detection scheme by recursive decomposition of a manipulator workspace,” in Robotics and Automation. Proceedings. 1986 IEEE International Conference on, vol. 3. IEEE, 1986, pp. 1044–1049.spa
dc.relation.references[40] J. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proceedings of the National Academy of Sciences, vol. 93, no. 4, pp. 1591–1595,1996.spa
dc.relation.references[41] E. Cobos, “Traction modeling and control of a differential drive mobile robot to avoid wheel slip,” mathesis, Oklahoma State University, Dec. 2013. [Online]. Available: https://shareok.org/bitstream/handle/11244/14773/CobosTorres_okstate_0664M_13102.pdf?sequence=1spa
dc.relation.references[42] G. A. Hernandez, L. H. Rios, and H. Parra, “Implementación de un controlador pid mediante rna para el control de motores dc de robots moviles diferenciales,” Scientia et technica, vol. 2, no. 50, pp. 8–14, 2012.spa
dc.relation.references[43] S. Inge and E. Olav, “Trajectory planning and collision avoidance for underwater vehicles using optimal control,” Oceanic Engineering, IEEE Journal of, vol. 19, no. 4, pp. 502–511, 1994.spa
dc.relation.references[44] M. Yacoub, D. S. Necsulescu, J. Z. Sasiadek et al., “Energy consumption optimization for mobile robots in three-dimension motion using predictive control,” in Control Conference (ASCC), 2013 9th Asian. IEEE, 2013, pp. 1–6.spa
dc.relation.references[45] Y. Mostafa, N. DS, S. J. Z et al., “Experimental evaluation of energy optimization algorithm for mobile robots in three-dimension motion using predictive control,” in Control & Automation (MED), 2013 21st Mediterranean Conference on. IEEE, 2013, pp. 437–443.spa
dc.relation.references[46] D. N. Trung, H. Raposo, and H. Schioler, “Potentially distributable energy: Towards energy autonomy in large population of mobile robots,” in Computational Intelligence in Robotics and Automation, 2007. CIRA 2007. International Symposium on. IEEE, 2007, pp. 206–211.spa
dc.relation.references[47] V. Jito, S. Bibhya, and N. Shin-ichi, “An asymptotically stable collision-avoidance system,” International Journal of Non-Linear Mechanics, vol. 43, no. 9, pp. 925–932, 2008.spa
dc.relation.references[48] G. Baldassarre, D. Parisi, and S. Nolfi, “Medición de la coordinación como disminución de la entropía en grupos de robots simulados vinculados,” in Proc. de la int. Conf. en Sistemas Complejos (ICCS), 2004.spa
dc.relation.references[49] H. Cuchango, E. Espitia, J. Esmeral, and I. Sofrony, “Algoritmo para planear trayectorias de robots móviles, empleando campos potenciales y enjambres de partículas activas brownianas a path planning algorithm for mobile robots using potential fields and swarms of active brownian particles,” p. 75, 2012.spa
dc.relation.references[50] A. Campbell and A. Wu, “Multi-agent role allocation: issues, approaches, and multiple perspectives,” Autonomous agents and multi-agent systems, vol. 22, no. 2, pp. 317–355, 2011.spa
dc.relation.references[51] L. F. Castillo, M. G. Bedia, C. López, F. J. Seron, and G. Isaza, “Designing strategies for improving the performance of groups in collective environments,” in Distributed Computing and Artificial Intelligence, 11th International Conference. Springer, 2014, pp. 243–250.spa
dc.relation.references[52] J. Bajo, J. M. Corchado, and L. F. Castillo, “Running agents in mobile devices,” in Advances in Artificial Intelligence-IBERAMIA-SBIA 2006. Springer, 2006, pp. 58–67.spa
dc.relation.references[53] L. F. Castillo, J. F. Corchado, and M. Bedia, “Modelo y desarrollo de w-planner: sistema multiagente on-line aplicado al turismo electrónico,” Ingeniería y Ciencia, vol. 1, no. 1, pp. 97–113, 2005.spa
dc.relation.references[54] J. M. Corchado, J. Pavón, E. S. Corchado, and L. F. Castillo, “Development of cbr-bdi agents: a tourist guide application,” in European Conference on Case-based Reasoning. Springer, 2004, pp. 547–559.spa
dc.relation.references[55] L. E. Parker, “Distributed intelligence: Overview of the field and its application in multi-robot systems,” Journal of Physical Agents, vol. 2, no. 1, pp. 5–14, 2008.spa
dc.relation.references[56] K. Sharma and R. Doriya, “Coordination of multi-robot path planning for warehouse application using smart approach for identifying destinations,” Intelligent Service Robotics, pp. 1–13, 2021.spa
dc.relation.references[57] A. Rathi, M. Vadali et al., “Dynamic prioritization for conflict-free path planning of multi-robot systems,” arXiv preprint arXiv:2101.01978, 2021.spa
dc.relation.references[58] R. Talak, “Information exchange and robust learning algorithms for networked autonomy,” phdthesis, Massachusetts Institute of Technology, Sep. 2020. [Online]. Available: https://hdl.handle.net/1721.1/129160spa
dc.relation.references[59] H. Karaoguz and H. I. Bozma, “Merging of appearance-based place knowledge among multiple robots,” Autonomous Robots, pp. 1–19, 2020.spa
dc.relation.references[60] S. Bae, F. Rossi, J. Hookr, S. Davidoff, and K.-L. Ma, “A visual analytics approach to debugging cooperative, autonomous multi-robot systems’ worldviews,” arXiv preprint arXiv:2009.01921, 2020. [Online]. Available: https://arxiv.org/pdf/2009.01921.pdfspa
dc.relation.references[61] T. Alsboui, Y. Qin, R. Hill, and H. Al-Aqrabi, “Enabling distributed intelligence for the internet of things with iota and mobile agents,” Computing, vol. 102, no. 6, pp. 1345–1363, 2020.spa
dc.relation.references[62] K. Geihs, “Engineering challenges ahead for robot teamwork in dynamic environments,” Applied Sciences, vol. 10, no. 4, p. 1368, 2020.spa
dc.relation.references[63] E. Umili, M. Tognon, D. Sanalitro, G. Oriolo, and A. Franchi, “Communication-based and communication-less approaches for robust cooperative planning in construction with a team of uavs,” in 2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2020, pp. 279–288.spa
dc.relation.references[64] A. López, J. Meda, E. Hernández, and P. Paniagua, “Multi robot distance based formation using parallel genetic algorithm,” Applied Soft Computing, vol. 86, p.105929, 2020.spa
dc.relation.references[65] P. Bechon, C. Lesire, and M. Barbier, “Hybrid planning and distributed iterative repair for multi-robot missions with communication losses,” Autonomous Robots, vol. 44, no. 3, pp. 505–531, 2020.spa
dc.relation.references[66] C.-C. Tsai, C.-C. Yu, and C.-W. Wu, “Adaptive distributed bls-fontsm formation control for uncertain networking heterogeneous omnidirectional mobile multirobots,” Journal of the Chinese Institute of Engineers, vol. 43, no. 2, pp. 171–185, 2020.spa
dc.relation.references[67] M. Mendonça, R. Palácios, E. Papageorgiou, and de Lucas Souza, “Multi-robot exploration using dynamic fuzzy cognitive maps and ant colony optimization,” in 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2020, pp. 1–8.spa
dc.relation.references[68] S. Daniluk and R. Emami, “An advice mechanism for heterogeneous robot teams,” International Journal of Robotics and Automation, vol. 35, no. 1, pp. 53–68, 2020.spa
dc.relation.references[69] I. Jawhar, N. Mohamed, and J. Al-Jaroodi, “Secure communication in multi-robot systems,” in 2020 IEEE Systems Security Symposium (SSS). IEEE, 2020, pp.1–8.spa
dc.relation.references[70] A. Puzicha and P. Buchholz, “Real-time simulation of robot swarms with restricted communication skills,” in 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). IEEE, 2020, pp. 1–8.spa
dc.relation.references[71] L. Souza et al., “Sistema multirrobô para exploração de ambientes desconhecidos utilizando controladores fuzzy,” Master’s thesis, Universidade Tecnológica Federal do Paraná, 2020. [Online]. Available: http://riut.utfpr.edu.br/jspui/bitstream/1/5431/1/CP_PPGEM_M_Souza%2C_Lucas_Botoni_de_2020.pdfspa
dc.relation.references[72] A. V. Ermakov and L. I. Suchkova, “Development of algorithms for reliable data exchange between autonomous robots based on the principles of a self-organizing network,” Reliability, vol. 20, no. 2, pp. 35–42, 2020.spa
dc.relation.references[73] S. Daniluk, “An advice mechanism for heterogeneous robot teams,” Ph. D. Thesis, 2017. [Online]. Available: https://tspace.library.utoronto.ca/bitstream/ 1807/79051/3/Daniluk_Steven_201711_MAS_thesis.pdfspa
dc.relation.references[74] J. Verma and V. Ranga, “Multi-robot coordination analysis, taxonomy, challenges and future scope,” Journal of Intelligent & Robotic Systems, vol. 102, no. 1, pp. 1–36, 2021.spa
dc.relation.references[75] H.-Y. Zheng, “Fuzzy cooperative ekf localization and adaptive integral terminal sliding-mode formation control using fuzzy broad learning system and artificial potential function for uncertain networking heterogeneous omnidirectional multirobots,” Master’s thesis, 2020.spa
dc.relation.references[76] R. Juha, H. Janne, K. Anssi, M. Henna, and V. Ilari, “Smart system for distributed sensing,” in Electronics Conference, 2008. BEC 2008. 11th International Biennial Baltic. IEEE, 2008, pp. 21–30.spa
dc.relation.references[77] K. Gulzar, “Gesture planning and execution for anchoring between multi-embodiment robots in decentralized settings,” Ph.D. dissertation, Aalto University, 2020. [Online]. Available: https://aaltodoc.aalto.fi/bitstream/handle/123456789/47032/isbn9789526401003.pdf?sequence=1spa
dc.relation.references[78] L. Yugang, N. Goldie, and V. Jessyka, “Learning to cooperate together: A semi-autonomous control architecture for multi-robot teams in urban search and rescue,” in Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium on. IEEE, 2013, pp. 1–6.spa
dc.relation.references[79] V. Jessyka, L. Yugang, and N. Goldie, “Semi-autonomous exploration with robot teams in urban search and rescue,” in Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE International Symposium on. IEEE, 2013, pp. 1–6.spa
dc.relation.references[80] C. Undeger and F. Polat, “Real-time edge follow: A real-time path search approach,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 5, pp. 860–872, 2007.spa
dc.relation.references[81] O. Kohei, T. Koichi, and I. Hiroshi, “Possibilities of androids as poetry-reciting agent,” in RO-MAN, 2012 IEEE. IEEE, 2012, pp. 565–570.spa
dc.relation.references[82] K. Sugawara and M. Sano, “Cooperative acceleration of task performance: Foraging behavior of interacting multi-robots system,” Physica D: Nonlinear Phenomena, vol. 100, no. 3, pp. 343–354, 1997.spa
dc.relation.references[83] B. Christoph, R. Juliane, and C. Julie, “Use of praise and punishment in human-robot collaborative teams,” in Robot and Human Interactive Communication, 2006. ROMAN 2006. The 15th IEEE International Symposium on. IEEE, 2006, pp. 177–182.spa
dc.relation.references[84] R. Moeckel, Y. N. Perov, A. Nguyen, M. Vespignani, S. Bonardi, S. Pouya, A. Sproewitz, J. van den Kieboom, F. Wilhelm, and A. J. Ijspeert, “Gait optimization for roombots modular robots matching simulation and reality,” in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013, pp. 3265–3272.spa
dc.relation.references[85] S. Behnke and R. Rojas, “A hierarchy of reactive behaviors handles complexity,” in Balancing reactivity and social deliberation in multi-agent systems. Springer, 2001, pp. 125–136.spa
dc.relation.references[86] D. Krohling and E. Martinez, “Ai integral theory of mind en agentes de negociacion conscientes del contexto,” in XX Simposio Argentino de Inteligencia Artificial (ASAI 2019) -JAIIO 48 (Salta), 2019.spa
dc.relation.references[87] A. Arab, “A constitution and an economic model for the organisation and emergence of collective behaviour in a colony of robots,” in From Perception to Action Conference, 1994., Proceedings. IEEE, 1994, pp. 334–337.spa
dc.relation.references[88] O. Souissi, R. Benatitallah, D. Duvivier, A. Artiba, N. Belanger, and P. Feyzeau, “Path planning: A 2013 survey,” in Industrial Engineering and Systems Management (IESM), Proceedings of 2013 International Conference on. IEEE, 2013, pp. 1–8.spa
dc.relation.references[89] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a*,” Artificial Intelligence, vol. 155, no. 12, pp. 93 – 146, 2004.spa
dc.relation.references[90] R. R. Murphy, “Trial by fire [rescue robots],” Robotics and Automation Magazine, IEEE, vol. 11, no. 3, pp. 50–61, 2004.spa
dc.relation.references[91] M. R. Sierra et al., “Mejora de algoritmos de búsqueda heurística mediante poda por dominancia. aplicación a problemas de scheduling,” 2009. [Online]. Available: http://digibuo.uniovi.es/dspace/bitstream/10651/15043/1/TD_M%20Rita%20Sierra%20Sanchez.pdfspa
dc.relation.references[92] R. Andrea and E. Matthias, “A comparison of solution strategies for biobjective shortest path problems,” Computers and Operations Research, vol. 36, no. 4, pp. 1299–1331, 2009.spa
dc.relation.references[93] K. Pradipta, S. Patro, C. Panda, and B. Bunil, “D* lite algorithm based path planning of mobile robot in static environment,” Int. J. Comput. Commun. Technol.(IJCCT), vol. 2, pp. 32–36, 2011.spa
dc.relation.references[94] S. Peter, L. Guy, G. Audrunas, C. W. Marian, Z. Vinicius, J. Max, L. Marc, S. Nicolas, L. J. Z, T. Karl et al., “Value-decomposition networks for cooperative multi-agent learning based on team reward,” in Proceedings of the 17th international conference on autonomous agents and multiagent systems. International Foundation for Autonomous Agents and Multiagent Systems, 2018, pp. 2085–2087.spa
dc.relation.references[95] A. Amanatiadis, S. Chatzichristofis, K. Charalampous, L. Doitsidis, E. Kosmatopoulos, P. Tsalides, A. Gasteratos, S. Roumeliotis et al., “A multi-objective exploration strategy for mobile robots under operational constraints,” Access, IEEE, vol. 1, pp. 691–702, 2013.spa
dc.relation.references[96] A. Salman, K. Mohd, and H. Ghulam, “Feedback linearized strategies for collaborative nonholonomic robots,” in Control, Automation and Systems, 2007. ICCAS’07. International Conference on. IEEE, 2007, pp. 1551–1556.spa
dc.relation.references[97] A. Martinoli, F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, A. Hsieh, L. E. Parker, and K. Stoy, Distributed Autonomous Robotic Systems: The 10th International Symposium. Springer, 2012, vol. 83.spa
dc.relation.references[98] K. Tsianos, I. Sucan, and L. Kavraki, “Sampling-based robot motion planning: Towards realistic applications,” Computer Science Review, vol. 1, no. 1, pp. 2–11, 2007.spa
dc.relation.references[99] A. L. Cumbajin, “Desarrollo de un sistema de navegación basado en la plataforma pioneer p3-dx para el transporte de materiales,” 2020.spa
dc.relation.references[100] A. Hussein, “Control and communication systems for automated vehicles cooperation and coordination,” phdthesis, Universidad Carlos III de Madrid. Departamento de Ingeniería de Sistemas y Automática, Sep. 2018. [Online]. Available: https://e-archivo.uc3m.es/handle/10016/27674spa
dc.relation.references[101] F. Ingrand and M. Ghallab, “Deliberation for autonomous robots: A survey,” Artificial Intelligence, vol. 247, pp. 10–44, 2017.spa
dc.relation.references[102] M. Sina, K. Christoforos, F. Emil, K. Dariusz, and N. George, “Cooperative coverage path planning for visual inspection,” Control Engineering Practice, vol. 74, pp. 118–131, 2018.spa
dc.relation.references[103] R. Al-Jarrah, A. Shahzad, and H. Roth, “Path planning and motion coordination for multi-robots system using probabilistic neuro-fuzzy,” IFAC-PapersOnLine, vol. 48, no. 10, pp. 46–51, 2015.spa
dc.relation.references[104] Z. Wang and S. Zlatanova, “Multi-agent based path planning for first responders among moving obstacles,” Computers, Environment and Urban Systems, vol. 56, pp. 48–58, 2016.spa
dc.relation.references[105] M. Ganeshmurthy and G. Suresh, “Path planning algorithm for autonomous mobile robot in dynamic environment,” in Signal Processing, Communication and Networking (ICSCN), 2015 3rd International Conference on. IEEE, 2015, pp. 1–6.spa
dc.relation.references[106] L. Chaymaa, F. Youssef, and B. Said, “Collaborative q-learning path planning for autonomous robots based on holonomic multi-agent system,” in Intelligent Systems: Theories and Applications (SITA), 2015 10th International Conference on. IEEE, 2015, pp. 1–6.spa
dc.relation.references[107] D. Megherbi and M. Kim, “A collaborative distributed multi-agent reinforcement learning technique for dynamic agent shortest path planning via selected sub-goals in complex cluttered environments,” in Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 2015 IEEE International Inter-Disciplinary Conference on. IEEE, 2015, pp. 118–124.spa
dc.relation.references[108] S. E. Muldoon, C. Luo, F. Shen, and H. Mo, “Naturally inspired optimization algorithms as applied to mobile robotic path planning,” in Swarm Intelligence (SIS), 2014 IEEE Symposium on. IEEE, 2014, pp. 1–6.spa
dc.relation.references[109] C. Keonyup, L. Minchae, and S. Myoungho, “Local path planning for off-road autonomous driving with avoidance of static obstacles,” Intelligent Transportation Systems, IEEE Transactions on, vol. 13, no. 4, pp. 1599–1616, 2012.spa
dc.relation.references[110] B. Fethi and J. Tongdan, “An approach for collaborative path planning in multi-robot systems,” in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on. IEEE, 2009, pp. 2356–2361.spa
dc.relation.references[111] Z. Lihui, “On the techniques of multi-agent path planning and the collaboration,” in Computer Application and System Modeling (ICCASM), 2010 International Conference on, vol. 13. IEEE, 2010, pp. V13–430.spa
dc.relation.references[112] J. Chen and L. R. Li, “Path planning protocol for collaborative multi-robot systems,” in Computational Intelligence in Robotics and Automation, 2005. CIRA 2005. Proceedings. 2005 IEEE International Symposium on. IEEE, 2005, pp. 721–726.spa
dc.relation.references[113] C. Kim, H. Yang, D. Kang, and D. Lee, “2-d cooperative localization with omni-directional mobile robots,” in 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Oct 2015, pp. 425–426.spa
dc.relation.references[114] S. Nestinger and M. Demetriou, “Adaptive collaborative estimation of multi-agent mobile robotic systems,” in Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp. 1856–1861.spa
dc.relation.references[115] H. Chen, P. Hovareshti, and J. S. Baras, “Distributed collaborative controlled autonomous vehicle systems over wireless networks,” in Control & Automation (MED), 2010 18th Mediterranean Conference on. IEEE, 2010, pp. 1695–1700.spa
dc.relation.references[116] Z. Chuan, X. Jianqing, and Y. Xiangsheng, “An architecture for intelligent collaborative systems based on multi-agent,” in Computer Supported Cooperative Work in Design, 2008. CSCWD 2008. 12th International Conference on. IEEE, 2008, pp. 367–372.spa
dc.relation.references[117] N. Patricio and C. Enric, “A framework for the development of cooperative robotic applications,” in Advanced Robotics, 2005. ICAR’05. Proceedings., 12th International Conference on. IEEE, 2005, pp. 901–906.spa
dc.relation.references[118] S. Jian, J. Ibañez, T. Chew, and C. Boon, “A collaborative-shared control system with safe obstacle avoidance capability,” in Robotics, Automation and Mechatronics, 2004 IEEE Conference on, vol. 1. IEEE, 2004, pp. 119–123.spa
dc.relation.references[119] K. Koji, I. Horoshi, and B. Matther, “Identifying and localizing robots in a multi-robot system environment,” in Intelligent Robots and Systems, 1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, vol. 2. IEEE, 1999, pp. 966–971.spa
dc.relation.references[120] A. Hajime, O. Koichi, I. Yoshiki, Y. Kazutaka, M. Akihiro, K. Hayato, and E. Isao, “Collaborative team organization using communication in a decentralized robotic system,” in Intelligent Robots and Systems’ 94.’Advanced Robotic Systems and the Real World’, IROS’94. Proceedings of the IEEE/RSJ/GI International Conference on, vol. 2. IEEE, 1994, pp. 816–823.spa
dc.relation.references[121] Y. Liu, B. Yin, and D. Jia, “A multi-objective optimization method for aerospace product research and development process based on particle swarm optimization algorithm and critical path algorithm,” in Journal of Physics: Conference Series, vol. 1732, no. 1. IOP Publishing, 2021, p. 012076.spa
dc.relation.references[122] S. Ramabalan, V. Sathiya, and M. Chinnadurai, “Wheeled mobile robot trajectory planning using evolutionary techniques,” Advances in Interdisciplinary Engineering: Select Proceedings of FLAME 2020, pp. 291–301, 2020.spa
dc.relation.references[123] O. A. Razzaq and A. Al-Araji, “Path planning and control strategy design for mobile robot based on hybrid swarm optimization algorithm,” International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021, 2021.spa
dc.relation.references[124] R. Szczepanski and T. Tarczewski, “Global path planning for mobile robot based on artificial bee colony and dijkstraâs algorithms,” 2020.spa
dc.relation.references[125] A. M. Pupo, “Diseño e implementación de una herramienta computacional para reconocimiento de minas antipersonal artesanales plásticas mediante técnicas de procesamiento digital de imágenes,” 2015.spa
dc.relation.references[126] M. Armada, R. E. Fernandez, H. Montes, J. F. Sarria, and C. Salinas, “Robots móviles para tareas de desminado humanitario,” 2013.spa
dc.relation.references[127] B. G. Santiago, “Robot hexápodo para la detección de minas antipersona artesanales tipo jeringa,” 2014.spa
dc.relation.references[128] A. Bedoya, G. Guzmán, and J. Chaves, “Propuesta de desarrollo robótico para el desminado humanitario,” Scientia et Technica, vol. 3, no. 49, pp. 239–244, 2011. [Online]. Available: http://revistas.utp.edu.co/index.php/revistaciencia/article/view/1531spa
dc.relation.references[129] R. C. Ponticelli, Sistema de exploración de terrenos con robots móviles: aplicación en tareas de detección y localización de minas antipersonas. Universidad Complutense de Madrid, Servicio de Publicaciones, 2011.spa
dc.relation.references[130] E. Mercado and J. Saavedra, “Sistema de localización acústico para robots móviles basado en múltipes transmisores y un receptor,” Visión Electrónica: algo más que un estado sólido, vol. 1, no. 1, pp. 32–40, 2011.spa
dc.relation.references[131] C. A. Parra, C. A. Campo, J. D. Coronado, J. I. Rizo, and C. A. Otálora, “Una herramienta robotica para la detección y localización de minas antipersonales,” Revista de La Asociación de Ingenieros Javerianos, 2002.spa
dc.relation.references[132] M. Jamshidi, A. Lalbakhsh, J. Talla, Z. Peroutka, F. Hadjilooei, P. Lalbakhsh, M. Jamshidi, L. L. Spada, M. Mirmozafari, M. Dehghani, A. Sabet, S. Roshani, S. Roshani, N. Bayat-Makou, B. Mohamadzade, Z. Malek, A. Jamshidi, S. Kiani, H. Hashemi-Dezaki, and W. Mohyuddin, “Artificial intelligence and covid-19: Deep learning approaches for diagnosis and treatment,” IEEE Access, vol. 8, pp. 109 581–109 595, 2020.spa
dc.relation.references[133] A. A. R. Alsaeedy and E. K. P. Chong, “Detecting regions at risk for spreading covid-19 using existing cellular wireless network functionalities,” IEEE Open Journal of Engineering in Medicine and Biology, vol. 1, pp. 187–189, 2020.spa
dc.relation.references[134] M. N. Islam and A. K. M. N. Islam, “A systematic review of the digital interventions for fighting covid-19: The bangladesh perspective,” IEEE Access, vol. 8, pp. 114 078–114 087, 2020.spa
dc.relation.references[135] X. Wang, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, and C. Zheng, “A weakly-supervised framework for covid-19 classification and lesion localization from chest ct,” IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2615–2625, 2020.spa
dc.relation.references[136] E. González, “Desarrollo de un algoritmo planificador de rutas con capacidad de implementación en diversas aplicaciones de la robótica móvil,” Thesis, Octubre 2015.spa
dc.relation.references[137] J. Goyal and K. Nagla, “A new approach of path planning for mobile robots,” in 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2014, pp. 863–867.spa
dc.relation.references[138] S. V. Konakalla, “A star algorithm,” December 2014.spa
dc.relation.references[139] S. Yogang, S. Sanjay, S. Robert, H. Daniel, and K. Asiya, “A constrained a* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents,” Ocean Engineering, vol. 169, pp. 187–201, 2018.spa
dc.relation.references[140] D. Sundfeld, C. Razzolini, G. Teodoro, A. Boukerche, and A. C. Magalhaes, “Pa-star: A disk-assisted parallel a-star strategy with locality-sensitive hash for multiple sequence alignment,” Journal of Parallel and Distributed Computing, vol. 112, pp. 154–165, 2018.spa
dc.relation.references[141] D. Yang, B. Xu, K. Rao, and W. Sheng, “Passive infrared (pir)-based indoor position tracking for smart homes using accessibility maps and a-star algorithm,” Sensores, 2018.spa
dc.relation.references[142] P. Judea, “Heuristics: intelligent search strategies for computer problem solving,” Addison-Wesley Pub. Co., Inc., Reading, MA, 1984.spa
dc.relation.references[143] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach, M. P. E. Limited, Ed., 2016.spa
dc.relation.references[144] A. Patelâs, “Introduction to a*,” Blog, 2012. [Online]. Available: http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.htmlspa
dc.relation.references[145] A. González and H. Garzón, “Diseño, implementación y aplicación de una estrategia de búsqueda preferente por amplitud, para uso multidireccional sobre sistemas distribuidos o de procesamiento en paralelo usando un simulador de escenarios, construido para el trazado de rutas en robótica móvil,” mathesis, Nov. 2011. [Online]. Available: https://core.ac.uk/download/pdf/71396727.pdfspa
dc.relation.references[146] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic search in ai,” AI Magazine, vol. 25, no. 2, p. 99, 2004.spa
dc.relation.references[147] J. Chaves, J. Gómez, and E. González, “Two agents with gbfs algorithms working cooperatively to get a shortest path,” Scientia et Technica, vol. 25, no. 3, pp. 448–454, 2020.spa
dc.relation.references[148] R. Inam, K. Raizer, A. Hata, R. Souza, E. Forsman, E. Cao, and S. Wang, “Risk assessment for human-robot collaboration in an automated warehouse scenario,” in 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1. IEEE, 2018, pp. 743–751.spa
dc.relation.references[149] M. Iwasa, Y. Toda, A. Saputra, and N. Kubota, “Path planning of the autonomous mobile robot by using real-time rolling risk estimation with fuzzy inference,” in 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017, pp. 1–6.spa
dc.relation.references[150] M. Irie, K. Nagatani, and A. Gofuku, “Path evaluation for a mobile robot based on a risk of collision,” in Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No. 03EX694), vol. 1. IEEE, 2003, pp. 485–490.spa
dc.relation.references[151] Z. Qidan, W. Yebin, W. Guoqiang, and W. Xin, “An improved anytime rrts algorithm,” in 2009 International Conference on Artificial Intelligence and Computational Intelligence, vol. 1. IEEE, 2009, pp. 268–272.spa
dc.relation.references[152] K. Nagatani, “Recent trends and issues of volcanic disaster response with mobile robots,” Journal of Robotics and Mechatronics, vol. 26, no. 4, pp. 436–441, 2014.spa
dc.relation.references[153] A. Gomez, H. Martinez, and M. Sanchez, “A fuzzy logic based language to model autonomous mobile robots,” in Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE’99. 1999 IEEE International, vol. 1. IEEE, 1999, pp. 550–555.spa
dc.relation.references[154] P. Corke, Robotics, vision and control: fundamental algorithms in MATLAB® second, completely revised. Springer, 2017, vol. 118.spa
dc.relation.references[155] R. Singh, G. Singh, and V. Kumar, “Control of closed-loop differential drive mobile robot using forward and reverse kinematics,” in 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 2020, pp. 430–433.spa
dc.relation.references[156] S. Y. Kadirova and T. R. Nenov, “Design of power wheelchair controller,” in 2020 7th International Conference on Energy Efficiency and Agricultural Engineering (EE AE), 2020, pp. 1–4.spa
dc.relation.references[157] S. Nurmaini, K. Dewi, and B. Tutuko, “Differential-drive mobile robot control design based-on linear feedback control law,” in IOP Conference Series: Materials Science and Engineering, vol. 190, no. 1. IOP Publishing, 2017, p. 012001.spa
dc.relation.references[158] K. Kothandaraman, “Motion planning and control of differential drive mobile robot,” mathesis, Wright State University, Dec. 2016. [Online]. Available: https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=2841&context=etd_allspa
dc.relation.references[159] Mohd Saifizi Saidonr, H. Desa, and M. N. Rudzuan, “A differential steering control with proportional controller for an autonomous mobile robot,” in 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, 2011, pp. 90–94.spa
dc.relation.references[160] R. Siegwart and I. Nourbakhsh, “Robot control basics.” [Online]. Available: https://cs.gmu.edu/~kosecka/cs485/lec04-control.pdfspa
dc.relation.references[161] M. Gheisarnejad and M. H. Khooban, “An intelligent non-integer pid controller-based deep reinforcement learning: Implementation and experimental results,” IEEE Transactions on Industrial Electronics, vol. 68, no. 4, pp. 3609–3618, 2021.spa
dc.relation.references[162] W. Liu, X. Wang, and S. Liang, “Trajectory tracking control for wheeled mobile robots based on a cascaded system control method,” in IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 2020, pp. 396–401.spa
dc.relation.references[163] C. B. Jabeur and H. Seddik, “Implementation of snnpid optimized neural networks controller for a two-wheeled mobile robot,” in 2019 International Conference on Control, Automation and Diagnosis (ICCAD), 2019, pp. 1–6.spa
dc.relation.references[164] W. Serralheiro, “A motion control scheme for a wmr based on input-output feedback linearization and pid,” in 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE), 2019, pp. 222–227.spa
dc.relation.references[165] C. Lee, B. Su, C. Chang, T. Hsu, and W. Lee, “Applications of taguchi method to pid control for path tracking of a wheeled mobile robot,” in 2018 IEEE International Conference on Applied System Invention (ICASI), 2018, pp. 453–456.spa
dc.relation.references[166] V. Gupta, N. Bendapudi, I. N. Kar, and S. K. Saha, “Three-stage computed-torque controller for trajectory tracking in non-holonomic wheeled mobile robot,” in 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), 2018, pp. 144–149.spa
dc.relation.references[167] J. Heikkinen, T. Minav, and A. D. Stotckaia, “Self-tuning parameter fuzzy pid controller for autonomous differential drive mobile robot,” in 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM), 2017, pp. 382–385.spa
dc.relation.references[168] J. Singh and P. S. Chouhan, “A new approach for line following robot using radius of path curvature and differential drive kinematics,” in 2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA), 2017, pp. 497–502.spa
dc.relation.references[169] C. S. Shijin and K. Udayakumar, “Speed control of wheeled mobile robots using pid with dynamic and kinematic modelling,” in 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1–7.spa
dc.relation.references[170] C. Pareja, “Diseño y construcción de un robot para la implementación y evaluación de algoritmos de planificación de rutas utilizando materiales de bajo costo,” Thesis, April 2017.spa
dc.relation.references[171] F. Hua, G. Li, F. Liu, and Y. Liu, “Mechanical design of a four-wheel independent drive and steering mobile robot platform,” in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2016, pp. 235–238.spa
dc.relation.references[172] A. Araujo, D. Portugal, M. Couceiro, J. Sales, and R. Rocha, “Desarrollo de un robot móvil compacto integrado en el middleware ros,” Revista Iberoamericana de Automótica e Informótica industrial, vol. 11, no. 3, pp. 315–326, 2014.spa
dc.relation.references[173] R. D. Chaglla and R. P. Pereira, “Diseño, construcción e implementación de un prototipo de robot móvil para el recorrido de trayectorias definidas por computador para el laboratorio de robótica industrial decem,” B.S. thesis, Universidad de las Fuerzas Armadas ESPE. Carrera de Ingeniería en Mecatrónica, 2014.spa
dc.relation.references[174] V. Lopez, “Diseño y construcción de un robot móvil con navegación controlada a través de una aplicación móvil con interfaz de voz,” mathesis, Universidad Carlos III de Madrid. Departamento de Ingeniería de Sistemas y Automática, Oct. 2014. [Online]. Available: https://e-archivo.uc3m.es/handle/10016/26237spa
dc.relation.references[175] E. Ramos, “Control punto a punto para el seguimiento de trayectorias de un robot móvil de ruedas tipo diferencial,” phdthesis, Instituto Politécnico Nacional, May 2011. [Online]. Available: http://www.repositoriodigital.ipn.mx/handle/123456789/12281spa
dc.relation.references[176] R. Ortigoza, E. R. Ramos, and R. Morales, “Modelado, simulación y construcción de un robot móvil de ruedas tipo diferencial,” Latin-American Journal of Physics Education, vol. 4, no. 3, p. 39, 2010.spa
dc.relation.references[177] C. Tello and J. A. D. la Peña, “Construcción y localización en tiempo real de un robot móvil vía odometría en el seguimiento de trayectorias mediante control automático,” Ph.D. dissertation, 2010.spa
dc.relation.references[178] U. Cortesand, A. Castañeda, A. Benitez, and A. Diaz, “Control de Movimiento de un Robot Móvil Tipo Diferencial Robot uubetaot-32b 2015.spa
dc.relation.references[179] L. Y. Lopez, “Implementación del filtro de kalman para la localización de un robot móvil tipo lego nxt en labview,” Tecnura, vol. 16, pp. 68–75, 2012.spa
dc.relation.references[180] F. Aguado, Castaño, J. A. Casanova, E. Zalama, and J. Garcia, “Diseño y simulación de un filtro kalman para un robot móvil,” XXV Jornadas de Automatica, Ciudad Real, 2004.spa
dc.relation.references[181] J. Chaves, C. Pareja, and E. González, “Design and construction of a low cost wheeled mobile robot for implementation of path planning algorithms,” in 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2018, pp. 1–6.spa
dc.relation.references[182] P. Robotics and E. Corporation, “Minimu-9 v5 gyro, accelerometer, and compass (lsm6ds33 and lis3mdl carrier),” Nov. 2016. [Online]. Available: https://www.pololu.com/product/2738spa
dc.relation.references[183] “Digital output magnetic sensor: ultra-low-power, high-performance 3-axis magnetometer,” May 2015.spa
dc.relation.references[184] D. Grimaldi, Y. Kurylyak, and F. Lamonaca, “Detection and parameters estimation of locally motion blurred objects,” in Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 2011 IEEE 6th International Conference on, vol. 1. IEEE, 2011, pp. 483–487.spa
dc.relation.references[185] L. Huei and L. Kun, “Motion blur removal and its application to vehicle speed detection,” in Image Processing, 2004. ICIP’04. 2004 International Conference on, vol. 5. IEEE, 2004, pp. 3407–3410.spa
dc.relation.references[186] A. Taherkhani and J. Mohammadi, “Mejora de estimación de la velocidad de objeto esfórico con la base de redes neuronales en el análisis por desenfoque de movimiento,” AFINIDAD, vol. 71, no. 563, pp. 42–47, 2014.spa
dc.relation.references[187] M. Javad, A. Rohollah et al., “Vehicle speed estimation based on the image motion blur using radon transform,” in Signal Processing Systems (ICSPS), 2010 2nd International Conference on, vol. 1. IEEE, 2010, pp. V1–243.spa
dc.relation.references[188] J. Yu, C. Li, K. Yang, and W. Chen, “Grg-mape and pcc-mape based on uncertainty-mathematical theory for path-loss model selection,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1–5.spa
dc.relation.references[189] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Pearson Prentice Hall, 2007.spa
dc.relation.references[190] N. Idiou, F. Benatia, and B. Brahimi, “Bias and rmse of archimedean copula using moment and l-moments methods,” in 2020 2nd International Conference on Mathematics and Information Technology (ICMIT), 2020, pp. 55–58.spa
dc.relation.references[191] D. Purwanto, C. Eswaran, and R. Logeswaran, “A comparison of arima, neural network and linear regression models for the prediction of infant mortality rate,” in 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, 2010, pp. 34–39.spa
dc.relation.references[192] A. Hidalgo-Paniagua, J. P. Bandera, M. R. de Quintanilla, and A. Bandera, “Quad-rrt: A real-time gpu-based global path planner in large-scale real environments,” Expert Systems with Applications, vol. 99, pp. 141–154, 2018.spa
dc.relation.references[193] J. Camarena, “Análisis cinemático dinámico y control en tiempo real de un vehículo guiado automáticamente,” Master’s thesis, Centro Nacional de Investigacion y Desarrollo Tecnologico, 2009.spa
dc.relation.references[194] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: Steering using sinusoids,” IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 700–716, 1993.spa
dc.relation.references[195] M. G. Bekker, “Off-the-road locomotion (1960),” Ann Arbor, Michigan: University of Michigan Press, 1960.spa
dc.relation.references[196] B. M. Gregory, “Introduction to terrain-vehicle systems,” 1969.spa
dc.relation.references[197] C. Gottesman and H. Intraub, “Constraints on spatial extrapolation in the mental representation of scenes: View-boundaries vs. object-boundaries,” Visual Cognition, vol. 10, no. 7, pp. 875–893, 2003.spa
dc.relation.references[198] L. B. Sanabria, Imagen mental y representacion espacial. Universidad Pedagógica nacional, 2015.spa
dc.relation.references[199] C. Thinus-Blanc and F. Gaunet, “Representation of space in blind persons: vision as a spatial sense,” Psychological bulletin, vol. 121, no. 1, p. 20, 1997.spa
dc.relation.references[200] T. S. Levitt and D. T. Lawton, “Qualitative navigation for mobile robots,” Artificial intelligence, vol. 44, no. 3, pp. 305–360, 1990.spa
dc.relation.references[201] T. Estlin, R. Volpe, I. Nesnas, D. Mutz, F. Fisher, B. Engelhardt, and S. Chien, “Decision-making in a robotic architecture for autonomy,” 2001.spa
dc.relation.references[202] S. Weiming and N. Douglas, “Sistemas basados en agentes para la fabricación inteligente: una encuesta de vanguardia,” Sistemas de conocimiento e información, 1999.spa
dc.relation.references[203] N. Jennings, M. J. Wooldridge, and N. Jennings, Tecnología del agente: fundaciones, aplicaciones y mercados, S. S. . B. Media, Ed., 1998.spa
dc.relation.references[204] J. A. Arcos, “Sistema de navegación y modelado del entorno para un robot móvil,” 2009.spa
dc.relation.references[205] C. Hu, H. Jing, R. Wang, F. Yan, and M. Chadli, “Robust h output-feedback control for path following of autonomous ground vehicles,” Mechanical Systems and Signal Processing, 2016.spa
dc.relation.references[206] S. Villalobos et al., Diseño y manejo de estructuras de datos en C. Mc Graw-Hill Interamericana, 1996. [Online]. Available: https://books.google.com.co/books?id=rrDRAAAACAAJspa
dc.relation.references[207] M. A. Murray-Lasso, “Math puzzles, powerful ideas, algorithms and computers in teaching problem-solving,” Journal of applied research and technology, vol. 1, no. 3, pp. 215–234, 2003.spa
dc.relation.references[208] D. Guichard, “Combinatorics and graph theory,” Department of Mathematics Whitman College.spa
dc.relation.references[209] V. J. Molina, P. C. Torres, and P. C. Restrepo, “Técnicas de inteligencia artificial para la solución de laberintos de estructura desconocida,” Scientia et Technica, vol. 2, no. 39, 2008.spa
dc.relation.references[210] C. Keum-Bae and C. Seong-Yun, “The concept of collision-free motion planning using a dynamic collision map,” International Journal of Advanced Robotic Systems, vol. 11, no. 9, p. 145, 2014.spa
dc.relation.references[211] A. Kott, V. Saks, and A. Mercer, “A new technique enables dynamic replanning and rescheduling of aeromedical evacuation: Special articles on innovative applications,” The AI magazine, vol. 20, no. 1, pp. 43–53, 1999.spa
dc.relation.references[212] A. Stentz and I. C. Mellon, “Optimal and efficient path planning for unknown and dynamic environments,” International Journal of Robotics and Automation, vol. 10, pp. 89–100, 1993.spa
dc.relation.references[213] S. Koenig and M. Likhachev, “D* lite,” in Eighteenth national conference on Artificial intelligence. American Association for Artificial Intelligence, 2002, pp. 476–483.spa
dc.relation.references[214] T. Lozano and M. Wesley, “An algorithm for planning collision-free paths among polyhedral obstacles,” Communications of the ACM, vol. 22, no. 10, pp. 560–570, 1979.spa
dc.relation.references[215] M. Fernandez, “Algoritmos de búsqueda heurística en tiempo real. aplicación a la navegación en los juegos de vídeo,” 2005.spa
dc.relation.references[216] H. Manuel, K. Thomas, and H. Malte, “Search progress and potentially expanded states in greedy best-first search.” International Joint Conferences on Artificial Intelligence, 2018.spa
dc.relation.references[217] R. Korf, “Depth-first iterative-deepening: An optimal admissible tree search,” Artificial Intelligence, vol. 27, no. 1, pp. 97 – 109, 1985. [Online]. Available:http://www.sciencedirect.com/science/article/pii/0004370285900840spa
dc.relation.references[218] I Gavalda Jordi Duch and N. H. Tejedor, Inteligencia artificial. UOC Universitat Oberta de Catalunya, 2008. [Online]. Available: http://www.exabyteinformatica.com/uoc/Inteligencia_artificial/Inteligenca_artificial_ES/Inteligencia_artificial.pdfspa
dc.relation.references[219] E. M. Alvaro, M. M. D. Javier, and R. P. F. Javier, “Funciones que ganan partidas.” Universidad de Alcala, 2013. [Online]. Available: http://www2.uah.es/libretics/concurso2013/files2013/Trabajos/Funciones%20que%20ganan%20partidas.pdfspa
dc.relation.references[220] A. Sedeño and M. Colebrook, “A biobjective dijkstra algorithm,” European Journal of Operational Research, 2019.spa
dc.relation.references[221] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” Systems Science and Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, July 1968. [Online]. Available: http://ieeexplore.ieee.org.ezproxy.utp.edu.co/xpl/articleDetails.jsp?tp=&arnumber=4082128&queryText%3DA+Formal+Basis+for+the+Heuristic+Determination+of+Minimum+Cost+Pathsspa
dc.relation.references[222] “Ai hall of fame,” Intelligent Systems, IEEE, vol. 26, no. 4, pp. 5–15, July 2011.spa
dc.relation.references[223] S. Koenig, “Agent-centered search,” AI Magazine, vol. 22, no. 4, p. 109, 2001.spa
dc.relation.references[224] R. E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42, no. 23, pp. 189 – 211, 1990.spa
dc.relation.references[225] M. Shimbo and T. Ishida, “Controlling the learning process of real-time heuristic search,” Artificial Intelligence, vol. 146, no. 1, pp. 1 – 41, 2003.spa
dc.relation.references[226] K. Sven, F. David, and B. Colin, “Heuristic search-based replanning,” in AIPS, 2002, pp. 294–301.spa
dc.relation.references[227] L. M. and K. S., “Incremental replanning for mapping,” in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, vol. 1, 2002, pp. 667–672 vol.1.spa
dc.relation.references[228] S. Andrei and K. Kiyoshi, “Collision-free navigation with extended terrain maps,” in Transactions on Computational Science XXIII. Springer, 2014, pp. 139–156.spa
dc.relation.references[229] K. Oussama, “Real-time obstacle avoidance for manipulators and mobile robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.spa
dc.relation.references[230] S. Karansher and F. Kikuo, “Map making by cooperating mobile robots,” in Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on. IEEE, 1993, pp. 254–259.spa
dc.relation.references[231] E. Fernandez-Moral, V. Arevalo, and J. Gonzalez-Jimenez, “Mapeo métrico-topológico híbrido para slam monocular a gran escala,” in Informatics in Control, Automation and Robotics, Springer, Ed., 2015. [232] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.spa
dc.relation.references[233] J. Blanco, J. Gonzalez, and J. Fernandez-Madrigal, “Mapas subjetivos locales para slam métrico-topológico híbrido,” Robotica y Sistemas Autonomos, 2009.spa
dc.relation.references[234] A. Federico, L. Martin, T. Gonzalo, and B. Facundo, “Slam estado del arte,” 2007.spa
dc.relation.references[235] A. M. Romero, “Mapeado y localización topológicos mediante información visual,” phdthesis, Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial, May 2013. [Online]. Available: http://hdl.handle.net/10045/30275spa
dc.relation.references[236] J. Lim, J. Frahm, and M. Pollefeys, “Online environment mapping using metric-topological maps,” The International Journal of Robotics Research, 2012.spa
dc.relation.references[237] F. Lawrence, Strategy: A history. Oxford University Press, 2015.spa
dc.relation.references[238] E. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies. Cambridge University Press, 1988.spa
dc.relation.references[239] D. Joseph, “Kinematics (joseph stiles beggs),” 1985.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lcshRobotics
dc.subject.lcshAutonomous robots
dc.subject.lembRobótica
dc.subject.lembRobots autónomos
dc.subject.proposalAgenteng
dc.subject.proposalAWMReng
dc.subject.proposalCollaborative teameng
dc.subject.proposalCooperationeng
dc.subject.proposalCOVID-19eng
dc.subject.proposalMinefieldeng
dc.subject.proposalmobile roboticseng
dc.subject.proposalPath planningeng
dc.subject.proposalSafe routeseng
dc.subject.proposalSearch algorithmseng
dc.subject.proposalStrategy for cooperative taskeng
dc.subject.proposalAgentespa
dc.subject.proposalAWMRspa
dc.subject.proposalEquipo colaborativospa
dc.subject.proposalCooperaciónspa
dc.subject.proposalCOVID-19spa
dc.subject.proposalCampo minadospa
dc.subject.proposalRobótica móvilspa
dc.subject.proposalPlanificación de rutasspa
dc.subject.proposalRutas segurasspa
dc.subject.proposalAlgoritmos de búsquedaspa
dc.subject.proposalEstrategia para tarea cooperativaspa
dc.titleDiseño de una estrategia para la obtención de rutas seguras de trabajo en equipo para robots colaborativosspa
dc.title.translatedDesign of a strategy to obtain safe paths from collaborative robot teamworkeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Tecnológica de Pereiraspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
7914501.2021.pdf
Tamaño:
27.79 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Automática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: