Predicción de precios del mercado agrícola en Colombia : aplicación de modelos de aprendizaje automático y minería de datos para la toma de decisiones en la agricultura
dc.contributor.advisor | Ovalle Carranza, Demetrio Arturo | |
dc.contributor.author | Sánchez Conde, Oscar Leonel | |
dc.contributor.researchgroup | Gidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificial | spa |
dc.coverage.country | Colombia | |
dc.date.accessioned | 2025-04-05T14:06:49Z | |
dc.date.available | 2025-04-05T14:06:49Z | |
dc.date.issued | 2024-10-23 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | La presente investigación se centra en la aplicación de modelos de aprendizaje automático y minería de datos para la toma de decisiones en la agricultura colombiana, con un enfoque particular en la predicción de precios del mercado agrícola. En un contexto donde la agricultura enfrenta desafíos significativos debido a la variabilidad climática, fluctuaciones de mercado y cambios en las políticas, el uso de técnicas avanzadas de análisis se vuelve crucial para optimizar la producción y maximizar los ingresos de los agricultores. El estudio comienza con una revisión exhaustiva del marco teórico relacionado con el aprendizaje automático, incluyendo modelos de regresión lineal y no lineal, así como técnicas de aprendizaje supervisado y no supervisado. Se exploran diferentes algoritmos de machine learning, tales como redes neuronales, árboles de decisión y modelos basados en soporte vectorial. La investigación también aborda la importancia del análisis exploratorio de datos (EDA) y el preprocesamiento de datos, elementos esenciales para asegurar la calidad y relevancia de los modelos predictivos. A través de un diseño metodológico riguroso, se seleccionaron herramientas y tecnologías adecuadas para el análisis. Se caracterizó una base de datos que incluye variables climáticas, económicas y geográficas relevantes para el sector agrícola. El modelo predictivo propuesto se validó mediante comparaciones con otros enfoques existentes, demostrando su eficacia en términos de precisión y escalabilidad. Los resultados obtenidos indican que los modelos basados en técnicas avanzadas no solo mejoran la precisión en la predicción de precios, sino que también ofrecen a los agricultores información valiosa para la toma de decisiones estratégicas. Este trabajo contribuye significativamente al campo de la inteligencia artificial aplicada a la agricultura, proporcionando un marco útil para futuras investigaciones y aplicaciones prácticas. Finalmente, se discuten las limitaciones del estudio y se sugieren direcciones para investigaciones futuras que podrían incluir el uso de datos en tiempo real y el desarrollo de sistemas más integrados que consideren diversas variables que afectan al sector agrícola. (Tomado de la fuente) | spa |
dc.description.abstract | This research focuses on the application of machine learning models and data mining techniques for decision-making in Colombian agriculture, particularly in predicting agricultural market prices. In a context where agriculture faces significant challenges due to climate variability, market fluctuations, and policy changes, the use of advanced analytical techniques becomes crucial for optimizing production and maximizing farmers' incomes. This study begins with a comprehensive review of the theoretical framework related to machine learning, including linear and nonlinear regression models, as well as supervised and unsupervised learning techniques. Various machine learning algorithms, such as neural networks, decision trees, and support vector-based models, are explored. The importance of exploratory data analysis (EDA) and data preprocessing is also addressed, since these elements are essential to ensure the quality and relevance of predictive models. Through a rigorous methodological design, appropriate tools and technologies for analysis were selected. A dataset was characterized that includes relevant climatic, economic, and geographical variables for the agricultural sector. The proposed predictive model was validated through comparisons with existing approaches, demonstrating its effectiveness in terms of accuracy and scalability. The results indicate that models based on advanced techniques not only improve price prediction accuracy but also provide farmers with valuable information for strategic decision-making. This work significantly contributes to the field of artificial intelligence applied to agriculture, providing a useful framework for future research and practical applications. Finally, the study discusses its limitations and suggests directions for future research that could include the use of real-time data and the development of more integrated systems that consider various factors affecting the agricultural sector. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería Analítica | spa |
dc.format.extent | 133 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87851 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Analítica | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Agarwal, N., Ray, S., y Tripathi, K. C. (2023). Time series forecasting of agriculture yield of cotton with regression model implementation. 2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON), 1-6. doi: 10.1109/OTCON56053.2023.10113947 | spa |
dc.relation.references | Agbo, H. M. S. (2023). Forecasting agricultural price volatility of some export crops in egypt using arima/garch model. Review of Economics and Political Science. doi: 10.1108/reps-06-2022-0035 | spa |
dc.relation.references | Agronet. (2018). ¿Cuáles cultivos tienen mayor potencial en Colombia? Descargado de https://www.agronet.gov.co | spa |
dc.relation.references | Awe, O. O. A., y Dias, R. (2022). Comparative analysis of arima and artificial neural network techniques for forecasting non-stationary agricultural output time series. Agris on-line Papers in Economics and Informatics. doi: 10.7160/aol.2022.140401 | spa |
dc.relation.references | Banco de la República. (s.f.). Estadísticas económicas. https://suameca.banrep.gov.co/estadisticas-economicas/#/home. (Accedido el 12 de febrero de 2024) | spa |
dc.relation.references | Bank, T. W. (2018). Agriculture and food. Descargado 2023-04-10, de https://www.worldbank.org/en/topic/agriculture/overview | spa |
dc.relation.references | Bank, T. W. (2022). Agriculture, forestry, and fishing, value added - data. Descargado 2023-04-08, de https://data.worldbank.org/indicator | spa |
dc.relation.references | Barbosa, A., Trevisan, R., Hovakimyan, N., y Martin, N. F. (2020). Modeling yield response to crop management using convolutional neural networks. Comput. Electron. Agric., 170, 105197. doi: 10.1016/j.compag.2019.105197 | spa |
dc.relation.references | Bhavani, M., y Mounika, P. (2022). A novel model selection framework for forecas ting agricultural commodity prices using time series features and forecast hori zons. International Journal of Scientific Research in Science and Technology. doi: 10.32628/ijsrst229535 | spa |
dc.relation.references | Biswas, A., Ahmed, S. I., Bankefa, T., Ranganathan, P., y Salehfar, H. (2021). Perfor mance analysis of short and mid-term wind power prediction using arima and hybrid models. 2021 IEEE Power and Energy Conference at Illinois (PECI), 1-7. doi: 10.1109/peci51586.2021.9435209 | spa |
dc.relation.references | Carmona, F. (2005). Modelos lineales. Pub. Univ. de Barcelona, Barcelona | spa |
dc.relation.references | Chatterjee, S., y Hadi, A. S. (2006). Regression analysis by example. John Wiley & Sons | spa |
dc.relation.references | Chen, P., y Ye, H. (2022). Short-term forecast of agricultural prices using cnn+lstm. Pro ceedings of the 7th International Conference on Intelligent Information Processing. doi: 10.1145/3570236.3570283 | spa |
dc.relation.references | Chen, S., Han, X., Shen, Y., y Ye, C. (2021). Application of improved lstm algorithm in macroeconomic forecasting. Computational Intelligence and Neuroscience, 2021. doi: 10.1155/2021/4471044 | spa |
dc.relation.references | Chen, Z., Khoa, L. D. V., y Boon, L. S. (2017). A hybrid model of differential evolution with neural network on lag time selection for agricultural price time series forecasting. , 155-167. doi: 10.1007/978-3-319-70010-6_15 | spa |
dc.relation.references | Chi, Y. (2021). Time series forecasting of global price of soybeans using a hybrid sarima and narnn model. Data Science: Journal of Computing and Applied Informatics. doi: 10.32734/JOCAI.V5.I2-5674 17. Chicco, D., Warrens, M. J., y Jurman, G. (2021). The coefficient of determination r squared is more | spa |
dc.relation.references | informative than smape, mae, mape, mse and rmse in regression analysis evaluation. PeerJ Computer Science, 7, e623 | spa |
dc.relation.references | Choudhary, K., Jha, G., Das, P., y Chaturvedi, K. K. (2019). Forecasting potato price using ensemble artificial neural networks. Indian journal of extension education, 55, 73-77 | spa |
dc.relation.references | Choudhary, K., Jha, G. K., Kumar, R. R., y Jaiswal, R. (2022). Agricultural price forecas ting using decomposition-based hybrid model. Bhartiya Krishi Anusandhan Patrika. doi: 10.18805/bkap435 | spa |
dc.relation.references | Choudhary, K., Jha, G. K., Kumar, R. R., y Mishra, D. (2019). Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. The Indian Journal of Agricultural Sciences. doi: 10.56093/ijas.v89i5.89682 | spa |
dc.relation.references | Coursera. (2023). Aws vs azure vs google cloud (2023): Una comparación exhaustiva. https://www.coursera.org/mx/articles/aws-vs-azure-vs-google-cloud. (Con sultado: 21 de octubre de 2024) | spa |
dc.relation.references | Cuaresma, J. C., Hlouskova, J., y Obersteiner, M. (2021). Agricultural commodity price dynamics and their determinants: A comprehensive econometric approach. Journal of Forecasting. doi: 10.1002/FOR.2768 | spa |
dc.relation.references | DANE. (s.f.). Sistema de información de precios (sipsa). https://www.dane.gov.co/ index.php/estadisticas-por-tema/precios-y-costos/sistema-de-informacion -de-precios-sipsa. (Accedido el 20 de febrero de 2024) | spa |
dc.relation.references | Delgado, Y. R., Ramos. (2021). Desarrollo de un modelo predictivo de precio de mora de castilla en bogotá implementando técnicas de aprendizaje automático (Tesis de Master no publicada). Universidad de Bogotá Jorge Tadeo Lozano | spa |
dc.relation.references | Deneshkumar, V., Kannan, K. S., y Manikandan, M. (2015). Designing of neural network models for agricultural forecasting. Journal of Statistics and Management Systems, 18, 547 - 559. doi: 10.1080/09720510.2015.1040237 | spa |
dc.relation.references | Desloires, J., Ienco, D., y Botrel, A. (2023). Out-of-year corn yield prediction at field-scale using sentinel-2 satellite imagery and machine learning methods. Computers and Electronics in Agriculture, 209, 107807. doi: https://doi.org/10.1016/j.compag.2023.107807 | spa |
dc.relation.references | DNP. (2023). Plan Nacional de Desarrollo 2022 – 2026. Descargado de https://www.dnp.gov.co/plan-nacional-desarrollo/pnd-2022-2026/Paginas/default.aspx | spa |
dc.relation.references | Erickson, B. J., y Kitamura, F. (2021). Magician’s corner: 9. performance metrics for machine learning models (Vol. 3) (n.o 3). Radiological Society of North America | spa |
dc.relation.references | Fang, Y., Guan, B., Wu, S., y Heravi, S. (2020). Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices. Journal of Forecasting. doi: 10.1002/for.2665 | spa |
dc.relation.references | FAO. (2019). Increasing the resilience of agricultural livelihoods. Descargado 2023-04-05, de https://www.fao.org/3/i5615e/i5615e.pdf | spa |
dc.relation.references | FAO. (2021). El estado de la seguridad alimentaria y la nutrición en el mundo 2021. https://www.fao.org/3/cb4474es/online/cb4474es.html#chapter-2_0. (Accedi do en mayo de 2022) | spa |
dc.relation.references | Fernández, S. F. (2002). Series temporales, modelo arima, metodología de box-jenkins. Instrumentos Estadísticos Avanzados, Departamento de Economía Aplicada, Fa cultad de Ciencias Económicas y Empresariales, Universidad Autónoma de Madrid. (En honor a George Edward Pelham Box y Gwilym Meirion Jenkins. Profesor del curso: Santiago de la Fuente Fernández) | spa |
dc.relation.references | Fink, E., y Pratt, K. B. (2004). Indexing of compressed time series. En Series in machine perception and artificial intelligence (pp. 43–65). WORLD SCIENTIFIC | spa |
dc.relation.references | Forero, N., y González, C. (2020). Agricultura climáticamente inteligente (aci) en colom bia: diagnóstico y retos de política pública | spa |
dc.relation.references | Gamage, R., Rajapaksa, H., Sangeeth, A., Hemachandra, G., Wijekoon, J., y Nawinna, D. (2021). Smart agriculture prediction system for vegetables grown in sri lan ka. En 2021 ieee 12th annual information technology, electronics and mobile com munication conference (iemcon) (p. 0246-0251). doi: 10.1109/IEMCON53756.2021.9623259 | spa |
dc.relation.references | García, Á. (2003). Series de tiempo. Pontificia Universidad Javeriana, Facultad de Ciencias Económicas y Administrativas | spa |
dc.relation.references | García Argos, R., y Ortiz Coloma, J. (2016). Modelamiento y simulación de un sistema con doble péndulo invertido | spa |
dc.relation.references | Ge, Y., y Wu, H. (2020). Prediction of corn price fluctuation based on multiple linear regression analysis model under big data. Neural Computing and Applications, 1-13. doi: 10.1007/s00521-018-03970-4 | spa |
dc.relation.references | Gras, J. A. (2001). Diseños de series temporales: técnicas de análisis (Vol. 46). Edicions Universitat Barcelona | spa |
dc.relation.references | Gu, Y., Jin, D., Yin, H., Zheng, R., Piao, X., y Yoo, S.-J. (2022). Forecasting agricul tural commodity prices using dual input attention lstm. Agriculture. doi: 10.3390/agriculture12020256 | spa |
dc.relation.references | Hammad, A. T., y Falchetta, G. (2022). Probabilistic forecasting of remotely sensed cropland vegetation health and its relevance for food security. Science of The Total Environment, 838, 156157. doi: https://doi.org/10.1016/j.scitotenv.2022.156157 | spa |
dc.relation.references | Hammam, N. M. (2022). Seasonal analysis for globally prices of some agricultural com modity for the purpose for forecasting using the sarima model. New Valley Journal of Agricultural Science. doi: 10.21608/nvjas.2022.172044.1107 | spa |
dc.relation.references | Han, J., Pei, J., y Tong, H. (2022). Data mining : concepts and techniques. (4.a ed.). Elsevier | spa |
dc.relation.references | Hegde, G., Hulipalled, V. R., y Simha, J. B. (2023). Data driven algorithm selection to pre dict agriculture commodities price. International Journal of Electrical and Computer Engineering (IJECE). doi: 10.11591/ijece.v13i4.pp4671-4682 | spa |
dc.relation.references | IBM. (2024). ¿qué es un bosque aleatorio? https://www.ibm.com/mx-es/topics/random -forest. (Consultado: 21 de octubre de 2024) | spa |
dc.relation.references | ICA. (s.f.). Datos abiertos - transparencia. https://www.ica.gov.co. (Accedido el 20 de enero de 2024) | spa |
dc.relation.references | IDEAM Instituto de Hidrología, M. y. E. A. (s.f.). Atención ciudadano. http://dhime.ideam.gov.co/atencionciudadano/. (Accedido el 20 de diciembre de 2023) | spa |
dc.relation.references | Jadhav, M., Kolambe, N., Jain, S., y Chaudhari, S. (2021). Farming made easy using machine learning. En 2021 2nd international conference for emerging technology (incet) (p. 1-5). doi: 10.1109/INCET51464.2021.9456351 | spa |
dc.relation.references | Jaiswal, R., Jha, G. K., Choudhary, K., y Kumar, R. R. (2023). Agricultural commodity price prediction using long short-term memory (lstm) based neural networks. Bhartiya Krishi Anusandhan Patrika. doi: 10.18805/bkap613 | spa |
dc.relation.references | Jha, G., y Sinha, K. (2013). Agricultural price forecasting using neural network model: An innovative information delivery system. Agricultural Economics Research Review, 26, 229-239. doi: 10.22004/AG.ECON.162150 | spa |
dc.relation.references | Ji, C., Du, M., Hu, Y., Liu, S., Pan, L., y Zheng, X. (2022). Time series classification based on temporal features. Applied Soft Computing. doi: 10.1016/j.asoc.2022.109494 | spa |
dc.relation.references | Ji, C., Du, M., Wei, Y., Hu, Y., Liu, S., Pan, L., y Zheng, X. (2023). Time series classification with random temporal features. Journal of King Saud University - Computer and Information Sciences. doi: 10.1016/j.jksuci.2023.101783 | spa |
dc.relation.references | Jithmal Pitigala, P. U., Laksahan, T. K., Hewapathirana, S. S., Sadeepika Herath, H. H., Chandrasiri, S., y Nadeesa Pemadasa, M. G. (2022). Vapeca - smart agricultural and analysis monitoring system. En 2022 ieee 13th annual information technology, electronics and mobile communication conference (iemcon) (p. 0317-0322). doi: 10.1109/IEMCON56893.2022.9946458 | spa |
dc.relation.references | Joseph, A. B., y Mpogolo, G. E. (2022). Application of sarima model on forecasting wholesale prices of food commodities in tanzania: A case of maize, rice and beans. African Journal of Accounting and Social Science Studies. doi: 10.4314/ajasss.v4i1.11 | spa |
dc.relation.references | K, D., M, R., V, S., N, P., y Jayaraj, I. A. (2021). Meta-learning based adaptive crop price prediction for agriculture application. En 2021 5th international conference on electronics, communication and aerospace technology (iceca) (p. 396-402). doi: 10.1109/ICECA52323.2021.9675891 | spa |
dc.relation.references | Keshavarzian, A., y Valaee, S. (2024). Hiervar: A hierarchical feature selection method for time series analysis. arXiv.org. doi: 10.48550/arxiv.2407.16048 | spa |
dc.relation.references | Khashei, M., y Bijari, M. (2010). An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl., 37, 479-489. doi: 10.1016/j.eswa.2009.05.044 | spa |
dc.relation.references | Kim, D.-K., y Kim, K. (2022). A convolutional transformer model for multivariate time series prediction. IEEE Access, 10, 101319-101329. doi: 10.1109/ACCESS.2022.3203416 | spa |
dc.relation.references | Kozuch, A., Cywicka, D., y Adamowicz, K. (2023). A comparison of artificial neural ˙ network and time series models for timber price forecasting. Forests, 14(2). doi: 10.3390/f14020177 | spa |
dc.relation.references | Kumar, C., y Sri.M.Anil. (2021). Estimation of prices in agricultural commodity using machine learning. EPRA International Journal of Research & Development (IJRD). doi: 10.36713/epra8381 | spa |
dc.relation.references | Kumari, P., Goswami, V., N, H., y Pundir, R. (2023). Recurrent neural network architecture for forecasting banana prices in gujarat, india. PLOS ONE, 18. doi: 10.1371/journal.pone.0275702 | spa |
dc.relation.references | Kurumatani, K. (2020). Time series forecasting of agricultural product prices based on recurrent neural networks and its evaluation method. SN Applied Sciences, 2. doi: 10.1007/s42452-020-03225-9 | spa |
dc.relation.references | Li, B., Ding, J., Yin, Z., Li, K., Zhao, X., y Zhang, L. (2021). Optimized neural network combined model based on the induced ordered weighted averaging operator for vegetable price forecasting. Expert Systems with Applications, 168, 114232. doi: https://doi.org/10.1016/j.eswa.2020.114232 | spa |
dc.relation.references | Lind, D. A., Wathen, S. A., y Marchal, W. G. (2012). Estadística aplicada a los negocios y la economía (15.a ed.). McGraw-Hill | spa |
dc.relation.references | ling Peng, L., Bi, X.-F., Fan, G.-F., Wang, Z.-P., y Hong, W. (2023). Analysis and prediction of novel coronavirus pneumonia epidemic using hybrid response surface method with time-series and random forest. Journal of Intelligent & Fuzzy Systems. doi: 10.3233/jifs-231588 | spa |
dc.relation.references | Liu, C. (2024). Implied volatility forecasting for american options based on random fo rest regressor, linear regression model. Advances in Economics, Management and Political Sciences. doi: 10.54254/2754-1169/85/20240867 | spa |
dc.relation.references | Liu, Y., Duan, Q., Wang, D., Zhang, Z., y Liu, C. (2019). Prediction for hog prices based on similar sub-series search and support vector regression. Computers and Electronics in Agriculture, 157, 581-588. doi: https://doi.org/10.1016/j.compag.2019.01.027 | spa |
dc.relation.references | Luna, O. C. (2021). Modelo de predicción de precios de productos agropecuarios como base para la priorización de proyectos integrales de desarrollo agropecuario y rural con enfoque territorial en colombia en el marco de los impactos producidos por la covid-19 (Tesis de Master no publicada). Universidad de Bogotá Jorge Tadeo Lozano | spa |
dc.relation.references | Mahto, A., Alam, M. A., Biswas, R., Ahmad, J., y Alam, S. (2021). Short-term forecasting of agriculture commodities in context of indian market for sustainable agriculture by using the artificial neural network. Journal of Food Quality, 2021, 1-13. doi: 10.1155/2021/9939906 | spa |
dc.relation.references | Martin, A. (2019). Retos de la adaptación en el sector agropecuario en colombia. Martha Ligia Castellanos Martínez, 180 | spa |
dc.relation.references | Mendoza Martinez, A. I. (2005). Introduccion a los modelos arima multiplicativos (Licen ciatura en Actuaría, Universidad Nacional Autónoma de México, Facultad de Cien cias). Descargado de https://hdl.handle.net/20.500.14330/TES01000344167 (Asesor: Alonso Reyes, María del Pilar) | spa |
dc.relation.references | MinAgricultura. (2022). Red de información y comunicación del sector agropecuario colombiano. https://www.agronet.gov.co/. (Accedido en mayo de 2022) | spa |
dc.relation.references | Mohanty, M., Thakurta, P., y Kar, S. (2023). Agricultural commodity pri ce prediction model: a machine learning framework. Neural Compu ting and Applications. Descargado de https://www.scopus.com/inward/ record.uri?eid=2-s2.0-85151991205&doi=10.1007%2fs00521-023-08528 -7&partnerID=40&md5=0974916bc190e976975a7a345854468b (cited By 0) doi: 10.1007/s00521-023-08528-7 | spa |
dc.relation.references | Moshayedi, A. J., Roy, A. S., Kolahdooz, A., y Shuxin, Y. (2022). Deep learning appli cation pros and cons over algorithm deep learning application pros and cons over algorithm. EAI Endorsed Transactions on AI and Robotics, 1(1) | spa |
dc.relation.references | Murugesan, G., y Radha, B. (2023). An extrapolative model for price prediction of crops using hybrid ensemble learning techniques. International Journal of Advanced Tech nology and Engineering Exploration, 10, 1-20. doi: 10.19101/IJATEE.2021.876382 | spa |
dc.relation.references | Mutwiri, R. M. (2019). Forecasting of tomatoes wholesale prices of nairobi in kenya: Time series analysis using sarima model. International Journal of Statistical Distributions and Applications. doi: 10.11648/J.IJSD.20190503.11 | spa |
dc.relation.references | Orden, D., y Fackler, P. (1989). Identifying monetary impacts on agricultural prices in var models. American Journal of Agricultural Economics, 71, 495-502. doi: 10.2307/1241620 | spa |
dc.relation.references | Ouyang, H., Wei, X., y Wu, Q. (2019). Agricultural commodity futures prices prediction via long- and short-term time series network. Journal of Applied Economics, 22, 468 - 483. doi: 10.1080/15140326.2019.1668664 | spa |
dc.relation.references | Pandey, R., Verma, P., Khatri, S. K., y Singh, N. k. (2022). Artificial intelligence and machine learning for edge computing [Book]. Elsevier. (Cited by: 1) doi: 10.1016/C2020-0-01569-0 | spa |
dc.relation.references | Paredes-García, W. J., Ocampo-Velázquez, R., Torres-Pacheco, I., y Cedillo-Jiménez, C. A. (2019). Price forecasting and span commercialization opportunities for mexi can agricultural products. Agronomy, 9, 826. doi: 10.3390/agronomy9120826 | spa |
dc.relation.references | Paul, R., Yeasin, M., Kumar, P., Kumar, P., Balasubramanian, M., Roy, H. S., . . . Gupta, A. (2022). Machine learning techniques for forecasting agricultural prices: A case of brinjal in odisha, india. PLoS ONE, 17. doi: 10.1371/journal.pone.0270553 | spa |
dc.relation.references | PreethaK., G., Babu, K. R. R., Sangeetha, U., Rinta, S. T., Saigopika, Shalon, W., y Swapna, T. (2022). Price forecasting on a large scale data set using time series and neural network models. KSII Trans. Internet Inf. Syst., 16, 3923-3942. doi: 10.3837/tiis.2022.12.008 | spa |
dc.relation.references | Purón Rodríguez, D., y Tejeda Marrero, V. M. (2021). Síntesis histórica del concepto calidad desde la revolución neolítica a la agricultura de precisión. Revista Ingeniería Agrícola, 11(3) | spa |
dc.relation.references | Ribeiro, M., y Coelho, L. (2020). Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Appl. Soft Comput., 86. doi: 10.1016/j.asoc.2019.105837 | spa |
dc.relation.references | Rogachev, A., y Melikhova, E. (2020). Creating a neural network system for forecasting and managing agricultural production using autocorrelation functions of time series. E3S Web of Conferences. doi: 10.1051/e3sconf/202016406005 | spa |
dc.relation.references | S., R., y Kannan, S. (2019, 12). Developing an agricultural product price prediction model using hadt algorithm. International Journal of Engineering and Advanced Technology, 9. doi: 10.35940/ijeat.A1126.1291S419 | spa |
dc.relation.references | Sabu, K. M., y Kumar, T. M. (2020). Predictive analytics in agriculture: Forecasting prices of arecanuts in kerala. Procedia Computer Science, 171, 699-708. (Third Interna tional Conference on Computing and Network Communications (CoCoNet’19)) doi: https://doi.org/10.1016/j.procs.2020.04.076 | spa |
dc.relation.references | Sajithabanu, S., Ponmalar, A., Soundari, A. G., Reshma, N., Sunraja, K., y Sindhumathi, R. (2022). Enhanced crop price prediction & forecasting system. En 2022 inter national conference on computer, power and communications (iccpc) (p. 580-585). doi: 10.1109/ICCPC55978.2022.10072183 | spa |
dc.relation.references | Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2, 1-21. doi: 10.1007/S42979-021-00592-X/FIGURES/11 | spa |
dc.relation.references | Sen, J., Mehtab, S., y Engelbrecht, A. (2021). Machine learning: Algorithms, models and applications. BoD–Books on Demand | spa |
dc.relation.references | Shaker Reddy, P. C., Suryanarayana, G., K, L. P., y Yadala, S. (2022). Data analytics in farming: Rice price prediction in andhra pradesh. En 2022 5th international confe rence on multimedia, signal processing and communication technologies (impact) (p. 1-5). doi: 10.1109/IMPACT55510.2022.10029009 | spa |
dc.relation.references | Sharma, C., Misra, R., Bhatia, M., y Manani, P. (2023). Price prediction model of fruits, vegetables and pulses according to weather. En 2023 13th international conference on cloud computing, data science & engineering (confluence) (p. 347-351). doi: 10.1109/Confluence56041.2023.10048880 | spa |
dc.relation.references | Sneha, V., y Bhavana, V. (2023). Sugarcane yield and price prediction using forecasting models. En 2023 international conference on artificial intelligence and knowledge discovery in concurrent engineering (iceconf) (p. 1-6). doi: 10.1109/ICECONF57129.2023.10084094 | spa |
dc.relation.references | Sun, C., Pei, M., Cao, B., Chang, S., y Si, H. (2023). A study on agricultural commo dity price prediction model based on secondary decomposition and long short-term memory network. Agriculture. doi: 10.3390/agriculture14010060 | spa |
dc.relation.references | Sutton, R. S., y Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press | spa |
dc.relation.references | Swarnakantha, S., Chathurika, B., Weragoda, K. V., Bowatte, W. M. I. K., Thalawala, E., y Bandara, M. M. U. L. (2022). Decision-making platform for smart plan tation agriculture using machine learning and image processing. En 2022 ieee 7th international conference for convergence in technology (i2ct) (p. 1-6). doi: 10.1109/I2CT54291.2022.9825063 | spa |
dc.relation.references | Tan, Y., Sha, W., y Paudel, K. (2017). The impact of monetary policy on agricultural price in china: A factor-augmented vector autoregressive (favar) approach. Econometric Modeling: Agriculture. doi: 10.2139/ssrn.2916984 | spa |
dc.relation.references | Tatarintsev, M., Korchagin, S., Nikitin, P., Gorokhova, R., Bystrenina, I., y Serdechnyy, D. (2021). Analysis of the forecast price as a factor of sustainable development of agriculture. Agronomy, 11(6). doi: 10.3390/agronomy11061235 | spa |
dc.relation.references | Thapaswini, G., y Gunasekaran, M. (2022). A methodology for crop price prediction using machine learning. En 2022 ieee 2nd international conference on mobile networks and wireless communications (icmnwc) (p. 1-7). doi: 10.1109/ICMNWC56175.2022.10031852 | spa |
dc.relation.references | Tihi, N., y Popov, S. (2023). 2. a comparison of arima and random forest time series models for urban drought prediction. doi: 10.15308/sinteza-2024-51-56 | spa |
dc.relation.references | Tranfield, D., Denyer, D., y Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British journal of management, 14(3), 207–222 | spa |
dc.relation.references | Villar García, A., y García López, M. (2022). Agua, agricultura y efectos económicos en el campo de cartagena | spa |
dc.relation.references | Villavicencio, J. (2010). Introducción a series de tiempo. Puerto Rico | spa |
dc.relation.references | Wang, F., Chen, W., Fakieh, B., y Ali, B. J. A. (2021). Stock price analysis based on the re search of multiple linear regression macroeconomic variables. Applied Mathematics and Nonlinear Sciences, 7, 267 - 274. doi: 10.2478/amns.2021.2.00097 | spa |
dc.relation.references | Weerasooriya, W. S., Wanigaratne, A. D., Silva, H. O. D., Hansaka, S., Perera, J., y Ruk gahakotuwa, L. (2022). Farmcare: Location-based profitable crop recommenda tion system with disease identification. En 2022 4th international conference on advancements in computing (icac) (p. 204-209). doi: 10.1109/ICAC57685.2022.10025220 | spa |
dc.relation.references | Wei, W. (2006). Time series analysis: Univariate and multivariate methods. Pearson Addison Wesley. Descargado de 10.2307/2289741 | spa |
dc.relation.references | Weng, Y., Wang, X., Hua, J., Wang, H., Kang, M., y Wang, F.-Y. (2019). Forecasting horticultural products price using arima model and neural network based on a large scale data set collected by web crawler. IEEE Transactions on Computational Social Systems, 6, 547-553. doi: 10.1109/TCSS.2019.2914499 | spa |
dc.relation.references | WHO. (2019). World hunger is still not going down after three years and obesity is still growing – un report. Descargado 2023-04-12, de https://www.who.int/news/ item/15-07-2019-world-hunger-is-still-not-going-down-after-three-years -and-obesity-is-still-growing-un-report | spa |
dc.relation.references | Woodward, J. A., Bonett, D. G., y Brecht, M.-L. (1990). Introduction to linear models and experimental design. Harcourt Brace Jovanovich | spa |
dc.relation.references | Xu, Y., Kang, M., Wang, X., Hua, J., Wang, H., y Shen, Z. (2022). Corn and soybean futu res price intelligent forecasting based on deep learning [Article]. Smart Agriculture, 4(4), 156 – 163. (Cited by: 0) doi: 10.12133/j.smartag.SA20220712 | spa |
dc.relation.references | Yashavanth, B. S., Singh, K. N., Paul, A., y Paul, R. (2017). Forecasting prices of cof fee seeds using vector autoregressive time series model. The Indian Journal of Agricultural Sciences. doi: 10.56093/ijas.v87i6.70960 | spa |
dc.relation.references | Yu, Z. (2021). Data analysis and soybean price intelligent prediction model based on lstm neural network. En 2021 ieee conference on telecommunications, optics and computer science (tocs) (p. 799-801). doi: 10.1109/TOCS53301.2021.9688705 | spa |
dc.relation.references | Yuan, J., Hao, J., Liu, M., Wu, D., y Li, J. (2022). A dynamic ensemble learning approach with spectral clustering for beef and lamb prices prediction. Procedia Computer Science, 214, 1190-1197. (9th International Conference on Information Technology and Quantitative Management) doi: https://doi.org/10.1016/j.procs.2022.11.295 | spa |
dc.relation.references | Zeng, L., Ling, L., Zhang, D., y Jiang, W. (2023). Optimal forecast combination based on pso-cs approach for daily agricultural future prices forecasting. Applied Soft Com puting, 132, 109833. doi: https://doi.org/10.1016/j.asoc.2022.109833 | spa |
dc.relation.references | Zhang, D., Chen, S., Liwen, L., y Xia, Q. (2020). Forecasting agricultural commodity prices using model selection framework with time series features and forecast horizons. IEEE Access, 8, 28197-28209. doi: 10.1109/ACCESS.2020.2971591 | spa |
dc.relation.references | Zhang, Y., y Na, S. (2018). A novel agricultural commodity price forecasting model based on fuzzy information granulation and mea-svm model. Mathematical Problems in Engineering. doi: 10.1155/2018/2540681 | spa |
dc.relation.references | Zheng, G., Zhang, H., Han, J., Zhuang, C., y Xi, L. (2020). The research on agricultu ral product price forecasting service based on combination model. En 2020 ieee 13th international conference on cloud computing (cloud) (p. 4-9). doi: 10.1109/CLOUD49709.2020.00009 | spa |
dc.relation.references | Zhou, J., Ye, J., Ouyang, Y., Tong, M., Pan, X., y Gao, J. (2022). On building real time intelligent agricultural commodity trading models. En 2022 ieee eighth international conference on big data computing service and applications (bigdataservice) (p. 89-95). doi: 10.1109/BigDataService55688.2022.00021 | spa |
dc.relation.references | Zou, H., Xia, G., Yang, F., y Wang, H. (2007). An investigation and comparison of artifi cial neural network and time series models for chinese food grain price forecasting. Neurocomputing, 70, 2913-2923. doi: 10.1016/j.neucom.2007.01.009 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas | spa |
dc.subject.lemb | Comercio agrícola - Colombia | |
dc.subject.lemb | Agricultura - Aspectos económicos - Colombia | |
dc.subject.lemb | Aprendizaje automático (Inteligencia artificial) | |
dc.subject.lemb | Minería de datos | |
dc.subject.lemb | Análisis de series de tiempo | |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Modelos de regresión | spa |
dc.subject.proposal | Modelos híbridos predictivos | spa |
dc.subject.proposal | Optimización de hiperparámetros | spa |
dc.subject.proposal | Predicción de precios agrícolas | spa |
dc.subject.proposal | Series temporales | spa |
dc.subject.proposal | Hyperparameter optimization | eng |
dc.subject.proposal | Hybrid predictive models | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Agriculture price prediction | eng |
dc.subject.proposal | Regression models | eng |
dc.subject.proposal | Time series analysis | eng |
dc.title | Predicción de precios del mercado agrícola en Colombia : aplicación de modelos de aprendizaje automático y minería de datos para la toma de decisiones en la agricultura | spa |
dc.title.translated | Agricultural market price forecasting in Colombia : applying machine learning and data mining models for decision-making in agriculture | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1117323488.2024.pdf
- Tamaño:
- 7.69 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Analítica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: