Predicción de precios del mercado agrícola en Colombia : aplicación de modelos de aprendizaje automático y minería de datos para la toma de decisiones en la agricultura

dc.contributor.advisorOvalle Carranza, Demetrio Arturo
dc.contributor.authorSánchez Conde, Oscar Leonel
dc.contributor.researchgroupGidia: Grupo de Investigación YyDesarrollo en Inteligencia Artificialspa
dc.coverage.countryColombia
dc.date.accessioned2025-04-05T14:06:49Z
dc.date.available2025-04-05T14:06:49Z
dc.date.issued2024-10-23
dc.descriptionIlustraciones, gráficosspa
dc.description.abstractLa presente investigación se centra en la aplicación de modelos de aprendizaje automático y minería de datos para la toma de decisiones en la agricultura colombiana, con un enfoque particular en la predicción de precios del mercado agrícola. En un contexto donde la agricultura enfrenta desafíos significativos debido a la variabilidad climática, fluctuaciones de mercado y cambios en las políticas, el uso de técnicas avanzadas de análisis se vuelve crucial para optimizar la producción y maximizar los ingresos de los agricultores. El estudio comienza con una revisión exhaustiva del marco teórico relacionado con el aprendizaje automático, incluyendo modelos de regresión lineal y no lineal, así como técnicas de aprendizaje supervisado y no supervisado. Se exploran diferentes algoritmos de machine learning, tales como redes neuronales, árboles de decisión y modelos basados en soporte vectorial. La investigación también aborda la importancia del análisis exploratorio de datos (EDA) y el preprocesamiento de datos, elementos esenciales para asegurar la calidad y relevancia de los modelos predictivos. A través de un diseño metodológico riguroso, se seleccionaron herramientas y tecnologías adecuadas para el análisis. Se caracterizó una base de datos que incluye variables climáticas, económicas y geográficas relevantes para el sector agrícola. El modelo predictivo propuesto se validó mediante comparaciones con otros enfoques existentes, demostrando su eficacia en términos de precisión y escalabilidad. Los resultados obtenidos indican que los modelos basados en técnicas avanzadas no solo mejoran la precisión en la predicción de precios, sino que también ofrecen a los agricultores información valiosa para la toma de decisiones estratégicas. Este trabajo contribuye significativamente al campo de la inteligencia artificial aplicada a la agricultura, proporcionando un marco útil para futuras investigaciones y aplicaciones prácticas. Finalmente, se discuten las limitaciones del estudio y se sugieren direcciones para investigaciones futuras que podrían incluir el uso de datos en tiempo real y el desarrollo de sistemas más integrados que consideren diversas variables que afectan al sector agrícola. (Tomado de la fuente)spa
dc.description.abstractThis research focuses on the application of machine learning models and data mining techniques for decision-making in Colombian agriculture, particularly in predicting agricultural market prices. In a context where agriculture faces significant challenges due to climate variability, market fluctuations, and policy changes, the use of advanced analytical techniques becomes crucial for optimizing production and maximizing farmers' incomes. This study begins with a comprehensive review of the theoretical framework related to machine learning, including linear and nonlinear regression models, as well as supervised and unsupervised learning techniques. Various machine learning algorithms, such as neural networks, decision trees, and support vector-based models, are explored. The importance of exploratory data analysis (EDA) and data preprocessing is also addressed, since these elements are essential to ensure the quality and relevance of predictive models. Through a rigorous methodological design, appropriate tools and technologies for analysis were selected. A dataset was characterized that includes relevant climatic, economic, and geographical variables for the agricultural sector. The proposed predictive model was validated through comparisons with existing approaches, demonstrating its effectiveness in terms of accuracy and scalability. The results indicate that models based on advanced techniques not only improve price prediction accuracy but also provide farmers with valuable information for strategic decision-making. This work significantly contributes to the field of artificial intelligence applied to agriculture, providing a useful framework for future research and practical applications. Finally, the study discusses its limitations and suggests directions for future research that could include the use of real-time data and the development of more integrated systems that consider various factors affecting the agricultural sector.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Analíticaspa
dc.format.extent133 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87851
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAgarwal, N., Ray, S., y Tripathi, K. C. (2023). Time series forecasting of agriculture yield of cotton with regression model implementation. 2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON), 1-6. doi: 10.1109/OTCON56053.2023.10113947spa
dc.relation.referencesAgbo, H. M. S. (2023). Forecasting agricultural price volatility of some export crops in egypt using arima/garch model. Review of Economics and Political Science. doi: 10.1108/reps-06-2022-0035spa
dc.relation.referencesAgronet. (2018). ¿Cuáles cultivos tienen mayor potencial en Colombia? Descargado de https://www.agronet.gov.cospa
dc.relation.referencesAwe, O. O. A., y Dias, R. (2022). Comparative analysis of arima and artificial neural network techniques for forecasting non-stationary agricultural output time series. Agris on-line Papers in Economics and Informatics. doi: 10.7160/aol.2022.140401spa
dc.relation.referencesBanco de la República. (s.f.). Estadísticas económicas. https://suameca.banrep.gov.co/estadisticas-economicas/#/home. (Accedido el 12 de febrero de 2024)spa
dc.relation.referencesBank, T. W. (2018). Agriculture and food. Descargado 2023-04-10, de https://www.worldbank.org/en/topic/agriculture/overviewspa
dc.relation.referencesBank, T. W. (2022). Agriculture, forestry, and fishing, value added - data. Descargado 2023-04-08, de https://data.worldbank.org/indicatorspa
dc.relation.referencesBarbosa, A., Trevisan, R., Hovakimyan, N., y Martin, N. F. (2020). Modeling yield response to crop management using convolutional neural networks. Comput. Electron. Agric., 170, 105197. doi: 10.1016/j.compag.2019.105197spa
dc.relation.referencesBhavani, M., y Mounika, P. (2022). A novel model selection framework for forecas ting agricultural commodity prices using time series features and forecast hori zons. International Journal of Scientific Research in Science and Technology. doi: 10.32628/ijsrst229535spa
dc.relation.referencesBiswas, A., Ahmed, S. I., Bankefa, T., Ranganathan, P., y Salehfar, H. (2021). Perfor mance analysis of short and mid-term wind power prediction using arima and hybrid models. 2021 IEEE Power and Energy Conference at Illinois (PECI), 1-7. doi: 10.1109/peci51586.2021.9435209spa
dc.relation.referencesCarmona, F. (2005). Modelos lineales. Pub. Univ. de Barcelona, Barcelonaspa
dc.relation.referencesChatterjee, S., y Hadi, A. S. (2006). Regression analysis by example. John Wiley & Sonsspa
dc.relation.referencesChen, P., y Ye, H. (2022). Short-term forecast of agricultural prices using cnn+lstm. Pro ceedings of the 7th International Conference on Intelligent Information Processing. doi: 10.1145/3570236.3570283spa
dc.relation.referencesChen, S., Han, X., Shen, Y., y Ye, C. (2021). Application of improved lstm algorithm in macroeconomic forecasting. Computational Intelligence and Neuroscience, 2021. doi: 10.1155/2021/4471044spa
dc.relation.referencesChen, Z., Khoa, L. D. V., y Boon, L. S. (2017). A hybrid model of differential evolution with neural network on lag time selection for agricultural price time series forecasting. , 155-167. doi: 10.1007/978-3-319-70010-6_15spa
dc.relation.referencesChi, Y. (2021). Time series forecasting of global price of soybeans using a hybrid sarima and narnn model. Data Science: Journal of Computing and Applied Informatics. doi: 10.32734/JOCAI.V5.I2-5674 17. Chicco, D., Warrens, M. J., y Jurman, G. (2021). The coefficient of determination r squared is morespa
dc.relation.referencesinformative than smape, mae, mape, mse and rmse in regression analysis evaluation. PeerJ Computer Science, 7, e623spa
dc.relation.referencesChoudhary, K., Jha, G., Das, P., y Chaturvedi, K. K. (2019). Forecasting potato price using ensemble artificial neural networks. Indian journal of extension education, 55, 73-77spa
dc.relation.referencesChoudhary, K., Jha, G. K., Kumar, R. R., y Jaiswal, R. (2022). Agricultural price forecas ting using decomposition-based hybrid model. Bhartiya Krishi Anusandhan Patrika. doi: 10.18805/bkap435spa
dc.relation.referencesChoudhary, K., Jha, G. K., Kumar, R. R., y Mishra, D. (2019). Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. The Indian Journal of Agricultural Sciences. doi: 10.56093/ijas.v89i5.89682spa
dc.relation.referencesCoursera. (2023). Aws vs azure vs google cloud (2023): Una comparación exhaustiva. https://www.coursera.org/mx/articles/aws-vs-azure-vs-google-cloud. (Con sultado: 21 de octubre de 2024)spa
dc.relation.referencesCuaresma, J. C., Hlouskova, J., y Obersteiner, M. (2021). Agricultural commodity price dynamics and their determinants: A comprehensive econometric approach. Journal of Forecasting. doi: 10.1002/FOR.2768spa
dc.relation.referencesDANE. (s.f.). Sistema de información de precios (sipsa). https://www.dane.gov.co/ index.php/estadisticas-por-tema/precios-y-costos/sistema-de-informacion -de-precios-sipsa. (Accedido el 20 de febrero de 2024)spa
dc.relation.referencesDelgado, Y. R., Ramos. (2021). Desarrollo de un modelo predictivo de precio de mora de castilla en bogotá implementando técnicas de aprendizaje automático (Tesis de Master no publicada). Universidad de Bogotá Jorge Tadeo Lozanospa
dc.relation.referencesDeneshkumar, V., Kannan, K. S., y Manikandan, M. (2015). Designing of neural network models for agricultural forecasting. Journal of Statistics and Management Systems, 18, 547 - 559. doi: 10.1080/09720510.2015.1040237spa
dc.relation.referencesDesloires, J., Ienco, D., y Botrel, A. (2023). Out-of-year corn yield prediction at field-scale using sentinel-2 satellite imagery and machine learning methods. Computers and Electronics in Agriculture, 209, 107807. doi: https://doi.org/10.1016/j.compag.2023.107807spa
dc.relation.referencesDNP. (2023). Plan Nacional de Desarrollo 2022 – 2026. Descargado de https://www.dnp.gov.co/plan-nacional-desarrollo/pnd-2022-2026/Paginas/default.aspxspa
dc.relation.referencesErickson, B. J., y Kitamura, F. (2021). Magician’s corner: 9. performance metrics for machine learning models (Vol. 3) (n.o 3). Radiological Society of North Americaspa
dc.relation.referencesFang, Y., Guan, B., Wu, S., y Heravi, S. (2020). Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices. Journal of Forecasting. doi: 10.1002/for.2665spa
dc.relation.referencesFAO. (2019). Increasing the resilience of agricultural livelihoods. Descargado 2023-04-05, de https://www.fao.org/3/i5615e/i5615e.pdfspa
dc.relation.referencesFAO. (2021). El estado de la seguridad alimentaria y la nutrición en el mundo 2021. https://www.fao.org/3/cb4474es/online/cb4474es.html#chapter-2_0. (Accedi do en mayo de 2022)spa
dc.relation.referencesFernández, S. F. (2002). Series temporales, modelo arima, metodología de box-jenkins. Instrumentos Estadísticos Avanzados, Departamento de Economía Aplicada, Fa cultad de Ciencias Económicas y Empresariales, Universidad Autónoma de Madrid. (En honor a George Edward Pelham Box y Gwilym Meirion Jenkins. Profesor del curso: Santiago de la Fuente Fernández)spa
dc.relation.referencesFink, E., y Pratt, K. B. (2004). Indexing of compressed time series. En Series in machine perception and artificial intelligence (pp. 43–65). WORLD SCIENTIFICspa
dc.relation.referencesForero, N., y González, C. (2020). Agricultura climáticamente inteligente (aci) en colom bia: diagnóstico y retos de política públicaspa
dc.relation.referencesGamage, R., Rajapaksa, H., Sangeeth, A., Hemachandra, G., Wijekoon, J., y Nawinna, D. (2021). Smart agriculture prediction system for vegetables grown in sri lan ka. En 2021 ieee 12th annual information technology, electronics and mobile com munication conference (iemcon) (p. 0246-0251). doi: 10.1109/IEMCON53756.2021.9623259spa
dc.relation.referencesGarcía, Á. (2003). Series de tiempo. Pontificia Universidad Javeriana, Facultad de Ciencias Económicas y Administrativasspa
dc.relation.referencesGarcía Argos, R., y Ortiz Coloma, J. (2016). Modelamiento y simulación de un sistema con doble péndulo invertidospa
dc.relation.referencesGe, Y., y Wu, H. (2020). Prediction of corn price fluctuation based on multiple linear regression analysis model under big data. Neural Computing and Applications, 1-13. doi: 10.1007/s00521-018-03970-4spa
dc.relation.referencesGras, J. A. (2001). Diseños de series temporales: técnicas de análisis (Vol. 46). Edicions Universitat Barcelonaspa
dc.relation.referencesGu, Y., Jin, D., Yin, H., Zheng, R., Piao, X., y Yoo, S.-J. (2022). Forecasting agricul tural commodity prices using dual input attention lstm. Agriculture. doi: 10.3390/agriculture12020256spa
dc.relation.referencesHammad, A. T., y Falchetta, G. (2022). Probabilistic forecasting of remotely sensed cropland vegetation health and its relevance for food security. Science of The Total Environment, 838, 156157. doi: https://doi.org/10.1016/j.scitotenv.2022.156157spa
dc.relation.referencesHammam, N. M. (2022). Seasonal analysis for globally prices of some agricultural com modity for the purpose for forecasting using the sarima model. New Valley Journal of Agricultural Science. doi: 10.21608/nvjas.2022.172044.1107spa
dc.relation.referencesHan, J., Pei, J., y Tong, H. (2022). Data mining : concepts and techniques. (4.a ed.). Elsevierspa
dc.relation.referencesHegde, G., Hulipalled, V. R., y Simha, J. B. (2023). Data driven algorithm selection to pre dict agriculture commodities price. International Journal of Electrical and Computer Engineering (IJECE). doi: 10.11591/ijece.v13i4.pp4671-4682spa
dc.relation.referencesIBM. (2024). ¿qué es un bosque aleatorio? https://www.ibm.com/mx-es/topics/random -forest. (Consultado: 21 de octubre de 2024)spa
dc.relation.referencesICA. (s.f.). Datos abiertos - transparencia. https://www.ica.gov.co. (Accedido el 20 de enero de 2024)spa
dc.relation.referencesIDEAM Instituto de Hidrología, M. y. E. A. (s.f.). Atención ciudadano. http://dhime.ideam.gov.co/atencionciudadano/. (Accedido el 20 de diciembre de 2023)spa
dc.relation.referencesJadhav, M., Kolambe, N., Jain, S., y Chaudhari, S. (2021). Farming made easy using machine learning. En 2021 2nd international conference for emerging technology (incet) (p. 1-5). doi: 10.1109/INCET51464.2021.9456351spa
dc.relation.referencesJaiswal, R., Jha, G. K., Choudhary, K., y Kumar, R. R. (2023). Agricultural commodity price prediction using long short-term memory (lstm) based neural networks. Bhartiya Krishi Anusandhan Patrika. doi: 10.18805/bkap613spa
dc.relation.referencesJha, G., y Sinha, K. (2013). Agricultural price forecasting using neural network model: An innovative information delivery system. Agricultural Economics Research Review, 26, 229-239. doi: 10.22004/AG.ECON.162150spa
dc.relation.referencesJi, C., Du, M., Hu, Y., Liu, S., Pan, L., y Zheng, X. (2022). Time series classification based on temporal features. Applied Soft Computing. doi: 10.1016/j.asoc.2022.109494spa
dc.relation.referencesJi, C., Du, M., Wei, Y., Hu, Y., Liu, S., Pan, L., y Zheng, X. (2023). Time series classification with random temporal features. Journal of King Saud University - Computer and Information Sciences. doi: 10.1016/j.jksuci.2023.101783spa
dc.relation.referencesJithmal Pitigala, P. U., Laksahan, T. K., Hewapathirana, S. S., Sadeepika Herath, H. H., Chandrasiri, S., y Nadeesa Pemadasa, M. G. (2022). Vapeca - smart agricultural and analysis monitoring system. En 2022 ieee 13th annual information technology, electronics and mobile communication conference (iemcon) (p. 0317-0322). doi: 10.1109/IEMCON56893.2022.9946458spa
dc.relation.referencesJoseph, A. B., y Mpogolo, G. E. (2022). Application of sarima model on forecasting wholesale prices of food commodities in tanzania: A case of maize, rice and beans. African Journal of Accounting and Social Science Studies. doi: 10.4314/ajasss.v4i1.11spa
dc.relation.referencesK, D., M, R., V, S., N, P., y Jayaraj, I. A. (2021). Meta-learning based adaptive crop price prediction for agriculture application. En 2021 5th international conference on electronics, communication and aerospace technology (iceca) (p. 396-402). doi: 10.1109/ICECA52323.2021.9675891spa
dc.relation.referencesKeshavarzian, A., y Valaee, S. (2024). Hiervar: A hierarchical feature selection method for time series analysis. arXiv.org. doi: 10.48550/arxiv.2407.16048spa
dc.relation.referencesKhashei, M., y Bijari, M. (2010). An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl., 37, 479-489. doi: 10.1016/j.eswa.2009.05.044spa
dc.relation.referencesKim, D.-K., y Kim, K. (2022). A convolutional transformer model for multivariate time series prediction. IEEE Access, 10, 101319-101329. doi: 10.1109/ACCESS.2022.3203416spa
dc.relation.referencesKozuch, A., Cywicka, D., y Adamowicz, K. (2023). A comparison of artificial neural ˙ network and time series models for timber price forecasting. Forests, 14(2). doi: 10.3390/f14020177spa
dc.relation.referencesKumar, C., y Sri.M.Anil. (2021). Estimation of prices in agricultural commodity using machine learning. EPRA International Journal of Research & Development (IJRD). doi: 10.36713/epra8381spa
dc.relation.referencesKumari, P., Goswami, V., N, H., y Pundir, R. (2023). Recurrent neural network architecture for forecasting banana prices in gujarat, india. PLOS ONE, 18. doi: 10.1371/journal.pone.0275702spa
dc.relation.referencesKurumatani, K. (2020). Time series forecasting of agricultural product prices based on recurrent neural networks and its evaluation method. SN Applied Sciences, 2. doi: 10.1007/s42452-020-03225-9spa
dc.relation.referencesLi, B., Ding, J., Yin, Z., Li, K., Zhao, X., y Zhang, L. (2021). Optimized neural network combined model based on the induced ordered weighted averaging operator for vegetable price forecasting. Expert Systems with Applications, 168, 114232. doi: https://doi.org/10.1016/j.eswa.2020.114232spa
dc.relation.referencesLind, D. A., Wathen, S. A., y Marchal, W. G. (2012). Estadística aplicada a los negocios y la economía (15.a ed.). McGraw-Hillspa
dc.relation.referencesling Peng, L., Bi, X.-F., Fan, G.-F., Wang, Z.-P., y Hong, W. (2023). Analysis and prediction of novel coronavirus pneumonia epidemic using hybrid response surface method with time-series and random forest. Journal of Intelligent & Fuzzy Systems. doi: 10.3233/jifs-231588spa
dc.relation.referencesLiu, C. (2024). Implied volatility forecasting for american options based on random fo rest regressor, linear regression model. Advances in Economics, Management and Political Sciences. doi: 10.54254/2754-1169/85/20240867spa
dc.relation.referencesLiu, Y., Duan, Q., Wang, D., Zhang, Z., y Liu, C. (2019). Prediction for hog prices based on similar sub-series search and support vector regression. Computers and Electronics in Agriculture, 157, 581-588. doi: https://doi.org/10.1016/j.compag.2019.01.027spa
dc.relation.referencesLuna, O. C. (2021). Modelo de predicción de precios de productos agropecuarios como base para la priorización de proyectos integrales de desarrollo agropecuario y rural con enfoque territorial en colombia en el marco de los impactos producidos por la covid-19 (Tesis de Master no publicada). Universidad de Bogotá Jorge Tadeo Lozanospa
dc.relation.referencesMahto, A., Alam, M. A., Biswas, R., Ahmad, J., y Alam, S. (2021). Short-term forecasting of agriculture commodities in context of indian market for sustainable agriculture by using the artificial neural network. Journal of Food Quality, 2021, 1-13. doi: 10.1155/2021/9939906spa
dc.relation.referencesMartin, A. (2019). Retos de la adaptación en el sector agropecuario en colombia. Martha Ligia Castellanos Martínez, 180spa
dc.relation.referencesMendoza Martinez, A. I. (2005). Introduccion a los modelos arima multiplicativos (Licen ciatura en Actuaría, Universidad Nacional Autónoma de México, Facultad de Cien cias). Descargado de https://hdl.handle.net/20.500.14330/TES01000344167 (Asesor: Alonso Reyes, María del Pilar)spa
dc.relation.referencesMinAgricultura. (2022). Red de información y comunicación del sector agropecuario colombiano. https://www.agronet.gov.co/. (Accedido en mayo de 2022)spa
dc.relation.referencesMohanty, M., Thakurta, P., y Kar, S. (2023). Agricultural commodity pri ce prediction model: a machine learning framework. Neural Compu ting and Applications. Descargado de https://www.scopus.com/inward/ record.uri?eid=2-s2.0-85151991205&doi=10.1007%2fs00521-023-08528 -7&partnerID=40&md5=0974916bc190e976975a7a345854468b (cited By 0) doi: 10.1007/s00521-023-08528-7spa
dc.relation.referencesMoshayedi, A. J., Roy, A. S., Kolahdooz, A., y Shuxin, Y. (2022). Deep learning appli cation pros and cons over algorithm deep learning application pros and cons over algorithm. EAI Endorsed Transactions on AI and Robotics, 1(1)spa
dc.relation.referencesMurugesan, G., y Radha, B. (2023). An extrapolative model for price prediction of crops using hybrid ensemble learning techniques. International Journal of Advanced Tech nology and Engineering Exploration, 10, 1-20. doi: 10.19101/IJATEE.2021.876382spa
dc.relation.referencesMutwiri, R. M. (2019). Forecasting of tomatoes wholesale prices of nairobi in kenya: Time series analysis using sarima model. International Journal of Statistical Distributions and Applications. doi: 10.11648/J.IJSD.20190503.11spa
dc.relation.referencesOrden, D., y Fackler, P. (1989). Identifying monetary impacts on agricultural prices in var models. American Journal of Agricultural Economics, 71, 495-502. doi: 10.2307/1241620spa
dc.relation.referencesOuyang, H., Wei, X., y Wu, Q. (2019). Agricultural commodity futures prices prediction via long- and short-term time series network. Journal of Applied Economics, 22, 468 - 483. doi: 10.1080/15140326.2019.1668664spa
dc.relation.referencesPandey, R., Verma, P., Khatri, S. K., y Singh, N. k. (2022). Artificial intelligence and machine learning for edge computing [Book]. Elsevier. (Cited by: 1) doi: 10.1016/C2020-0-01569-0spa
dc.relation.referencesParedes-García, W. J., Ocampo-Velázquez, R., Torres-Pacheco, I., y Cedillo-Jiménez, C. A. (2019). Price forecasting and span commercialization opportunities for mexi can agricultural products. Agronomy, 9, 826. doi: 10.3390/agronomy9120826spa
dc.relation.referencesPaul, R., Yeasin, M., Kumar, P., Kumar, P., Balasubramanian, M., Roy, H. S., . . . Gupta, A. (2022). Machine learning techniques for forecasting agricultural prices: A case of brinjal in odisha, india. PLoS ONE, 17. doi: 10.1371/journal.pone.0270553spa
dc.relation.referencesPreethaK., G., Babu, K. R. R., Sangeetha, U., Rinta, S. T., Saigopika, Shalon, W., y Swapna, T. (2022). Price forecasting on a large scale data set using time series and neural network models. KSII Trans. Internet Inf. Syst., 16, 3923-3942. doi: 10.3837/tiis.2022.12.008spa
dc.relation.referencesPurón Rodríguez, D., y Tejeda Marrero, V. M. (2021). Síntesis histórica del concepto calidad desde la revolución neolítica a la agricultura de precisión. Revista Ingeniería Agrícola, 11(3)spa
dc.relation.referencesRibeiro, M., y Coelho, L. (2020). Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Appl. Soft Comput., 86. doi: 10.1016/j.asoc.2019.105837spa
dc.relation.referencesRogachev, A., y Melikhova, E. (2020). Creating a neural network system for forecasting and managing agricultural production using autocorrelation functions of time series. E3S Web of Conferences. doi: 10.1051/e3sconf/202016406005spa
dc.relation.referencesS., R., y Kannan, S. (2019, 12). Developing an agricultural product price prediction model using hadt algorithm. International Journal of Engineering and Advanced Technology, 9. doi: 10.35940/ijeat.A1126.1291S419spa
dc.relation.referencesSabu, K. M., y Kumar, T. M. (2020). Predictive analytics in agriculture: Forecasting prices of arecanuts in kerala. Procedia Computer Science, 171, 699-708. (Third Interna tional Conference on Computing and Network Communications (CoCoNet’19)) doi: https://doi.org/10.1016/j.procs.2020.04.076spa
dc.relation.referencesSajithabanu, S., Ponmalar, A., Soundari, A. G., Reshma, N., Sunraja, K., y Sindhumathi, R. (2022). Enhanced crop price prediction & forecasting system. En 2022 inter national conference on computer, power and communications (iccpc) (p. 580-585). doi: 10.1109/ICCPC55978.2022.10072183spa
dc.relation.referencesSarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2, 1-21. doi: 10.1007/S42979-021-00592-X/FIGURES/11spa
dc.relation.referencesSen, J., Mehtab, S., y Engelbrecht, A. (2021). Machine learning: Algorithms, models and applications. BoD–Books on Demandspa
dc.relation.referencesShaker Reddy, P. C., Suryanarayana, G., K, L. P., y Yadala, S. (2022). Data analytics in farming: Rice price prediction in andhra pradesh. En 2022 5th international confe rence on multimedia, signal processing and communication technologies (impact) (p. 1-5). doi: 10.1109/IMPACT55510.2022.10029009spa
dc.relation.referencesSharma, C., Misra, R., Bhatia, M., y Manani, P. (2023). Price prediction model of fruits, vegetables and pulses according to weather. En 2023 13th international conference on cloud computing, data science & engineering (confluence) (p. 347-351). doi: 10.1109/Confluence56041.2023.10048880spa
dc.relation.referencesSneha, V., y Bhavana, V. (2023). Sugarcane yield and price prediction using forecasting models. En 2023 international conference on artificial intelligence and knowledge discovery in concurrent engineering (iceconf) (p. 1-6). doi: 10.1109/ICECONF57129.2023.10084094spa
dc.relation.referencesSun, C., Pei, M., Cao, B., Chang, S., y Si, H. (2023). A study on agricultural commo dity price prediction model based on secondary decomposition and long short-term memory network. Agriculture. doi: 10.3390/agriculture14010060spa
dc.relation.referencesSutton, R. S., y Barto, A. G. (2018). Reinforcement learning: An introduction. MIT pressspa
dc.relation.referencesSwarnakantha, S., Chathurika, B., Weragoda, K. V., Bowatte, W. M. I. K., Thalawala, E., y Bandara, M. M. U. L. (2022). Decision-making platform for smart plan tation agriculture using machine learning and image processing. En 2022 ieee 7th international conference for convergence in technology (i2ct) (p. 1-6). doi: 10.1109/I2CT54291.2022.9825063spa
dc.relation.referencesTan, Y., Sha, W., y Paudel, K. (2017). The impact of monetary policy on agricultural price in china: A factor-augmented vector autoregressive (favar) approach. Econometric Modeling: Agriculture. doi: 10.2139/ssrn.2916984spa
dc.relation.referencesTatarintsev, M., Korchagin, S., Nikitin, P., Gorokhova, R., Bystrenina, I., y Serdechnyy, D. (2021). Analysis of the forecast price as a factor of sustainable development of agriculture. Agronomy, 11(6). doi: 10.3390/agronomy11061235spa
dc.relation.referencesThapaswini, G., y Gunasekaran, M. (2022). A methodology for crop price prediction using machine learning. En 2022 ieee 2nd international conference on mobile networks and wireless communications (icmnwc) (p. 1-7). doi: 10.1109/ICMNWC56175.2022.10031852spa
dc.relation.referencesTihi, N., y Popov, S. (2023). 2. a comparison of arima and random forest time series models for urban drought prediction. doi: 10.15308/sinteza-2024-51-56spa
dc.relation.referencesTranfield, D., Denyer, D., y Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British journal of management, 14(3), 207–222spa
dc.relation.referencesVillar García, A., y García López, M. (2022). Agua, agricultura y efectos económicos en el campo de cartagenaspa
dc.relation.referencesVillavicencio, J. (2010). Introducción a series de tiempo. Puerto Ricospa
dc.relation.referencesWang, F., Chen, W., Fakieh, B., y Ali, B. J. A. (2021). Stock price analysis based on the re search of multiple linear regression macroeconomic variables. Applied Mathematics and Nonlinear Sciences, 7, 267 - 274. doi: 10.2478/amns.2021.2.00097spa
dc.relation.referencesWeerasooriya, W. S., Wanigaratne, A. D., Silva, H. O. D., Hansaka, S., Perera, J., y Ruk gahakotuwa, L. (2022). Farmcare: Location-based profitable crop recommenda tion system with disease identification. En 2022 4th international conference on advancements in computing (icac) (p. 204-209). doi: 10.1109/ICAC57685.2022.10025220spa
dc.relation.referencesWei, W. (2006). Time series analysis: Univariate and multivariate methods. Pearson Addison Wesley. Descargado de 10.2307/2289741spa
dc.relation.referencesWeng, Y., Wang, X., Hua, J., Wang, H., Kang, M., y Wang, F.-Y. (2019). Forecasting horticultural products price using arima model and neural network based on a large scale data set collected by web crawler. IEEE Transactions on Computational Social Systems, 6, 547-553. doi: 10.1109/TCSS.2019.2914499spa
dc.relation.referencesWHO. (2019). World hunger is still not going down after three years and obesity is still growing – un report. Descargado 2023-04-12, de https://www.who.int/news/ item/15-07-2019-world-hunger-is-still-not-going-down-after-three-years -and-obesity-is-still-growing-un-reportspa
dc.relation.referencesWoodward, J. A., Bonett, D. G., y Brecht, M.-L. (1990). Introduction to linear models and experimental design. Harcourt Brace Jovanovichspa
dc.relation.referencesXu, Y., Kang, M., Wang, X., Hua, J., Wang, H., y Shen, Z. (2022). Corn and soybean futu res price intelligent forecasting based on deep learning [Article]. Smart Agriculture, 4(4), 156 – 163. (Cited by: 0) doi: 10.12133/j.smartag.SA20220712spa
dc.relation.referencesYashavanth, B. S., Singh, K. N., Paul, A., y Paul, R. (2017). Forecasting prices of cof fee seeds using vector autoregressive time series model. The Indian Journal of Agricultural Sciences. doi: 10.56093/ijas.v87i6.70960spa
dc.relation.referencesYu, Z. (2021). Data analysis and soybean price intelligent prediction model based on lstm neural network. En 2021 ieee conference on telecommunications, optics and computer science (tocs) (p. 799-801). doi: 10.1109/TOCS53301.2021.9688705spa
dc.relation.referencesYuan, J., Hao, J., Liu, M., Wu, D., y Li, J. (2022). A dynamic ensemble learning approach with spectral clustering for beef and lamb prices prediction. Procedia Computer Science, 214, 1190-1197. (9th International Conference on Information Technology and Quantitative Management) doi: https://doi.org/10.1016/j.procs.2022.11.295spa
dc.relation.referencesZeng, L., Ling, L., Zhang, D., y Jiang, W. (2023). Optimal forecast combination based on pso-cs approach for daily agricultural future prices forecasting. Applied Soft Com puting, 132, 109833. doi: https://doi.org/10.1016/j.asoc.2022.109833spa
dc.relation.referencesZhang, D., Chen, S., Liwen, L., y Xia, Q. (2020). Forecasting agricultural commodity prices using model selection framework with time series features and forecast horizons. IEEE Access, 8, 28197-28209. doi: 10.1109/ACCESS.2020.2971591spa
dc.relation.referencesZhang, Y., y Na, S. (2018). A novel agricultural commodity price forecasting model based on fuzzy information granulation and mea-svm model. Mathematical Problems in Engineering. doi: 10.1155/2018/2540681spa
dc.relation.referencesZheng, G., Zhang, H., Han, J., Zhuang, C., y Xi, L. (2020). The research on agricultu ral product price forecasting service based on combination model. En 2020 ieee 13th international conference on cloud computing (cloud) (p. 4-9). doi: 10.1109/CLOUD49709.2020.00009spa
dc.relation.referencesZhou, J., Ye, J., Ouyang, Y., Tong, M., Pan, X., y Gao, J. (2022). On building real time intelligent agricultural commodity trading models. En 2022 ieee eighth international conference on big data computing service and applications (bigdataservice) (p. 89-95). doi: 10.1109/BigDataService55688.2022.00021spa
dc.relation.referencesZou, H., Xia, G., Yang, F., y Wang, H. (2007). An investigation and comparison of artifi cial neural network and time series models for chinese food grain price forecasting. Neurocomputing, 70, 2913-2923. doi: 10.1016/j.neucom.2007.01.009spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computaciónspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembComercio agrícola - Colombia
dc.subject.lembAgricultura - Aspectos económicos - Colombia
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembMinería de datos
dc.subject.lembAnálisis de series de tiempo
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalModelos de regresiónspa
dc.subject.proposalModelos híbridos predictivosspa
dc.subject.proposalOptimización de hiperparámetrosspa
dc.subject.proposalPredicción de precios agrícolasspa
dc.subject.proposalSeries temporalesspa
dc.subject.proposalHyperparameter optimizationeng
dc.subject.proposalHybrid predictive modelseng
dc.subject.proposalMachine learningeng
dc.subject.proposalAgriculture price predictioneng
dc.subject.proposalRegression modelseng
dc.subject.proposalTime series analysiseng
dc.titlePredicción de precios del mercado agrícola en Colombia : aplicación de modelos de aprendizaje automático y minería de datos para la toma de decisiones en la agriculturaspa
dc.title.translatedAgricultural market price forecasting in Colombia : applying machine learning and data mining models for decision-making in agricultureeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1117323488.2024.pdf
Tamaño:
7.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: