Extensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.

dc.contributor.advisorZapata Henao, Sebastian
dc.contributor.advisorCardona Molina, Agustín
dc.contributor.authorCalderón Díaz, Laura Cristina
dc.contributor.cvlacCalderón Díaz, Laura Cristina (0000-0002-3523-9017)spa
dc.contributor.researchgroupGrupo de Estudios en Geología y Geofísica Egeospa
dc.coverage.countryAndes colombianos
dc.date.accessioned2024-03-05T18:20:39Z
dc.date.available2024-03-05T18:20:39Z
dc.date.issued2023
dc.descriptionilustraciones, mapasspa
dc.description.abstractExtensional and compressional basins can evolve over tens of millions of years through multiple stages under the same tectonic regime. The Cretaceous tectonic evolution of the Colombian Andes is characterized by shifts between compressional, neutral, and extensional tectonics. The upper plate response to these changes is recorded in the Cretaceous sedimentary rocks along the Western, Central, and Eastern cordilleras, as well as in their bounding basins, including the Upper Magdalena Basin. We integrated field observations, petrography, geochronology, and thermochronology in the Cretaceous sedimentary units preserved in the southern Upper Magdalena Basin and in the basement adjacent to the basin to evaluate the provenance of these units, the exhumation patterns of the source areas and the response of the sedimentary systems to the tectonic changes. The provenance results together with the detrital and bedrock cooling ages suggest exhumation during the Early Cretaceous, which combined with regional magmatic and sedimentary patterns is interpreted as extensional exhumation between ~145 and 100 Ma, during two different stages of crustal extension. Between ~100 and 80 Ma, sedimentation in the Villeta Group represents the end of the extension and the onset of compression, which was characterized by minor rock uplift within the basin. Between 80 and 65 Ma, two subsequent compressional phases caused changes in the sedimentary patterns that resulted in the burial of a previously exhumed horst block and the apparition of new source areas. These major changes in the source areas and sedimentary systems are the result of multiphase deformation episodes during prolonged extensional and compressional phases; highlighting the stages of tectonic evolution that characterize extensional to compressional settings.eng
dc.description.abstractLas cuencas extensionales y compresionales pueden evolucionar a lo largo de decenas de millones de años a través de múltiples etapas bajo el mismo régimen tectónico. La evolución tectónica Cretácica de los Andes colombianos se caracteriza por cambios entre tectónica compresional, neutra y extensional. La respuesta de la placa superior a estos cambios se registra en las rocas sedimentarias Cretácicas a lo largo de las cordilleras Occidental, Central y Oriental, así como en las cuencas adyacentes, incluida la Cuenca del Valle Superior del Magdalena. En este trabajo integramos observaciones de campo, petrografía, geocronología y termocronología en las unidades sedimentarias Cretácicas preservadas en el sur del Valle Superior del Magdalena y en el basamento adyacente a la cuenca para evaluar la procedencia de estas unidades, los patrones de exhumación de las áreas fuente y la respuesta de los sistemas sedimentarios a los cambios tectónicos. Los resultados de procedencia, junto con las edades de enfriamiento detríticas y del basamento, sugieren una exhumación durante el Cretácico Temprano, que, combinada con patrones magmáticos y sedimentarios regionales, se interpreta como exhumación extensional entre ~145 y 100 millones de años, durante dos etapas diferentes de extensión cortical. Entre ~100 y 80 millones de años, la sedimentación en el Grupo Villeta representa el final de la extensión y el comienzo de la compresión, caracterizada por un levantamiento menor de rocas dentro de la cuenca. Entre 80 y 65 millones de años, dos fases compresionales posteriores causaron cambios en los patrones sedimentarios que resultaron en el enterramiento de un bloque de horst previamente exhumado y la aparición de nuevas áreas fuente. Estos cambios importantes en las áreas fuente y en los sistemas sedimentarios son el resultado de episodios de deformación polifásica durante fases prolongadas de extensión y compresión, destacando las etapas de evolución tectónica que caracterizan configuraciones extensionales y compresionales (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Mineralesspa
dc.format.extent108 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85771
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Mineralesspa
dc.relation.referencesBernet, M., Brandon, M. T., Garver, J. I., & Molitor, B. R. (2004). Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. In Detrital thermochronology - Provenance analysis, exhumation, and landscape evolution of mountain belts. Geological Society of America.spa
dc.relation.referencesFleischer, R. L., & Price, P. B. (1964). Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochimica et Cosmochimica Acta, 28(10–11), 1705–1714. https://doi.org/10.1016/0016-7037(64)90017-1spa
dc.relation.referencesGleadow, A. J. W., Hurford, A. J., & Quaife, R. D. (1976). Fission track dating of zircon: Improved etching techniques. Earth and Planetary Science Letters, 33(2), 273–276. https://doi.org/10.1016/0012-821x(76)90235-1spa
dc.relation.referencesKohn, B., Chung, L., & Gleadow, A. (2019). Fission-track analysis: Field collection, sample preparation and data acquisition. In Fission-Track Thermochronology and its Application to Geology (pp. 25–48). Springer International Publishing.spa
dc.relation.referencesAcosta, J., Velandia, F., Osorio, J., Lonergan, L., & Mora, H. (2007). Strike-slip deformation within the Colombian Andes. Geological Society Special Publication, 272(1), 303–319. https://doi.org/10.1144/gsl.sp.2007.272.01.16spa
dc.relation.referencesAmaya-López, C., Weber Scharff, M., Ibáñez Mejía, M., Cuadros Jiménez, F. A., Restrepo Álvarez, J. J., Botelho, N. F., Maya Sánchez, M., Pérez Parra, O. M., & Ramírez Cárdenas, C. (2021). San José de Guaviare Syenite, Colombia: Repeated Ediacaran intrusions in the northwestern Amazonian Craton. Boletín Geológico, 48(1), 49–79. https://doi.org/10.32685/0120-1425/bol.geol.48.1.2021.503spa
dc.relation.referencesAnderson, T. A. (1972). Paleogene nonmarine gualanday group, Neiva basin, Colombia, and regional development of the Colombian Andes. Geological Society of America Bulletin, 83(8), 2423. https://doi.org/10.1130/0016-7606(1972)83[2423:pnggnb]2.0.co;2spa
dc.relation.referencesAngiolini, L., Racheboeuf, P. R., Villarroel, C. A., & Concha, A. E. (2021). Stratigraphy and brachiopod fauna of the Carboniferous El Imán Formation, Colombia. Spanish Journal of Palaeontology, 18(2), 151. https://doi.org/10.7203/sjp.18.2.21641spa
dc.relation.referencesBajolet, F., Chardon, D., Rouby, D., Dall’Asta, M., Loparev, A., Couëffe, R., & Roig, J.-Y. (2022). The sediment routing systems of Northern South America since 250 Ma. EarthScience Reviews, 232(104139), 104139. https://doi.org/10.1016/j.earscirev.2022.104139spa
dc.relation.referencesBayona, G. (2018). El inicio de la emergencia en los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 42(165), 364. https://doi.org/10.18257/raccefyn.632spa
dc.relation.referencesBayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Caballero, V., Mahecha, H., Lamus, F., Montenegro, O., Jimenez, G., Mesa, A., & Valencia, V. (2013). Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; response to Caribbean–South American convergence in early Palaeogene time. Geological Society Special Publication, 377(1), 285–314. https://doi.org/10.1144/sp377.5spa
dc.relation.referencesBernet, M., Brandon, M., Garver, J., Balestieri, M. L., Ventura, B., & Zattin, M. (2009). Exhuming the Alps through time: clues from detrital zircon fission-track thermochronology. Basin Research, 21(6), 781–798. https://doi.org/10.1111/j.1365-2117.2009.00400.xspa
dc.relation.referencesBrune, S., Kolawole, F., Olive, J.-A., Stamps, D. S., Buck, W. R., Buiter, S. J. H., Furman, T., & Shillington, D. J. (2023). Geodynamics of continental rift initiation and evolution. Nature Reviews. Earth & Environment, 4(4), 235–253. https://doi.org/10.1038/s4301 7-023- 00391-3spa
dc.relation.referencesBustamante, C., Cardona, A., Bayona, G., Mora, A., Valencia, V., Gehrels, G., & Vervoort, J. (2010). U-Pb LA-ICP-MS Geochronology and Regional Correlation of Middle Jurassic Intrusive Rocks from the Garzon Massif, Upper Magdalena Valley and Central Cordillera, Southern Colombia. Revista Boletín de Geología, 32(2), 93–109. http://www.scielo.org.co/scielo.php?pid=S0120- 02832010000200007&script=sci_arttext&tlng=enspa
dc.relation.referencesCarvajal-Torres, J., Catuneanu, O., Mora, A., Caballero, V., & Reyes, M. (2022). First-order stratigraphic boundaries of the Late Cretaceous–Paleogene retroarc foreland basin in Colombia. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.876140spa
dc.relation.referencesChen, W.-H., Yan, Y., Carter, A., Huang, C.-Y., Yumul, G. P., Jr, Dimalanta, C. B., GaboRatio, J. A. S., Wang, M.-H., Chen, D., Shan, Y., Zhang, X.-C., & Liu, W. (2021). Stratigraphy and provenance of the Paleogene syn‐rift sediments in central‐southern Palawan: Paleogeographic significance for the South China margin. Tectonics, 40(9). https://doi.org/10.1029/2021tc006753spa
dc.relation.referencesdel Papa, C., Payrola, P., Pingel, H., Hongn, F., Do Campo, M., Sobel, E. R., Lapiana, A., Cottle, J., Glodny, J., & Strecker, M. R. (2021). Stratigraphic response to fragmentation of the Miocene Andean foreland basin, NW Argentina. Basin Research, 33(6), 2914–2937. https://doi.org/10.1111/bre.12589spa
dc.relation.referencesDunkl, I. (2002). Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, 28(1), 3–12. https://doi.org/10.1016/s0098-3004(01)00024-3spa
dc.relation.referencesFlowers, Rebecca M. (2009). Exploiting radiation damage control on apatite (U–Th)/He dates in cratonic regions. Earth and Planetary Science Letters, 277(1–2), 148–155. https://doi.org/10.1016/j.epsl.2008.10.005spa
dc.relation.referencesGallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology: Transdimensional Inverse Thermal History. Journal of Geophysical Research, 117(B2). https://doi.org/10.1029/2011jb008825spa
dc.relation.referencesGehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry. Geochemistry, Geophysics, Geosystems: G(3), 9(3). https://doi.org/10.1029/2007gc001805spa
dc.relation.referencesGirault, I., Basile, C., Bernet, M., Paquette, J.-L., Heuret, A., Loncke, L., Poetisi, E., & Balvay, M. (2023). Thermochronology and U–Pb dating of detrital zircons from the Demerara Plateau (French Guiana‐Suriname): Implications for the provenance of the Early Cretaceous syn‐rift sedimentation. Basin Research, 35(4), 1386–1406. https://doi.org/10.1111/bre.12758spa
dc.relation.referencesGuerrero, J., Sarmiento, G., & Narrete, R. (2000). The Stratigraphy of the W Side of the Cretaceous Colombian Basin in the Upper Magdalena Valley. Reevaluation of Selected Areas and Type Localities Including Aipe, Guaduas, Ortega, and Piedras. Geología Colombiana, 25, 45–110. http://www.revistas.unal.edu.co/index.php/geocol/article/view/31536spa
dc.relation.referencesHorton, B. K., Saylor, J. E., Nie, J., Mora, A., Parra, M., Reyes-Harker, A., & Stockli, D. F. (2010). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U-Pb ages, Eastern Cordillera, Colombia. Geological Society of America Bulletin, 122(9–10), 1423–1442. https://doi.org/10.1130/b30118.1spa
dc.relation.referencesJaramillo, C., Yepes, O., & Etayo-Serna, F. (1994). Palinoestratigrafía del Grupo Olini (Coniaciano-Campaniano), Valle Superior del Magdalena, Colombia. Estudios Geologicos del Valle Superior del Magdalenaspa
dc.relation.referencesLeal-Mejía, H., Shaw, R. P., & Melgarejo I Draper, J. C. (2019). Spatial-temporal migration of granitoid magmatism and the Phanerozoic tectono-magmatic evolution of the Colombian Andes. Geology and Tectonics of Northwestern South America: The Pacific-CaribbeanAndean Junction. 253–410.spa
dc.relation.referencesMartín-Rincón, C. L., Terraza-Melo, R., Rojas Parra, N. R., Martínez Aparicio, G. A., Rojas Jiménez, S., & Hernández González, J. S. (2022). The Upper Cretaceous (SantonianMaastrichtian) phosphate deposits in the west of the Neiva subbasin, Upper Magdalena Valley, Colombia. Boletín Geológico, 49(2), 75–96. https://doi.org/10.32685/0120- 1425/bol.geol.49.2.2022.621spa
dc.relation.referencesMontes, C., Rodriguez-Corcho, A. F., Bayona, G., Hoyos, N., Zapata, S., & Cardona, A. (2019). Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin. Earth-Science Reviews, 198(102903), 102903. https://doi.org/10.1016/j.earscirev.2019.102903spa
dc.relation.referencesOrdóñez-Carmona, O., Restrepo Álvarez, J. J., & Pimentel, M. M. (2006). Geochronological and isotopical review of pre-Devonian crustal basement of the Colombian Andes. Journal of South American Earth Sciences, 21(4), 372–382.https://doi.org/10.1016/j.jsames.2006.07.005spa
dc.relation.referencesParra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., & Strecker, M. R. (2010). Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Research. https://doi.org/10.1111/j.1365-2117.2009.00459.xspa
dc.relation.referencesPérez-Consuegra, N., Teixell, A., Gómez-Gras, D., & Stockli, D. F. (2019). Reconstructing extensional basin architecture and provenance in the Marrakech high atlas of morocco: Implications for rift basins and inversion tectonics. Tectonics, 38(5), 1584–1608. https://doi.org/10.1029/2018tc005413spa
dc.relation.referencesReiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenicerosion. Annual Review of Earth and Planetary Sciences, 34(1), 419–466.https://doi.org/10.1146/annurev.earth.34.031405.125202spa
dc.relation.referencesRubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184(1–2), 123–138. https://doi.org/10.1016/s0009-2541(01)00355-2spa
dc.relation.referencesSarmiento-Rojas, Luis Fernando. (2019). Cretaceous stratigraphy and Paleo-facies maps of northwestern south America. In Geology and Tectonics of Northwestern South America (pp. 673–747). Springer International Publishingspa
dc.relation.referencesSiravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, M. G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002spa
dc.relation.referencesVásquez, M., & Altenberger, U. (2005). Mid-Cretaceous extension-related magmatism in the eastern Colombian Andes. Journal of South American Earth Sciences, 20(3), 193–210. https://doi.org/10.1016/j.jsames.2005.05.010spa
dc.relation.referencesVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3–4), 875–896. https://doi.org/10.1016/j.lithos.2011.05.003spa
dc.relation.referencesWagner, G., Gleadow, A., & Fitzgerald, P. (1989). The significance of the partial annealing zone in apatite fission-track analysis: Projected track length measurements and uplift chronology of the transantarctic mountains. Chemical Geology: Isotope Geoscience Section, 79(4), 295–305. https://doi.org/10.1016/0168-9622(89)90035-3spa
dc.relation.referencesZapata, S., Calderon-Diaz, L., Jaramillo, C., Oboh-Ikuenobe, F., Piedrahita, J. C., Rodríguez-Cuevas, M., Cardona, A., Sobel, E. R., Parra, M., Valencia, V., Patiño, A., Jaramillo-Rios, J. S., Flores, M., & Glodny, J. (2023). Drainage and sedimentary response of the Northern Andes and the Pebas system to Miocene strike‐slip tectonics: A source to sink study of the Magdalena Basin. Basin Research. https://doi.org/10.1111/bre.12769spa
dc.relation.referencesZapata, Sebastian, Cardona, A., Jaramillo, C., Valencia, V., & Vervoort, J. (2016). U-Pb LA-ICP-MS Geochronology and Geochemistry of Jurassic Volcanic and Plutonic Rocks from the Putumayo Region (Southern Colombia): Tectonic Setting and Regional Correlations. Revista Boletín de Geología, 38(2), 21–38. https://doi.org/10.18273/revbol.v38n2-2016001spa
dc.relation.referencesZhou, R., Schoenbohm, L. M., Sobel, E. R., Davis, D. W., & Glodny, J. (2017). New constraints on orogenic models of the southern Central Andean Plateau: Cenozoic basin evolution and bedrock exhumation. Geological Society of America Bulletin, 129(1–2), 152– 170. https://doi.org/10.1130/b31384.1spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.lembEstratigrafía
dc.subject.proposalSource-to-sinkeng
dc.subject.proposalExtension and compressional tectonicseng
dc.subject.proposalNorthern Andeseng
dc.subject.proposalThermochronologyeng
dc.subject.proposalAndes del Nortespa
dc.subject.proposalTermocronologíaspa
dc.subject.proposalProcedencia sedimentariaspa
dc.subject.proposalCuencas extensionales y broken forelandspa
dc.subject.proposalTectónica cretácicaspa
dc.subject.wikidataTermocronología
dc.subject.wikidataGeocronología
dc.titleExtensional and compressional multiphases during the cretaceous in the Upper Magdalena basin: a source-to-sink analysis.eng
dc.title.translatedMúltiples fases extensionales y compresionales durante el cretácico en el Valle Superior del Magdalena: un análisis de procedencia y sistemas sedimentarios)spa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Laura Cristina Calderón Díaz_2024_tesisconfidencial.pdf
Tamaño:
4.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Minerales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: