Estrategia de procesamiento de señales EEG en sistemas BCI utilizando aprendizaje profundo y medidas de conectividad
dc.contributor.advisor | Álvarez Meza, Andrés Marino | |
dc.contributor.advisor | Castellanos Domínguez, César Germán | |
dc.contributor.author | Gomez Rivera, Yessica Alejandra | |
dc.contributor.orcid | Gomez Rivera, Yessica Alejandra [0000000259214295] | spa |
dc.contributor.researchgroup | Grupo de Control y Procesamiento Digital de Señales | spa |
dc.date.accessioned | 2023-11-09T21:09:47Z | |
dc.date.available | 2023-11-09T21:09:47Z | |
dc.date.issued | 2023 | |
dc.description | fotografías, graficas, | spa |
dc.description.abstract | Las Interfaces Cerebro Computadora (BCI) basadas en Electroencefalografía (EEG) crean una conexión directa entre el cerebro humano y una computadora. Los paradigmas de Imaginación Motora (MI) permiten que los usuarios controlen el movimiento de un agente en el mundo físico o virtual al detectar y decodificar patrones cerebrales asociados con movimientos reales e imaginados. Estas interfaces poseen un amplio potencial de aplicaciones clínicas y no clínicas. A pesar de ello, desarrollar sistemas BCI basados en EEG conlleva ciertos desafíos debido a problemas como la baja relación señal-ruido (SNR), la no estacionariedad y no linealidad de las señales EEG que causa la variabilidad intersujeto dificultando la identificación de características distintivas. Además, las capacidades limitadas de los sujetos para llevar a cabo tareas de MI en condiciones de baja SNR generan dificultades adicionales en la implementación de estos sistemas. Con el fin de abordar estos desafíos, en este trabajo de tesis, se presenta dos nuevas metodologías para el procesamiento de señales EEG. La primera de ellas consiste en i) una metodología para el procesamiento de señales de EEG para la clasificación de tareas de MI en alta y baja densidad de canales, con la representación y clasificación de señales de EEG basada en imágenes para reducir el efecto de la variabilidad intersujeto y mejorar la interpretabilidad espacio-frecuencia en modelos de Aprendizaje Profundo (DL). Además, se presenta un protocolo de adquisición de datos para un sistema BCI-MI basado en EEG, que es de bajo costo, portátil y diseñado para abordar las restricciones inherentes en la captura de la actividad neuronal con electrodos en el cuero cabelludo. Se utiliza un marco de DL para mejorar la precisión y exactitud de las BCIs-MI, al mismo tiempo, ii) se introduce un novedoso sistema de bajo costo y pocos canales que permite la clasificación de tareas de MI en tiempo real, superando desafíos computacionales. Este sistema garantiza que los bloques de datos EEG estén disponibles para el usuario en un tiempo menor a su duración. Esta innovación ofrece perspectivas prometedoras para mejorar la accesibilidad y eficacia de las interfaces cerebro-computadora en aplicaciones prácticas. Para concluir las metodologías propuestas en esta tesis contribuyen a mejorar la variabilidad intersujeto, la interpretabilidad espacio-frecuencia en modelos DL y el rendimiento de clasificación de los paradigmas de MI en sistemas BCI basados en EEG. La representación de EEG basada en imágenes permite obtener interpretabilidad espacio-frecuencia al combinar la representación espacial de los pares de canales EEG para construir un mapa topográfico (topoplot) en diferentes bandas de frecuencia. Esto codifica relaciones no lineales relevantes mediante similitud basada en la distribución Gaussiana, lo que a su vez mejora la precisión y exactitud de las BCI. Además, se complementa con análisis por grupo, Mapas de Activación de Clase (CAMS) e Incrustación Estocástica de Vecinos con Distribución t (t-SNE), para brindar una mayor interpretación de los resultados de la clasificación. El procesamiento de señales de EEG para la clasificación de tareas de MI, tanto en alta como baja densidad de canales, aborda eficientemente los efectos de la variabilidad y los artefactos en la señal, así como la baja SNR. Este enfoque se dirige especialmente a los sujetos que no logran obtener un control suficiente sobre el BCI. Por otro lado, la adquisición y procesamiento de señales de EEG en tiempo real nos permite realizar todas las etapas de un sistema de bucle cerrado utilizando métodos de ML y lograr resultados competitivos en nuestra base de datos adquirida mediante un sistema BCI distribuido, económico, portátil y con poca cantidad de canales. Al compararlo con bases de datos públicas, podemos afirmar que somos capaces de enfrentar los desafíos relacionados con la variabilidad, interpretabilidad y tiempo real en sistemas BCI. Sin embargo, persisten desafíos por abordar para para mejorar el rendimiento y exactitud de las BCI. En particular tenemos previsto para investigaciones futuras, i) realizar pruebas utilizando una variedad más amplia de bases de datos públicas de MI; ii) seguir explorando en técnicas de extracción de características, iii) explorar arquitecturas de vanguardia, como por ejemplo los modelos basados en Transformer, como el EEG-transformer; iv) aumentar la densidad de canales para la adquisición de nuestras bases de datos (Texto tomado de la fuente) | spa |
dc.description.abstract | Brain-Computer Interfaces (BCIs) based on Electroencephalography (EEG) establish a direct connection between the human brain and a computer. Motor Imagery (MI) paradigms enable users to control the movement of an agent in the physical or virtual world by detecting and decoding brain patterns associated with real and imagined movements. These interfaces have a wide range of potential clinical and non-clinical applications. However, developing EEG-based BCI systems comes with certain challenges due to issues such as low signal-to-noise ratio (SNR), non-stationarity, and non-linearity of EEG signals, causing inter-subject variability that hinders the identification of distinctive features. Additionally, subjects’ limited abilities to perform MI tasks in low SNR conditions pose additional difficulties in implementing these systems. To address these challenges, this thesis work presents two new methodologies for EEG signal processing. The first one includes i) a methodology for processing EEG signals for MI task classification in high and low channel density, with EEG signal representation and classification based on images to reduce the inter-subjec variability effect and improve the spatial-frequency interpretability in Deep Learning (DL) models. Additionally, a data acquisition protocol is introduced for a low-cost, portable EEG-based BCI-MI system designed to address the inherent constraints in capturing neuronal activity with scalp electrodes. A DL framework is used to enhance the accuracy and precision of BCIs-MI, while ii) a novel low-cost, few-channel system is introduced that allows real-time MI task classification, overcoming computational challenges. This system ensures that EEG data blocks are available to the user in less time than their duration. This innovation holds promising prospects for improving the accessibility and effectiveness of brain-computer interfaces in practical applications. In conclusion, the proposed methodologies in this thesis contribute to improving inter-subject variability, spatial-frequency interpretability in DL models, and the classification performance of MI paradigms in EEG-based BCI systems. Image-based EEG representation enables spatial-frequency interpretability by combining the spatial representation of EEG channel pairs to construct a topographical map in different frequency bands. This encodes relevant nonlinear relationships through Gaussian-distribution-based similarity, thereby enhancing the accuracy and precision of BCIs. It is further complemented with group-wise analysis, Class Activation Maps (CAMs), and t-distributed Stochastic Neighbor Embedding (t-SNE) embedding to provide better interpretation of classification results. EEG signal processing for MI task classification, in both high and low channel density, efficiently addresses the effects of signal variability and artifacts, as well as low SNR. This approach is particularly aimed at subjects who struggle to achieve sufficient control over the BCI. On the other hand, real-time EEG signal acquisition and processing allow us to perform all stages of a closed-loop system using ML methods and achieve competitive results in our acquired database through a distributed, cost-effective, portable, and low-channel BCI system. When compared to public databases, we can assert that we are capable of addressing challenges related to variability, interpretability, and real-time requirements in BCI systems. Nevertheless, there are challenges that remain to be addressed in order to enhance BCI performance and accuracy. In particular, for future research, we plan to i) conduct tests using a broader range of public MI databases; ii) continue exploring feature extraction techniques; iii) explore cutting-edge architectures, such as Transformer-based models, like the EEG-transformer; iv) increase channel density for data acquisition in our databases. | eng |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.description.researcharea | Procesamiento digital de señales | spa |
dc.format.extent | xxiii, 170 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84929 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | [Abhang et al., 2016] Abhang, P. A., Gawali, B. W., and Mehrotra, S. C. (2016). Introduction to EEG-and speech-based emotion recognition. Academic Press. (páginas 98 and 99) | spa |
dc.relation.references | [Abiri et al., 2019] Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., and Zhao, X. (2019). A comprehensive review of eeg-based brain–computer interface paradigms. Journal of neural engineering, 16(1):011001. (página 3) | spa |
dc.relation.references | [Aghaei et al., 2015] Aghaei, A. S., Mahanta, M. S., and Plataniotis, K. N. (2015). Separable common spatio-spectral patterns for motor imagery bci systems. IEEE Transactions on Biomedical Engineering, 63(1):15–29. (página 30) | spa |
dc.relation.references | [Ahmadi et al., 2012] Ahmadi, A., Dehzangi, O., and Jafari, R. (2012). Brain- computer interface signal processing algorithms: A computational cost vs. accuracy analysis for wearable computers. In 2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks, pages 40–45. IEEE. (página 26) | spa |
dc.relation.references | [Ai et al., 2019] Ai, Q., Chen, A., Chen, K., Liu, Q., Zhou, T., Xin, S., and Ji, Z. (2019). Feature extraction of four-class motor imagery eeg signals based on functional brain network. Journal of neural engineering, 16(2):026032. (páginas 30 and 110) | spa |
dc.relation.references | [Allouch et al., 2023] Allouch, S., Kabbara, A., Duprez, J., Khalil, M., Modolo, J., and Hassan, M. (2023). Effect of channel density, inverse solutions and connectivity measures on eeg resting-state networks reconstruction: A simulation study. NeuroImage, 271:120006. (página 117) | spa |
dc.relation.references | [Alotaiby et al., 2015] Alotaiby, T., El-Samie, F. E. A., Alshebeili, S. A., and Ahmad, I. (2015). A review of channel selection algorithms for eeg signal processing. EURASIP Journal on Advances in Signal Processing, 2015:1–21. (páginas 10 and 15) | spa |
dc.relation.references | [Altaheri et al., 2023] Altaheri, H., Muhammad, G., Alsulaiman, M., Amin, S. U., Altuwaijri, G. A., Abdul, W., Bencherif, M. A., and Faisal, M. (2023). Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: A review. Neural Computing and Applications, 35(20):14681–14722. (páginas 21, 23 y 24) | spa |
dc.relation.references | [Alvarez and Rossetti, 2015] Alvarez, V. and Rossetti, A. O. (2015). Clinical use of eeg in the icu: technical setting. Journal of clinical neurophysiology, 32(6):481–485. (páginas 5 and 14) | spa |
dc.relation.references | [An et al., 2014] An, X., Kuang, D., Guo, X., Zhao, Y., and He, L. (2014). A deep learning method for classification of eeg data based on motor imagery. In Intelligent Computing in Bioinformatics: 10th International Conference, ICIC 2014, Taiyuan, China, August 3-6, 2014. Proceedings 10, pages 203–210. Springer. (página 27) | spa |
dc.relation.references | [Anderson, 2004] Anderson, K. D. (2004). Targeting recovery: priorities of the spinal cord-injured population. Journal of neurotrauma, 21(10):1371–1383. (página 2) | spa |
dc.relation.references | [Arns et al., 2013] Arns, M., Conners, C. K., and Kraemer, H. C. (2013). A decade of eeg theta/beta ratio research in adhd: a meta-analysis. Journal of attention disorders, 17(5):374–383. (página 2) | spa |
dc.relation.references | [Ashenaei et al., 2022] Ashenaei, R., Beheshti, A. A., and Rezaii, T. Y. (2022). Stable eeg-based biometric system using functional connectivity based on time- frequency features with optimal channels. Biomedical Signal Processing and Control, 77:103790. (página 24) | spa |
dc.relation.references | [Assran et al., 2020] Assran, M., Aytekin, A., Feyzmahdavian, H. R., Johansson, M., and Rabbat, M. G. (2020). Advances in asynchronous parallel and distributed optimization. Proceedings of the IEEE, 108(11):2013–2031. (páginas 9 and 14) | spa |
dc.relation.references | [Barea et al., 2002] Barea, R., Boquete, L., Mazo, M., and López, E. (2002). System for assisted mobility using eye movements based on electrooculography. IEEE transactions on neural systems and rehabilitation engineering, 10(4):209–218. (página 129) | spa |
dc.relation.references | [Bashivan et al., 2015] Bashivan, P., Rish, I., Yeasin, M., and Codella, N. (2015). Learning representations from eeg with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448. (página 27) | spa |
dc.relation.references | [Becker et al., 2022] Becker, S., Dhindsa, K., Mousapour, L., and Al Dabagh, Y. (2022). Bci illiteracy: it’s us, not them. optimizing bcis for individual brains. In 2022 10th International Winter Conference on Brain-Computer Interface (BCI), pages 1–3. IEEE. (página 3) | spa |
dc.relation.references | [Beniczky et al., 2017] Beniczky, S., Aurlien, H., Brøgger, J. C., Hirsch, L. J., Schomer, D. L., Trinka, E., Pressler, R. M., Wennberg, R., Visser, G. H., Eisermann, M., et al. (2017). Standardized computer-based organized reporting of eeg: Score– second version. Clinical Neurophysiology, 128(11):2334–2346. (página 14) | spa |
dc.relation.references | [Boere et al., 2023] Boere, K., Parsons, E., Binsted, G., and Krigolson, O. E. (2023). How low can you go? measuring human event-related brain potentials from a two-channel eeg system. International Journal of Psychophysiology, 187:20–26. (páginas 10 and 15) | spa |
dc.relation.references | [Bonnet et al., 2022] Bonnet, C., Bayram, M., El Bouzaïdi Tiali, S., Lebon, F., Harquel, S., Palluel-Germain, R., and Perrone-Bertolotti, M. (2022). Kinesthetic motor-imagery training improves performance on lexical-semantic access. PloS one, 17(6):e0270352. (página 2) | spa |
dc.relation.references | [Bozhokin and Suslova, 2021] Bozhokin, S. V. and Suslova, I. B. (2021). Wavelet correlation of non-stationary bursts of eeg. In BIOSIGNALS, pages 142–149. (páginas 8, 10 y12) | spa |
dc.relation.references | [Cárdenas-Peña et al., 2017] Cárdenas-Peña, D., Collazos-Huertas, D., and Castellanos-Dominguez, G. (2017). Enhanced data representation by kernel metric learning for dementia diagnosis. Frontiers in neuroscience, 11:413. (página 6) | spa |
dc.relation.references | [Cardona-Álvarez et al., 2023] Cardona-Álvarez, Y. N., Álvarez-Meza, A. M., Cárdenas-Peña, D. A., Castaño-Duque, G. A., and Castellanos-Dominguez, G. (2023). A novel openbci framework for eeg-based neurophysiological experiments. Sensors, 23(7):3763. (páginas 2, 3, 9, 29 y 71) | spa |
dc.relation.references | [Carvalhaes and De Barros, 2015] Carvalhaes, C. and De Barros, J. (2015). The surface laplacian technique in EEG: Theory and methods. International Journal of Psychophysiology, 97(3):174–188. (página 44) | spa |
dc.relation.references | [Changoluisa et al., 2020] Changoluisa, V., Varona, P., and Rodríguez, F. D. B. (2020). A low-cost computational method for characterizing event-related potentials for bci applications and beyond. IEEE Access, 8:111089–111101. (página 26) | spa |
dc.relation.references | [Chattopadhay et al., 2018] Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubramanian, V. N. (2018). Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE winter conference on applications of computer vision (WACV), pages 839–847. IEEE. (páginas 51 and 52) | spa |
dc.relation.references | [Chavan and Kolte, 2015] Chavan, A. and Kolte, M. (2015). Improved eeg signal processing with wavelet based multiscale pca algorithm. In 2015 International Conference on Industrial Instrumentation and Control (ICIC), pages 1056–1059. IEEE. (página 23) | spa |
dc.relation.references | [Chen and Stouffs, 2021] Chen, J. and Stouffs, R. (2021). From exploration to interpretation: Adopting deep representation learning models to latent space lnterpretation of architectural design alternatives. (página 12) | spa |
dc.relation.references | [Cheng et al., 2020] Cheng, L., Li, D., Yu, G., Zhang, Z., Li, X., and Yu, S. (2020). A motor imagery eeg feature extraction method based on energy principal component analysis and deep belief networks. IEEE Access, 8:21453–21472. (página 19) | spa |
dc.relation.references | [Cho et al., 2017] Cho, H., Ahn, M., Ahn, S., Kwon, M., and Jun, S. C. (2017). Eeg datasets for motor imagery brain–computer interface. GigaScience, 6(7):gix034. (páginas 38, 40, 59, 64, 91, 92, 100, 104 y 139) | spa |
dc.relation.references | [Cho et al., 2021] Cho, J.-H., Jeong, J.-H., and Lee, S.-W. (2021). Neurograsp: Real- time eeg classification of high-level motor imagery tasks using a dual-stage deep learning framework. IEEE Transactions on Cybernetics, 52(12):13279–13292. (páginas 5, 31 y 110) | spa |
dc.relation.references | [Choi et al., 2020a] Choi, I., Kwon, G. H., Lee, S., and Nam, C. S. (2020a). Functional electrical stimulation controlled by motor imagery brain-computer interface for rehabilitation. Brain Sciences, 10(8):512. (página 1) | spa |
dc.relation.references | [Choi et al., 2020b] Choi, J., Kim, K. T., Jeong, J. H., Kim, L., Lee, S. J., and Kim, H. (2020b). Developing a motor imagery-based real-time asynchronous hybrid bci controller for a lower-limb exoskeleton. Sensors, 20(24):7309. (páginas 5, 30, 31 y 110 | spa |
dc.relation.references | [Choi, 2013] Choi, K. (2013). Electroencephalography (eeg)-based neurofeedback training for brain–computer interface (bci). Experimental brain research, 231:351– 365. (página 74) | spa |
dc.relation.references | [Chu et al., 2018] Chu, Y., Zhao, X., Zou, Y., Xu, W., Han, J., and Zhao, Y. (2018). A decoding scheme for incomplete motor imagery eeg with deep belief network. Frontiers in neuroscience, 12:680. (página 17) | spa |
dc.relation.references | [Citron, 2012] Citron, F. M. (2012). Neural correlates of written emotion word processing: A review of recent electrophysiological and hemodynamic neuroimaging studies. Brain and language, 122(3):211–226. (página 120) | spa |
dc.relation.references | [Collazos-Huertas et al., 2020] Collazos-Huertas, D., Caicedo-Acosta, J., Castaño- Duque, G. A., and Acosta-Medina, C. D. (2020). Enhanced multiple instance representation using time-frequency atoms in motor imagery classification. Frontiers in Neuroscience, 14:155. (páginas 3 y 4) | spa |
dc.relation.references | [Collazos-Huertas et al., 2019] Collazos-Huertas, D., Cárdenas-Peña, D., and Castellanos-Dominguez, G. (2019). Instance-based representation using multiple kernel learning for predicting conversion to alzheimer disease. International journal of neural systems, 29(02):1850042. (página 6) | spa |
dc.relation.references | [Collazos-Huertas et al., 2023] Collazos-Huertas, D. F., Álvarez-Meza, A. M., Cárdenas-Peña, D. A., Castaño-Duque, G. A., and Castellanos-Domínguez, C. G. (2023). Posthoc interpretability of neural responses by grouping subject motor imagery skills using cnn-based connectivity. Sensors, 23(5):2750. (páginas 86 y 102) | spa |
dc.relation.references | [Collazos-Huertas et al., 2021a] Collazos-Huertas, D. F., Álvarez-Meza, A. M., and Castellanos-Dominguez, G. (2021a). Spatial interpretability of time-frequency relevance optimized in motor imagery discrimination using deep&wide networks. Biomedical Signal Processing and Control, 68:102626. (páginas 13, 49 y 53) | spa |
dc.relation.references | [Collazos-Huertas et al., 2021b] Collazos-Huertas, D. F., Velasquez-Martinez, L. F., Perez-Nastar, H. D., Alvarez-Meza, A. M., and Castellanos-Dominguez, G. (2021b). Deep and wide transfer learning with kernel matching for pooling data from electroencephalography and psychological questionnaires. Sensors, 21(15):5105. (página 23) | spa |
dc.relation.references | [Cona et al., 2009] Cona, F., Zavaglia, M., Astolfi, L., Babiloni, F., Ursino, M., et al. (2009). Changes in eeg power spectral density and cortical connectivity in healthy and tetraplegic patients during a motor imagery task. Computational intelligence and neuroscience, 2009. (página 25) | spa |
dc.relation.references | [de Bogotá et al., 2018] de Bogotá, C. d. C. et al. (2018). La agenda 2030 y los objetivos de desarrollo sostenible una oportunidad para américa latina y el caribe. (página 2) | spa |
dc.relation.references | [Deriche et al., 2019] Deriche, M., Arafat, S., Al-Insaif, S., and Siddiqui, M. (2019). Eigenspace time frequency based features for accurate seizure detection from eeg data. IRBM, 40(2):122–132. (página 23) | spa |
dc.relation.references | [Deshmukh et al., 2021] Deshmukh, S., Thirupathi Rao, K., and Shabaz, M. (2021). Collaborative learning based straggler prevention in large-scale distributed computing framework. Security and communication networks, 2021:1– 9. (páginas 9 and 14) | spa |
dc.relation.references | [Djamal and Putra, 2020] Djamal, E. C. and Putra, R. D. (2020). Brain-computer interface of focus and motor imagery using wavelet and recurrent neural networks. Telkomnika (Telecommunication Computing Electronics and Control), 18(5):2748–2756. (página 2) | spa |
dc.relation.references | [Duan et al., 2021] Duan, X., Xie, S., Xie, X., Obermayer, K., Cui, Y., and Wang, Z. (2021). An online data visualization feedback protocol for motor imagery-based bci training. Frontiers in human neuroscience, 15:266. (páginas 11 and 16) | spa |
dc.relation.references | [Duan et al., 2023] Duan, Y., Wang, Z., Li, Y., Tang, J., Wang, Y.-K., and Lin, C.- T. (2023). Cross task neural architecture search for eeg signal recognition. Neurocomputing, 545:126260. (página 117) | spa |
dc.relation.references | [Echtioui et al., 2021] Echtioui, A., Zouch, W., Ghorbel, M., Mhiri, C., and Hamam, H. (2021). A novel ensemble learning approach for classification of eeg motor imagery signals. In 2021 International Wireless Communications and Mobile Computing (IWCMC), pages 1648–1653. IEEE. (página 27) | spa |
dc.relation.references | [Farahani and Karwowski, 2019] Farahani, F. V. and Karwowski, W. (2019). Computational methods for analyzing functional and effective brain network connectivity using fmri. In Advances in Neuroergonomics and Cognitive Engineering: Proceedings of the AHFE 2018 International Conference on Neuroergonomics and Cognitive Engineering, July 21–25, 2018, Loews Sapphire Falls Resort at Universal Studios, Orlando, Florida USA 9, pages 101–112. Springer. (páginas 4 and 19) | spa |
dc.relation.references | [Farahani et al., 2019] Farahani, F. V., Karwowski, W., and Lighthall, N. R. (2019). Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review. frontiers in Neuroscience, 13:585. (páginas 4 and 19) | spa |
dc.relation.references | [Feng et al., 2020] Feng, Z., Qian, L., Hu, H., and Sun, Y. (2020). Functional connectivity for motor imaginary recognition in brain-computer interface. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 3678–3682. IEEE. (página 24) | spa |
dc.relation.references | [Feradov et al., 2020] Feradov, F., Mporas, I., and Ganchev, T. (2020). Evaluation of features in detection of dislike responses to audio–visual stimuli from eeg signals. Computers, 9(2):33. (página 23) | spa |
dc.relation.references | [Fraiwan et al., 2021] Fraiwan, M., Alafeef, M., and Almomani, F. (2021). Gauging human visual interest using multiscale entropy analysis of eeg signals. Journal of Ambient Intelligence and Humanized Computing, 12(2):2435–2447. (página 1) | spa |
dc.relation.references | [Friston, ] Friston, K. Feb 2009a. causal modelling and brain connectivity in functional magnetic resonance imaging. PLoS Biol, 7(2):e33. (páginas 5 and 19) | spa |
dc.relation.references | [Friston et al., 1991] Friston, K. J., Frith, C., Liddle, P., and Frackowiak, R. (1991). Comparing functional (pet) images: the assessment of significant change. Journal of Cerebral Blood Flow & Metabolism, 11(4):690–699. (páginas 4 and 19) | spa |
dc.relation.references | [Fu et al., 2019] Fu, Z., Tu, Y., Di, X., Du, Y., Sui, J., Biswal, B. B., Zhang, Z., de Lacy, N., and Calhoun, V. D. (2019). Transient increased thalamic-sensory connectivity and decreased whole-brain dynamism in autism. Neuroimage, 190:191–204. (página 12) | spa |
dc.relation.references | [García-Bermúdez et al., 2010] García-Bermúdez, R., Ruiz, F. R., Peñalver, J. G., Cansino, O. V., Pérez, L. V., Torres, C., and Becerra-García, R. (2010). Evaluation of electro-oculography data for ataxia sca-2 classification: A blind source separation approach. In 2010 10th International Conference on Intelligent Systems Design and Applications, pages 237–241. IEEE. (página 128) | spa |
dc.relation.references | [García-Murillo et al., 2021] García-Murillo, D. G., Alvarez-Meza, A., and Castellanos-Dominguez, G. (2021). Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks. Sensors, 21(8):2750. (páginas 11 and 47) | spa |
dc.relation.references | [García-Murillo et al., 2023] García-Murillo, D. G., Álvarez-Meza, A. M., and Castellanos-Dominguez, C. G. (2023). Kcs-fcnet: Kernel cross-spectral functional connectivity network for eeg-based motor imagery classification. Diagnostics, 13(6):1122. (páginas 3, 4, 46, 57, 59 y 83) | spa |
dc.relation.references | [Géron, 2022] Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. .O’Reilly Media, Inc.”. (páginas 46, 47, 59 y 104) | spa |
dc.relation.references | [Han et al., 2019] Han, C.-H., Kim, Y.-W., Kim, D. Y., Kim, S. H., Nenadic, Z., and Im, C.-H. (2019). Electroencephalography-based endogenous brain–computer interface for online communication with a completely locked-in patient. Journal of neuroengineering and rehabilitation, 16:1–13. (páginas 8 and 11) | spa |
dc.relation.references | [Hasan et al., 2020] Hasan, M. A., Khan, M. U., and Mishra, D. (2020). A computationally efficient method for hybrid eeg-fnirs bci based on the pearson correlation. BioMed Research International, 2020:1–13. (página 26) | spa |
dc.relation.references | [Hassanpour et al., 2019] Hassanpour, A., Moradikia, M., Adeli, H., Khayami, S. R., and Shamsinejadbabaki, P. (2019). A novel end-to-end deep learning scheme for classifying multi-class motor imagery electroencephalography signals. Expert Systems, 36(6):e12494. (página 17) | spa |
dc.relation.references | [He and Wu, 2019] He, H. and Wu, D. (2019). Transfer learning for brain–computer interfaces: A euclidean space data alignment approach. IEEE Transactions on Biomedical Engineering, 67(2):399–410. (página 2) | spa |
dc.relation.references | [He et al., 2022] He, Y., Lu, Z., Wang, J., and Shi, J. (2022). A channel attention based mlp-mixer network for motor imagery decoding with eeg. In ICASSP 2022- 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1291–1295. IEEE. (página 20) | spa |
dc.relation.references | [Hoffmann et al., 2021] Hoffmann, A., Fanconi, C., Rade, R., and Kohler, J. (2021). This looks like that... does it? shortcomings of latent space prototype interpretability in deep networks. arXiv preprint arXiv:2105.02968. (página 12) | spa |
dc.relation.references | [Hsu, 2014] Hsu, W.-Y. (2014). Improving classification accuracy of motor imagery eeg using genetic feature selection. Clinical EEG and neuroscience, 45(3):163–168. (página 19) | spa |
dc.relation.references | [Huang et al., 2020] Huang, W., Xue, Y., Hu, L., and Liuli, H. (2020). S-eegnet: Electroencephalogram signal classification based on a separable convolution neural network with bilinear interpolation. IEEE Access, 8:131636–131646. (página 18) | spa |
dc.relation.references | [Huang et al., 2019] Huang, Y.-C., Chang, J.-R., Chen, L.-F., and Chen, Y.-S. (2019). Deep neural network with attention mechanism for classification of motor imagery eeg. In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pages 1130–1133. IEEE. (página 21) | spa |
dc.relation.references | [Hurtado-Rincón et al., 2016] Hurtado-Rincón, J. V., Martínez-Vargas, J. D., Rojas- Jaramillo, S., Giraldo, E., and Castellanos-Dominguez, G. (2016). Identification of relevant inter-channel eeg connectivity patterns: a kernel-based supervised approach. In Brain Informatics and Health: International Conference, BIH 2016, Omaha, NE, USA, October 13-16, 2016 Proceedings, pages 14–23. Springer. (página 6) | spa |
dc.relation.references | [Ince et al., 2007] Ince, N. F., Tewfik, A. H., and Arica, S. (2007). Extraction subject- specific motor imagery time–frequency patterns for single trial eeg classification. Computers in biology and medicine, 37(4):499–508. (página 16) | spa |
dc.relation.references | [Jiang et al., 2021] Jiang, P.-T., Zhang, C.-B., Hou, Q., Cheng, M.-M., and Wei, Y. (2021). Layercam: Exploring hierarchical class activation maps for localization. IEEE Transactions on Image Processing, 30:5875–5888. (página 51) | spa |
dc.relation.references | [Kim and Im, 2021] Kim, H. and Im, C.-H. (2021). Influence of the number of channels and classification algorithm on the performance robustness to electrode shift in steady-state visual evoked potential-based brain-computer interfaces. Frontiers in Neuroinformatics, 15:750839. (páginas 10 y 15) | spa |
dc.relation.references | [Kisakye, 2013] Kisakye, H. S. (2013). Brain computer interfaces: OpenViBE as a platform for a p300 speller. PhD thesis, Hochschule Heilbronn. (páginas 29 y 30 | spa |
dc.relation.references | [Klein et al., 2022] Klein, F., Debener, S., Witt, K., and Kranczioch, C. (2022). fmri-based validation of continuous-wave fnirs of supplementary motor area activation during motor execution and motor imagery. Scientific reports, 12(1):3570. (página 10) | spa |
dc.relation.references | [Ko et al., 2021] Ko, W., Jeon, E., Jeong, S., and Suk, H.-I. (2021). Multi-scale neural network for eeg representation learning in bci. IEEE Computational Intelligence Magazine, 16(2):31–45. (página 91) | spa |
dc.relation.references | [Kong et al., 2021] Kong, Q., Wu, Y., Yuan, C., and Wang, Y. (2021). Ct-cad: Context- aware transformers for end-to-end chest abnormality detection on x-rays. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 1385– 1388. IEEE. (páginas 21 and 91) | spa |
dc.relation.references | [Kumar et al., 2016] Kumar, S., Sharma, A., Mamun, K., and Tsunoda, T. (2016). A deep learning approach for motor imagery eeg signal classification. In 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), pages 34–39. IEEE. (página 27) | spa |
dc.relation.references | [Kumar et al., 2021] Kumar, S., Sharma, R., and Sharma, A. (2021). Optical+: a frequency-based deep learning scheme for recognizing brain wave signals. Peerj Computer Science, 7:e375. (página 91) | spa |
dc.relation.references | [Kundu and Ari, 2022] Kundu, S. and Ari, S. (2022). Brain-computer interface speller system for alternative communication: a review. IRBM, 43(4):317–324. (página 2) | spa |
dc.relation.references | [Lawhern et al., 2018] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., and Lance, B. J. (2018). Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces. Journal of neural engineering, 15(5):056013. (páginas 20, 52, 53, 59, 64, 91, 98 y 101) | spa |
dc.relation.references | [Lee and Schachter, 1980] Lee, D.-T. and Schachter, B. J. (1980). Two algorithms for constructing a delaunay triangulation. International Journal of Computer & Information Sciences, 9(3):219–242. (página 49) | spa |
dc.relation.references | [Li and Song, 2023] Li, C. and Song, L. (2023). Gcn-lstm for eeg classification based on unspoken speech of bilinguals. In 2023 24th International Conference on Digital Signal Processing (DSP), pages 1–4. IEEE. (páginas 20 and 52) | spa |
dc.relation.references | [Li and Ruan, 2021] Li, M.-a. and Ruan, Z.-w. (2021). A novel decoding method for motor imagery tasks with 4d data representation and 3d convolutional neural networks. Journal of Neural Engineering, 18(4):046029. (página 26) | spa |
dc.relation.references | [Li et al., 2018] Li, Z., Song, Y., Xiao, G., Gao, F., Xu, S., Wang, M., Zhang, Y., Guo, F., Liu, J., Xia, Y., et al. (2018). Bio-electrochemical microelectrode arrays for glutamate and electrophysiology detection in hippocampus of temporal lobe epileptic rats. Analytical biochemistry, 550:123–131. (páginas 120 and 122) | spa |
dc.relation.references | [Liang et al., 2021] Liang, Y., Li, S., Yan, C., Li, M., and Jiang, C. (2021). Explaining the black-box model: A survey of local interpretation methods for deep neural networks. Neurocomputing, 419:168–182. (página 13) | spa |
dc.relation.references | [Liu et al., 2022] Liu, G., Tian, L., and Zhou, W. (2022). Multiscale time-frequency method for multiclass motor imagery brain computer interface. Computers in Biology and Medicine, 143:105299. (página 11) | spa |
dc.relation.references | [Llanos et al., 2013] Llanos, C., Rodriguez, M., Rodriguez-Sabate, C., Morales, I., and Sabate, M. (2013). Mu-rhythm changes during the planning of motor and motor imagery actions. Neuropsychologia, 51(6):1019–1026. (página 74) | spa |
dc.relation.references | [López et al., 2016] López, A., Ferrero, F., Valledor, M., Campo, J. C., and Postolache, O. (2016). A study on electrode placement in eog systems for medical applications. In 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pages 1–5. IEEE. (páginas 127, 128 y 129) | spa |
dc.relation.references | [Luo et al., 2018] Luo, T.-j., Zhou, C.-l., and Chao, F. (2018). Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC bioinformatics, 19(1):1–18. (páginas 4 and 18) | spa |
dc.relation.references | [Ma et al., 2020] Ma, X., Wang, D., Liu, D., and Yang, J. (2020). Dwt and cnn based multi-class motor imagery electroencephalographic signal recognition. Journal of neural engineering, 17(1):016073. (página 18) | spa |
dc.relation.references | [Malmivuo et al., 1995] Malmivuo, J., Plonsey, R., et al. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA. (página 128) | spa |
dc.relation.references | [Marcos-Martínez et al., 2021] Marcos-Martínez, D., Martínez-Cagigal, V., Santamaría-Vázquez, E., Pérez-Velasco, S., and Hornero, R. (2021). Neurofeedback training based on motor imagery strategies increases eeg complexity in elderly population. Entropy, 23(12):1574. (página 2) | spa |
dc.relation.references | [Marks and Isaac, 1995] Marks, D. F. and Isaac, A. R. (1995). Topographical distribution of eeg activity accompanying visual and motor imagery in vivid and non-vivid imagers. British Journal of Psychology, 86(2):271–282. (página 23) | spa |
dc.relation.references | [Martini et al., 2020] Martini, M. L., Oermann, E. K., Opie, N. L., Panov, F., Oxley, T., and Yaeger, K. (2020). Sensor modalities for brain-computer interface technology: a comprehensive literature review. Neurosurgery, 86(2):E108–E117. (página 4) | spa |
dc.relation.references | [Meng et al., 2022] Meng, C., Trinh, L., Xu, N., Enouen, J., and Liu, Y. (2022). Interpretability and fairness evaluation of deep learning models on mimic-iv dataset. Scientific Reports, 12(1):7166. (páginas 13, 22 y 116) | spa |
dc.relation.references | [Miao et al., 2020] Miao, M., Hu, W., Yin, H., and Zhang, K. (2020). Spatial- frequency feature learning and classification of motor imagery eeg based on deep convolution neural network. Computational and mathematical methods in medicine, 2020. (páginas 1, 3 y 8) | spa |
dc.relation.references | [Miraglia et al., 2022] Miraglia, F., Vecchio, F., Pappalettera, C., Nucci, L., Cotelli, M., Judica, E., Ferreri, F., and Rossini, P. M. (2022). Brain connectivity and graph theory analysis in alzheimer’s and parkinson’s disease: the contribution of electrophysiological techniques. Brain Sciences, 12(3):402. (página 19) | spa |
dc.relation.references | [Mridha et al., 2021] Mridha, M. F., Das, S. C., Kabir, M. M., Lima, A. A., Islam, M. R., and Watanobe, Y. (2021). Brain-computer interface: Advancement and challenges. Sensors, 21(17):5746. (página 17) | spa |
dc.relation.references | [Muñiz et al., 2009] Muñiz, C., Rodríguez, F. d. B., and Varona, P. (2009). Rtbiomanager: a software platform to expand the applications of real-time technology in neuroscience. BMC Neuroscience, 10(Suppl 1):P49. (página 5) | spa |
dc.relation.references | [Nahmias et al., ] Nahmias, D. O., Civillico, E. F., and Kontson, K. L. Deep learning and feature based medication classifications from eeg in a large clinical data set. Scientific Reports. (página 117) | spa |
dc.relation.references | [Nasihatkon et al., 2009] Nasihatkon, B., Boostani, R., and Jahromi, M. Z. (2009). An efficient hybrid linear and kernel csp approach for eeg feature extraction. Neurocomputing, 73(1-3):432–437. (página 23) | spa |
dc.relation.references | [Netzer et al., 2020] Netzer, E., Frid, A., and Feldman, D. (2020). Real-time eeg classification via coresets for bci applications. Engineering applications of artificial intelligence, 89:103455. (páginas 26 and 30) | spa |
dc.relation.references | [Nicolas-Alonso and Gomez-Gil, 2012] Nicolas-Alonso, L. F. and Gomez-Gil, J. (2012). Brain computer interfaces, a review. sensors, 12(2):1211–1279. (página 3) | spa |
dc.relation.references | [Padfield et al., 2019] Padfield, N., Zabalza, J., Zhao, H., Masero, V., and Ren, J. (2019). Eeg-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors, 19(6):1423. (páginas 1, 3, 8, 11 y 15) | spa |
dc.relation.references | [Phunruangsakao et al., 2022] Phunruangsakao, C., Achanccaray, D., and Hayashibe, M. (2022). Deep adversarial domain adaptation with few-shot learning for motor-imagery brain-computer interface. IEEE Access, 10:57255– 57265. (página 20) | spa |
dc.relation.references | [Pires et al., 2022] Pires, G., Cruz, A., Jesus, D., Yasemin, M., Nunes, U. J., Sousa, T., and Castelo-Branco, M. (2022). A new error-monitoring brain–computer interface based on reinforcement learning for people with autism spectrum disorders. Journal of Neural Engineering, 19(6):066032. (páginas 5, 31 y 110) | spa |
dc.relation.references | [Polat et al., 2021] Polat, K., Aygun, A. B., and Kavsaoglu, A. R. (2021). Eeg based brain-computer interface control applications: A comprehensive review. Journal of Bionic Memory, 1(1):20–33. (páginas 1 y 10) | spa |
dc.relation.references | [Pulgarin-Giraldo et al., 2017] Pulgarin-Giraldo, J. D., Ruales-Torres, A., Álvarez- Meza, A. M., and Castellanos-Dominguez, G. (2017). Relevant kinematic feature selection to support human action recognition in mocap data. In Biomedical Applications Based on Natural and Artificial Computing: International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Corunna, Spain, June 19-23, 2017, Proceedings, Part II, pages 501–509. Springer. (página 6) | spa |
dc.relation.references | [Qayyum et al., 2022] Qayyum, A., Razzak, I., Moustafa, N., and Mazher, M. (2022). Progressive shallownet for large scale dynamic and spontaneous facial behaviour analysis in children. Image and Vision Computing, 119:104375. (páginas 20 and 52) | spa |
dc.relation.references | [Rashid et al., 2020] Rashid, M., Sulaiman, N., PP Abdul Majeed, A., Musa, R. M., Ab Nasir, A. F., Bari, B. S., and Khatun, S. (2020). Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review. Frontiers in neurorobotics, page 25. (página 17) | spa |
dc.relation.references | [Rodrigues et al., 2019] Rodrigues, P. G., Attux, R., Castellano, G., Soriano, D. C., et al. (2019). Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces. Medical & biological engineering & computing, 57(8):1709–1725. (página 91) | spa |
dc.relation.references | [Rolls et al., 2022] Rolls, E. T., Deco, G., Huang, C.-C., and Feng, J. (2022). The effective connectivity of the human hippocampal memory system. Cerebral Cortex, 32(17):3706–3725. (página 5) | spa |
dc.relation.references | [Ros et al., 2014] Ros, T., J. Baars, B., Lanius, R. A., and Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Frontiers in human neuroscience, 8:1008. (páginas 120 and 121) | spa |
dc.relation.references | [Rossini et al., 2019] Rossini, P. M., Di Iorio, R., Bentivoglio, M., Bertini, G., Ferreri, F., Gerloff, C., Ilmoniemi, R. J., Miraglia, F., Nitsche, M. A., Pestilli, F., et al. (2019). Methods for analysis of brain connectivity: An ifcn-sponsored review. Clinical Neurophysiology, 130(10):1833–1858. (página 12) | spa |
dc.relation.references | [Roy et al., 2020] Roy, S., Chowdhury, A., McCreadie, K., and Prasad, G. (2020). Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces. Frontiers in Neuroscience, 14:918. (página 20) | spa |
dc.relation.references | [Ruiz-Gómez et al., 2019] Ruiz-Gómez, S. J., Hornero, R., Poza, J., Maturana- Candelas, A., Pinto, N., and Gómez, C. (2019). Computational modeling of the effects of eeg volume conduction on functional connectivity metrics. application to alzheimer’s disease continuum. Journal of neural engineering, 16(6):066019. (página 25) | spa |
dc.relation.references | [Saha and Baumert, 2020] Saha, S. and Baumert, M. (2020). Intra-and inter-subject variability in eeg-based sensorimotor brain computer interface: a review. Frontiers in computational neuroscience, 13:87. (página 8) | spa |
dc.relation.references | [Schalk et al., 2004] Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., and Wolpaw, J. R. (2004). Bci2000: a general-purpose brain-computer interface (bci) system. IEEE Transactions on biomedical engineering, 51(6):1034–1043. (páginas 28 and 29) | spa |
dc.relation.references | [Selvaraju et al., 2016] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2016). Grad-cam: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 128:336–359. (página 25) | spa |
dc.relation.references | [Selvaraju et al., 2017] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626. (página 51) | spa |
dc.relation.references | [Sharma et al., 2023a] Sharma, K., Dash, A., and Kumar, D. (2023a). Investigating the effect of eeg channel selection on inter-subject emotion classification. In 2023 13th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pages 312–316. IEEE. (página 10) | spa |
dc.relation.references | [Sharma et al., 2023b] Sharma, N., Sharma, M., Singhal, A., Vyas, R., Malik, H., Afthanorhan, A., and Hossaini, M. A. (2023b). Recent trends in eeg based motor imagery signal analysis and recognition: A comprehensive review. IEEE Access. (página 117) | spa |
dc.relation.references | [Shen et al., 2017] Shen, Y., Lu, H., and Jia, J. (2017). Classification of motor imagery eeg signals with deep learning models. In Intelligence Science and Big Data Engineering: 7th International Conference, IScIDE 2017, Dalian, China, September 22-23, 2017, Proceedings 6, pages 181–190. Springer. (página 27) | spa |
dc.relation.references | [Shin et al., 2022] Shin, H., Suma, D., and He, B. (2022). Closed-loop motor imagery eeg simulation for brain-computer interfaces. Frontiers in Human Neuroscience, 16:951591. (página 2) | spa |
dc.relation.references | [Shoka et al., 2019] Shoka, A., Dessouky, M., El-Sherbeny, A., and El-Sayed, A. (2019). Literature review on eeg preprocessing, feature extraction, and classifications techniques. Menoufia J. Electron. Eng. Res, 28(1):292–299. (páginas 4, 11 y 15) | spa |
dc.relation.references | [Singh et al., 2021] Singh, A., Hussain, A. A., Lal, S., and Guesgen, H. W. (2021). A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors, 21(6):2173. (página 17) | spa |
dc.relation.references | [Song et al., 2021] Song, Y., Jia, X., Yang, L., and Xie, L. (2021). Transformer- based spatial-temporal feature learning for eeg decoding. arXiv preprint arXiv:2106.11170. (página 20) | spa |
dc.relation.references | [Stergiadis et al., 2022] Stergiadis, C., Kostaridou, V.-D., and Klados, M. A. (2022). Which bss method separates better the eeg signals? a comparison of five different algorithms. Biomedical Signal Processing and Control, 72:103292. (página 17) | spa |
dc.relation.references | [Sturm et al., 2016] Sturm, I., Lapuschkin, S., Samek, W., and Müller, K.-R. (2016). Interpretable deep neural networks for single-trial eeg classification. Journal of neuroscience methods, 274:141–145. (página 26) | spa |
dc.relation.references | [Sugiarto and Putro, 2009] Sugiarto, I. and Putro, I. H. (2009). Application of distributed system in neuroscience, a case study of bci framework. In The 1st international seminar on science and technology. (páginas 9, 13, 14 y 96) | spa |
dc.relation.references | [Sun et al., 2022] Sun, B., Liu, Z., Wu, Z., Mu, C., and Li, T. (2022). Graph convolution neural network based end-to-end channel selection and classification for motor imagery brain-computer interfaces. IEEE transactions on industrial informatics. (página 20) | spa |
dc.relation.references | [Šverko et al., 2022] Šverko, Z., Vrankić, M., Vlahinić, S., and Rogelj, P. (2022). Complex pearson correlation coefficient for eeg connectivity analysis. Sensors, 22(4):1477. (página 24) | spa |
dc.relation.references | [Taheri et al., 2020] Taheri, S., Ezoji, M., and Sakhaei, S. M. (2020). Convolutional neural network based features for motor imagery eeg signals classification in brain–computer interface system. SN Applied Sciences, 2:1–12. (página 18) | spa |
dc.relation.references | [Taherian and Davies, 2018] Taherian, S. and Davies, T. C. (2018). Caregiver and special education staff perspectives of a commercial brain-computer interface as access technology: a qualitative study. Brain-Computer Interfaces, 5(2-3):73–87. (páginas 1 y 2) | spa |
dc.relation.references | [Tang et al., 2019] Tang, X., Zhao, J., Fu, W., Pan, J., and Zhou, H. (2019). A novel classification algorithm for mi-eeg based on deep learning. In 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pages 606–611. IEEE. (página 26) | spa |
dc.relation.references | [Teng et al., 2022] Teng, Q., Liu, Z., Song, Y., Han, K., and Lu, Y. (2022). A survey on the interpretability of deep learning in medical diagnosis. Multimedia Systems, pages 1–21. (página 25) | spa |
dc.relation.references | [Thiebaut de Schotten and Forkel, 2022] Thiebaut de Schotten, M. and Forkel, S. J. (2022). The emergent properties of the connected brain. Science, 378(6619):505– 510. (páginas 12 y 19) | spa |
dc.relation.references | [Tibor Schirrmeister et al., 2017] Tibor Schirrmeister, R., Gemein, L., Eggensperger, K., Hutter, F., and Ball, T. (2017). Deep learning with convolutional neural networks for decoding and visualization of eeg pathology. arXiv e-prints, pages arXiv–1708. (página 27) | spa |
dc.relation.references | [Tobón-Henao et al., 2022] Tobón-Henao, M., Álvarez-Meza, A., and Castellanos- Domínguez, G. (2022). Subject-dependent artifact removal for enhancing motor imagery classifier performance under poor skills. Sensors, 22(15):5771. (páginas 8, 11, 17, 44, 59, 64, 77, 107 y 112) | spa |
dc.relation.references | [Tobon-Henao et al., 2023] Tobon-Henao, M., Álvarez-Meza, A., and Castellanos- Dominguez, G. (2023). Kernel-based regularized eegnet using centered alignment and gaussian connectivity for motor imagery discrimination. (páginas 20 y 112) | spa |
dc.relation.references | [Torralba et al., 2015] Torralba, A., Zhou, B., and Khosla, A. (2015). Learning deep features for discriminative localization. CoRR abs/1512.04150. (página 50) | spa |
dc.relation.references | [Tremmel et al., 2019] Tremmel, C., Herff, C., Sato, T., Rechowicz, K., Yamani, Y., and Krusienski, D. J. (2019). Estimating cognitive workload in an interactive virtual reality environment using eeg. Frontiers in human neuroscience, 13:401. (páginas 1 and 10) | spa |
dc.relation.references | [Uribe et al., 2019] Uribe, L. F. S., Stefano Filho, C. A., de Oliveira, V. A., da Silva Costa, T. B., Rodrigues, P. G., Soriano, D. C., Boccato, L., Castellano, G., and Attux, R. (2019). A correntropy-based classifier for motor imagery brain-computer interfaces. Biomedical Physics & Engineering Express, 5(6):065026. (página 17) | spa |
dc.relation.references | [Velasquez-Martinez et al., 2020a] Velasquez-Martinez, L., Caicedo-Acosta, J., and Castellanos-Dominguez, G. (2020a). Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns. Entropy, 22(6):703. (página 59) | spa |
dc.relation.references | [Velasquez-Martinez et al., 2020b] Velasquez-Martinez, L. F., Zapata-Castano, F., and Castellanos-Dominguez, G. (2020b). Dynamic modeling of common brain neural activity in motor imagery tasks. Frontiers in Neuroscience, 14:714. (página 22) | spa |
dc.relation.references | [Vidaurre and Blankertz, 2010] Vidaurre, C. and Blankertz, B. (2010). Towards a cure for bci illiteracy. Brain topography, 23:194–198. (página 11) | spa |
dc.relation.references | [Vinogradova et al., 2020] Vinogradova, K., Dibrov, A., and Myers, G. (2020). Towards interpretable semantic segmentation via gradient-weighted class activation mapping (student abstract). In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 13943–13944. (página 52) | spa |
dc.relation.references | [Vogel and Machizawa, 2004] Vogel, E. K. and Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984):748–751. (página 135) | spa |
dc.relation.references | [Wang et al., 2020] Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., Mardziel, P., and Hu, X. (2020). Score-cam: Score-weighted visual explanations for convolutional neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 24–25. (página 51) | spa |
dc.relation.references | [Wang et al., 2018] Wang, P., Jiang, A., Liu, X., Shang, J., and Zhang, L. (2018). Lstm- based eeg classification in motor imagery tasks. IEEE transactions on neural systems and rehabilitation engineering, 26(11):2086–2095. (página 17) | spa |
dc.relation.references | [Wang et al., 2023] Wang, W., Li, B., Wang, H., Wang, X., Qin, Y., Shi, X., and Liu, S. (2023). Eeg-fmcnn: A fusion multi-branch 1d convolutional neural network for eeg-based motor imagery classification. Medical & Biological Engineering & Computing, pages 1–14. (página 117) | spa |
dc.relation.references | [Wilson et al., 2010] Wilson, J. A., Mellinger, J., Schalk, G., and Williams, J. (2010). A procedure for measuring latencies in brain–computer interfaces. IEEE transactions on biomedical engineering, 57(7):1785–1797. (páginas 28, 29 y 30) | spa |
dc.relation.references | [Wolpaw and McFarland, 1994] Wolpaw, J. R. and McFarland, D. J. (1994). Multichannel eeg-based brain-computer communication. Electroencephalography and clinical Neurophysiology, 90(6):444–449. (página 2) | spa |
dc.relation.references | [Wriessnegger et al., 2020] Wriessnegger, S. C., Müller-Putz, G. R., Brunner, C., and Sburlea, A. I. (2020). Inter-and intra-individual variability in brain oscillations during sports motor imagery. Frontiers in human neuroscience, 14:576241. (página 11) | spa |
dc.relation.references | [Xie et al., 2022] Xie, J., Zhang, J., Sun, J., Ma, Z., Qin, L., Li, G., Zhou, H., and Zhan, Y. (2022). A transformer-based approach combining deep learning network and spatial-temporal information for raw eeg classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30:2126–2136. (páginas 20 y 26) | spa |
dc.relation.references | [Xu et al., 2018] Xu, B., Zhang, L., Song, A., Wu, C., Li, W., Zhang, D., Xu, G., Li, H., and Zeng, H. (2018). Wavelet transform time-frequency image and convolutional network-based motor imagery eeg classification. Ieee Access, 7:6084–6093. (página 17) | spa |
dc.relation.references | [Xygonakis et al., 2018] Xygonakis, I., Athanasiou, A., Pandria, N., Kugiumtzis, D., Bamidis, P. D., et al. (2018). Decoding motor imagery through common spatial pattern filters at the eeg source space. Computational intelligence and neuroscience, 2018. (páginas 8, 10 y 15) | spa |
dc.relation.references | [Yang et al., 2015] Yang, H., Sakhavi, S., Ang, K. K., and Guan, C. (2015). On the use of convolutional neural networks and augmented csp features for multi-class motor imagery of eeg signals classification. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 2620– 2623. IEEE. (página 27) | spa |
dc.relation.references | [Yang et al., 2021] Yang, H., Xiong, W., Zhang, X., Wang, K., and Tian, M. (2021). Penalized homophily latent space models for directed scale-free networks. Plos one, 16(8):e0253873. (página 13) | spa |
dc.relation.references | [Yang et al., 2020] Yang, J., Ma, Z., Wang, J., and Fu, Y. (2020). A novel deep learning scheme for motor imagery eeg decoding based on spatial representation fusion. IEEE Access, 8:202100–202110. (página 16) | spa |
dc.relation.references | [Yap et al., 2017] Yap, H.-y., Choo, Y.-h., and Khoh, W.-h. (2017). Overview of acquisition protocol in eeg based recognition system. In Brain Informatics: International Conference, BI 2017, Beijing, China, November 16-18, 2017, Proceedings, pages 129–138. Springer. (página 119) | spa |
dc.relation.references | [Yuan and He, 2014] Yuan, H. and He, B. (2014). Brain–computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Transactions on Biomedical Engineering, 61(5):1425–1435. (página 2) | spa |
dc.relation.references | [Zhang et al., 2015] Zhang, L., Guindani, M., and Vannucci, M. (2015). Bayesian models for functional magnetic resonance imaging data analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 7(1):21–41. (páginas 5 and 19) | spa |
dc.relation.references | [Zhang et al., 2019] Zhang, Z., Duan, F., Sole-Casals, J., Dinares-Ferran, J., Cichocki, A., Yang, Z., and Sun, Z. (2019). A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access, 7:15945–15954. (página 20) | spa |
dc.relation.references | [Zhao et al., 2019] Zhao, X., Zhang, H., Zhu, G., You, F., Kuang, S., and Sun, L. (2019). A multi-branch 3d convolutional neural network for eeg-based motor imagery classification. IEEE transactions on neural systems and rehabilitation engineering, 27(10):2164–2177. (página 16) | spa |
dc.relation.references | [Zheng et al., 2013] Zheng, J., Cheng, J., and Yang, Y. (2013). A rolling bearing fault diagnosis approach based on lcd and fuzzy entropy. Mechanism and Machine Theory, 70:441–453. (página 30) | spa |
dc.relation.references | [Zhou et al., 2015] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2015). Learning deep features for discriminative localization. (página 25) | spa |
dc.relation.references | [Zhou et al., 2016] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016). Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2921–2929. (página 51) | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Interfaz cerebro computador | spa |
dc.subject.proposal | Imaginación motora | spa |
dc.subject.proposal | Electroencefalografía | spa |
dc.subject.proposal | Tiempo real | spa |
dc.subject.proposal | Aprendizaje profundo | spa |
dc.subject.proposal | Conectividad Gaussiana | spa |
dc.subject.proposal | Topogramas | spa |
dc.subject.proposal | Interpretabilidad | spa |
dc.subject.proposal | Brain-Computer Interface | eng |
dc.subject.proposal | Motor Imagery | eng |
dc.subject.proposal | Electroencephalography | eng |
dc.subject.proposal | Real-time | eng |
dc.subject.proposal | Deep Learning | eng |
dc.subject.proposal | Gaussian Connectivity | eng |
dc.subject.proposal | Topoplots | eng |
dc.subject.proposal | Interpretability | eng |
dc.title | Estrategia de procesamiento de señales EEG en sistemas BCI utilizando aprendizaje profundo y medidas de conectividad | spa |
dc.title.translated | EEG signal processing strategy in BCI systems using deep learning and connectivity measures | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1006022613.2023.pdf
- Tamaño:
- 18.87 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: