Conformación automática de portafolios de inversión usando analítica financiera

dc.contributor.advisorVelásquez Henao, Juan David
dc.contributor.authorEcheverri Sánchez, Laura Cristina
dc.contributor.researchgroupBig Data y Data Analyticsspa
dc.date.accessioned2022-03-14T14:48:55Z
dc.date.available2022-03-14T14:48:55Z
dc.date.issued2021-11
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractEn este trabajo se presenta un prototipo de simulación para evaluar diferentes estrategias de Comercio Algorítmico en el mercado financiero colombiano; esto con el fin de analizar si es posible incorporar este tipo de estrategias por parte de los inversionistas. Para construir las estrategias, se hacen uso de diversos tipos de modelos de Inteligencia Artificial, como por ejemplo redes neuronales, bosques aleatorios y regresión logística, los cuales predicen la tendencia del precio del día siguiente. Estas predicciones son transformadas en señales de compra y venta de las acciones que permiten la conformación diaria del portafolio. Las diferentes estrategias varían en cuanto al tipo de modelo entrenado para cada activo, el subconjunto de acciones seleccionado y otros parámetros que se dan en la negociación y que dependen exclusivamente de la aversión al riesgo del inversionista, tal como el porcentaje invertido en cada movimiento y la pérdida máxima aceptada. Las diferentes simulaciones permiten establecer la estrategia que logra la mayor rentabilidad para el inversionista, que en el escenario planteado en este trabajo consta de la selección de 11 acciones y un tipo de modelo diferente para cada activo según su mejor desempeño predictivo. Dicha estrategia alcanza una rentabilidad de 78% sobre la inversión. Los resultados de esta estrategia automática de negociación fueron comparados con la rentabilidad generada por la estrategia tradicional de conformación de portafolio Markowitz, la cual genera un 5% de pérdida. Al contrastar estos resultados se aprecian las bondades que trae para el inversionista implementar una estrategia automática de negociación basada en la predicción de la dirección del precio de las acciones. (Texto tomado de la fuente)spa
dc.description.abstractIn this work a simulation prototype is presented to evaluate different Algorithmic Trading strategies in the Colombian financial market; the purpose is to analyze the possibility to incorporate this type of strategy by investors. In order to build the strategies, various types of Artificial Intelligence models are applied, such as neural networks, random forests and logistic regression, which predict the price trend of the next day. These predictions are transformed into buy and sell signals for the stocks that allow the daily formation of the portfolio. The different strategies vary in terms of the type of model trained for each asset, the selected subset of stocks and other parameters that occur in the negotiation and that depend exclusively on the investor's aversion to risk, such as the percentage invested in each movement and the maximum accepted loss. The different simulations make it possible to establish the strategy that achieves the highest profitability for the investor, which in the scenario proposed in this work consists of the selection of 11 stocks and a different type of model for each asset according to its best predictive performance. This strategy achieves a 78% return on investment. The results of this automatic trading strategy were compared with the profitability generated by the traditional Markowitz portfolio formation strategy, which generates a 5% loss. When comparing these results, the benefits that the investor brings to implement an automatic negotiation strategy based on the prediction of the direction of the share price can be appreciated.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemasspa
dc.description.notesLas series de tiempo de las acciones seleccionadas son tomadas a modo de ejemplo con los datos disponibles de la Bolsa de Valores de Colombia, por lo que dicha información es netamente para uso práctico.spa
dc.description.researchareaAnalítica Predictivaspa
dc.format.extentxiv, 87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81198
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemasspa
dc.relation.referencesAloud, M. E. (2020). The role of attribute selection in Deep ANNs learning framework for high‐frequency financial trading. Intelligent Systems in Accounting, Finance and Management, 27(2), 43-54.spa
dc.relation.referencesArdanuy, J. (2012). Breve introducción a la bibliometría. Universidad de Barcelona.spa
dc.relation.referencesAtsalakis, G. S., & Valavanis, K. P. (2009). Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert systems with Applications, 36(7), 10696-10707spa
dc.relation.referencesAzzini, A & Tettamanzi, A. (2008). Evolutionary single-position automated trading. Workshops on Applications of Evolutionary Computation, Springer, Berlin, Heidelberg, pp. 62-72.spa
dc.relation.referencesBahadur, L. R. (2015). Financial Literacy: The Indian Story. World Journal of Social Sciences, 5(3), 45-57.spa
dc.relation.referencesBanco de la República. (s.f.). Mercado accionario. https://www.banrep.gov.co/es/estadisticas/mercado-accionariospa
dc.relation.referencesBarbosa, R. P., & Belo, O. (2008). Algorithmic Trading Using Intelligent Agents. In IC-AI (pp. 136-142).spa
dc.relation.referencesBBC (2018a). Wall Street: qué hay detrás de la estrepitosa caída de la bolsa en el último mes que borró las ganancias de todo 2018. https://www.bbc.com/mundo/noticias-45983822spa
dc.relation.referencesBBC (2018b). Wall Street sufre su peor semana en 10 años (qué significa para la economía global). https://www.bbc.com/mundo/noticias-46651665spa
dc.relation.referencesBerutich, J. M., López, F., Luna, F., & Quintana, D. (2016). Robust technical trading strategies using GP for algorithmic portfolio selection. Expert Systems with Applications, 46, 307-315.spa
dc.relation.referencesBerutich, J. M., López, F., Luna, F., & Quintana, D. (2016). Robust technical trading strategies using GP for algorithmic portfolio selection. Expert Systems with Applications, 46, 307-315.spa
dc.relation.referencesBlitz, D., & Huij, J. (2012). Evaluating the performance of global emerging markets equity exchange-traded funds. Emerging markets review, 13(2), 149-158.spa
dc.relation.referencesBolsa de Valores de Colombia (BVC) (2011). METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP. https://www.bvc.com.co/recursos/Files/Mercados/Indices_Accionarios/Nueva_Metodologia_Calculo_Indice_COLCAP.pdfspa
dc.relation.referencesBolsa de Valores de Colombia (BVC) (2020). Noticias Generales. https://www.bvc.com.co/pps/tibco/portalbvc/Home/NoticiasDetalle?com.tibco.ps.pagesvc.renderParams.sub5d9e2b27_11de9ed172b_-783b7f000001=rp.docURI%3Dpof%253A%252Fcom.tibco.psx.model.cp.Document%252F6ed219b4_1700ab5155b_-4a2ac0a84ca9%26rp.currentDocumentID%3D6ed219b4_1700ab5155b_-4a2ac0a84ca9%26action%3DopenDocument%26addDefaultTarget%3Dfalse%26spa
dc.relation.referencesBolsa de Valores de Colombia (BVC) (s.f.-a). Diccionario de Finanzas. https://www.bvc.com.co/pps/tibco/portalbvc/Home/Glosariospa
dc.relation.referencesBolsa de Valores de Colombia (BVC) (s.f.-b). Mercado de Renta Variable. https://www.bvc.com.co/pps/tibco/portalbvc/Home/Mercados/enlinea/acciones?action=dummyspa
dc.relation.referencesBrogaard, J., Hendershott, T., & Riordan, R. (2014). High-frequency trading and price discovery. The Review of Financial Studies, 27(8), 2267-2306.spa
dc.relation.referencesBrogaard, J., Hendershott, T., & Riordan, R. (2017). High frequency trading and the 2008 short-sale ban. Journal of Financial Economics, 124(1), 22-42.spa
dc.relation.referencesBrogaard, J., Hendershott, T., Hunt, S., & Ysusi, C. (2014). High‐frequency trading and the execution costs of institutional investors. Financial Review, 49(2), 345-369.spa
dc.relation.referencesBrownlees, C. T., Cipollini, F., & Gallo, G. M. (2010). Intra-daily volume modeling and prediction for algorithmic trading. Journal of Financial Econometrics, 9(3), 489-518.spa
dc.relation.referencesCartea, A., & Jaimungal, S. (2013). Modelling asset prices for algorithmic and high-frequency trading. Applied Mathematical Finance, 20(6), 512-547.spa
dc.relation.referencesCartea, Á., Jaimungal, S., & Kinzebulatov, D. (2016). Algorithmic trading with learning. International Journal of Theoretical and Applied Finance, 19(04), 1650028.spa
dc.relation.referencesCartlidge, J., Szostek, C., De Luca, M., & Cliff, D. (2012). Too Fast Too Furious-Faster Financial-market Trading Agents Can Give Less Efficient Markets. In ICAART (2) (pp. 126-135).spa
dc.relation.referencesChakole, J. B., Kolhe, M. S., Mahapurush, G. D., Yadav, A., & Kurhekar, M. P. (2021). A Q-learning agent for automated trading in equity stock markets. Expert Systems with Applications, 163, 113761.spa
dc.relation.referencesChen, A. S., Leung, M. T., & Daouk, H. (2003). Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. Computers & Operations Research, 30(6), 901-923.spa
dc.relation.referencesChoudhry, R., & Garg, K. (2008). A hybrid machine learning system for stock market forecasting. World Academy of Science, Engineering and Technology, 39(3), 315-318.spa
dc.relation.referencesChu, J., Chan, S., & Zhang, Y. (2020). High frequency momentum trading with cryptocurrencies. Research in International Business and Finance, 52, 101176.spa
dc.relation.referencesCordón, O., Herrera, F., Holfmann, F., & Magdalena, L. (2001). Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases (Vol. 19). World Scientific.spa
dc.relation.referencesDejavite, C. H & Lima, P. A. (2010). Towards automated trading based on fundamentalist and technical data. Brazilian Symposium on Artificial Intelligence, Springer, Berlin, Heidelberg, pp. 112-121.spa
dc.relation.referencesDing, S., Hanna, J., & Hendershott, T. (2014). How slow is the NBBO? A comparison with direct exchange feeds. Financial Review, 49(2), 313-332.spa
dc.relation.referencesDriaunys, K., Masteika, S., Sakalauskas, V., & Vaitonis, M. (2014). An algorithm-based statistical arbitrage high frequency trading system to forecast prices of natural gas fu-tures. Transformations in Business & Economics, 13(3), 96-109.spa
dc.relation.referencesEom, C., Kaizoji, T., Livan, G., & Scalas, E. (2021). Limitations of portfolio diversification through fat tails of the return Distributions: Some empirical evidence. The North American Journal of Economics and Finance, 56, 101358.spa
dc.relation.referencesFarjam, M., & Kirchkamp, O. (2018). Bubbles in hybrid markets: How expectations about algorithmic trading affect human trading. Journal of Economic Behavior & Organization, 146, 248-269.spa
dc.relation.referencesFister, D., Mun, J. C., Jagrič, V., & Jagrič, T. (2019). Deep Learning for Stock Market Trading: A Superior Trading Strategy?. Neural Network World, 29(3), 151-171.spa
dc.relation.referencesFukuma, N., & Kadogawa, Y. (2020). An Overview of Algorithmic Trading in Foreign Exchange Markets and Its Impacts on Market Liquidity. Bank of Japan Review Series, (20-E-5).spa
dc.relation.referencesGabrielsson, P., & Johansson, U. (2015, December). High-frequency equity index futures trading using recurrent reinforcement learning with candlesticks. In 2015 IEEE Symposium Series on Computational Intelligence (pp. 734-741). IEEE.spa
dc.relation.referencesGloukhov, V. V., Ilin, I. V., Koposov, V. I., & Levina, A. I. (2014). Market risk neutral strategies: modeling and algorithmization. Asian Social Science, 10(24), 209.spa
dc.relation.referencesHadavandi, E., Shavandi, H., & Ghanbari, A. (2010). Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowledge-Based Systems, 23(8), 800-808.spa
dc.relation.referencesHendershott, T., & Riordan, R. (2013). Algorithmic trading and the market for liquidity. Journal of Financial and Quantitative Analysis, 48(4),1001-1024.spa
dc.relation.referencesHendershott, T., Jones, C. M., & Menkveld, A. J. (2011). Does algorithmic trading improve liquidity?. The Journal of finance, 66(1), 1-33.spa
dc.relation.referencesHi'ovská, K., & Koncz, P. (2012). Application of Artificial Intelligence and Data Mining Techniques to Financial Markets. Economic Studies & Analyses/Acta VSFS, 6(1), 62-76.spa
dc.relation.referencesHogenboom. F. (2012). Financial events recognition in web news for algorithmic trading. International Conference on Conceptual Modeling, Springer, Berlin, Heidelberg, pp. 368-377.spa
dc.relation.referencesHu, Y., Liu, K., Zhang, X., Su, L., Ngai, E & Liu. M. (2015). Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review. Applied Soft Computing, 36, 534-551.spa
dc.relation.referencesHuang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & operations research, 32(10), 2513-2522.spa
dc.relation.referencesJanosek, M., Volna, E., & Kotyrba, M. (2015). Knowledge discovery in dynamic data using neural networks. Cluster Computing, 18(4), 1411-1421.spa
dc.relation.referencesKablan, A. (2009, October). Adaptive neuro fuzzy inference systems for high frequency financial trading and forecasting. In 2009 Third International Conference on Advanced Engineering Computing and Applications in Sciences (pp. 105-110). IEEE.spa
dc.relation.referencesKayal, A. (2010, October). A neural networks filtering mechanism for foreign exchange trading signals. In Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE International Conference on (Vol. 3, pp. 159-167). IEEE.spa
dc.relation.referencesKhoury, P., & Gorse, D. (2015). Investing in emerging markets using neural networks and particle swarm optimization. In 2015 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE.spa
dc.relation.referencesKissell, R. L. (2013). The science of algorithmic trading and portfolio management. Academic Press, pp. 1-473.spa
dc.relation.referencesKong, X. (2013). Study of cep based on dynamic data management system and algorithmic trading. Journal of Theoretical & Applied Information Technology, 48(2).spa
dc.relation.referencesKunz, K., & Martin, J. (2015). Into the breech: the increasing gap between algorithmic trading and securities regulation. Journal of Financial Services Research, 47(1), 135-152.spa
dc.relation.referencesle Calvez, A., & Cliff, D. (2018, November). Deep learning can replicate adaptive traders in a limit-order-book financial market. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1876-1883). IEEE.spa
dc.relation.referencesLechman, E., & Marszk, A. (2017). Information and Communication Technologies for Economic Development. In Catalyzing Development through ICT Adoption (pp. 3-14). Springer, Cham.spa
dc.relation.referencesLima, PA & Sichman, JS. (2007). Towards Cooperation Among Competitive Trader Agents. ICEIS, (4), 138-143.spa
dc.relation.referencesLitzenberger, R., Castura, J & Gorelick, R. (2012). The impacts of automation and high frequency trading on market quality. Annual Review of Financial Economics, 4(1), 59-98.spa
dc.relation.referencesLozada, J. (2014). Investigación Aplicada: Definición, propiedad intelectual e industria. CienciAmérica: Revista de divulgación científica de la Universidad Tecnológica Indoamérica, 3(1), 47-50.spa
dc.relation.referencesMa, C., Zhang, J., Liu, J., Ji, L., & Gao, F. (2021). A parallel multi-module deep reinforcement learning algorithm for stock trading. Neurocomputing, 449, 290-302.spa
dc.relation.referencesMankad, S., Michailidis, G & Kirilenko, A (2013). Discovering the ecosystem of an electronic financial market with a dynamic machine-learning method. Algorithmic Finance, 2(2), 151-165.spa
dc.relation.referencesMaringer, D., & Ramtohul, T. (2010, April). Threshold recurrent reinforcement learning model for automated trading. In European Conference on the Applications of Evolutionary Computation (pp. 212-221). Springer, Berlin, Heidelberg.spa
dc.relation.referencesMasteika, S., & Vaitonis, M. (2015, June). Quantitative research in high frequency trading for natural gas futures market. In International Conference on Business Infor-mation Systems (pp. 29-35). Springer, Cham.spa
dc.relation.referencesMedina, L. Á. (2003). Aplicación de la teoría del portafolio en el mercado accionario colombiano. Cuadernos de economía, 22(39), 129-168.spa
dc.relation.referencesMenkveld, A. J. (2013). High frequency trading and the new market makers. Journal of financial Markets, 16(4), 712-740.spa
dc.relation.referencesMirabovich, T. (2014). Academic citation indices and databases. Law and modern states, (3).spa
dc.relation.referencesMorales, J. J. R., Yepez, E. R., & Castañeda, B. G. (2015). Hipótesis de Mercados Eficientes en el Mercado Accionario Colombiano a través del Estudio de Eventos. In Memorias XX Congreso Internacional de Contaduría, Administración e Informática.spa
dc.relation.referencesNettles, J., Brayer, N., Jenner, C., Ngo, A., Putnam, C., Shank, T., ... & Beling, P. (2015, April). Forecasting intraday volume distributions. In Systems and Information Engineering Design Symposium (SIEDS), 2015 (pp. 97-102). IEEE.spa
dc.relation.referencesNg, C. Y., Mustaffa, Z., & Kurian, J. (2019). Impact of International Co-Authorships to a Young Malaysian University Specialising in Science, Technology, Engineering and Mathematics. DESIDOC Journal of Library & Information Technology, 39(5), 238-243.spa
dc.relation.referencesPanourgias, N.S. (2015). Capital markets integration: A sociotechnical study of the development of a cross-border securities settlement system. Technological Forecasting & Social Change, 99, 317-338.spa
dc.relation.referencesParkes, D. C., & Wellman, M. P. (2015). Economic reasoning and artificial intelligence. Science, 349(6245), 267-272.spa
dc.relation.referencesPellens, M., da Silva, M & da Silva, AT. (2017). Augmented Reality and Serious Games: A Systematic Literature Mapping. In 19th Symposium on Virtual and Augmented Reality (SVR) (pp. 227-235), IEEE.spa
dc.relation.referencesPetersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008, June). Systematic mapping studies in software engineering. In 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) 12 (pp. 1-10).spa
dc.relation.referencesPino, A., Uribe, J. M., & Jímenez, D. M. (2018). Relevancia de los inversionistas institucionales en el mercado accionario colombiano. Semestre Económico, 20(44), 45-65.spa
dc.relation.referencesRankia (2017). ¿Qué es stop loss y take profit?. https://www.rankia.co/blog/analisis-colcap/3601459-que-stop-loss-take-profitspa
dc.relation.referencesRankia (2020). Los 10 mejores ETFs: NASDAQ-100, S&P 500, Oro, Tecnologías de la información y Biotecnología. https://www.rankia.com/blog/opiniones/4585266-10-mejores-etfs-nasdaq-100-s-p-500-oro-tecnologias-informacion-biotecnologiaspa
dc.relation.referencesRaudys, A., Plikynas, D & Masteika, S. (2014). Novel Automated Multi-Agent Investment System Based on Simulation of Self-Excitatory Oscillations. Transformation in Business & Economics, 13(2).spa
dc.relation.referencesRoledene, S., Ariyathilaka, L., Liyanage, N., Lakmal, P., & Bamunusinghe, J. (2016, December). GeniBux-event based intelligent Forex trading strategy enhancer. In 2016 IEEE International Conference on Information and Automation for Sustainability (ICIAfS) (pp. 1-6). IEEE.spa
dc.relation.referencesRuta, A., Ruta, D & Cen, L. (2017). Algorithmic Daily Trading Based on Experts’ Recommendations. International Symposium on Methodologies for Intelligent Systems, Springer, 735-744.spa
dc.relation.referencesSeo, J. Y., & Chai, S. (2013). The role of algorithmic trading systems on stock market efficiency. Information Systems Frontiers, 15(5), 873-888.spa
dc.relation.referencesSezer, O. B., Ozbayoglu, A. M., & Dogdu, E. (2017, April). An artificial neural network-based stock trading system using technical analysis and big data framework. In Proceedings of the South East Conference (pp. 223-226). ACM.spa
dc.relation.referencesTa, V. D., Liu, C. M., & Addis, D. (2018, December). Prediction and portfolio optimization in quantitative trading using machine learning techniques. In Proceedings of the Ninth International Symposium on Information and Communication Technology (pp. 98-105).spa
dc.relation.referencesUrbizagástegui-Alvarado, R., & Cortés-Contreras, M. T. (2002). La productividad de autores en la Revista Geológica de Chile. Ciencias de la Información, 33(2), 15-25.spa
dc.relation.referencesVan Kervel, V., & Menkveld, A. J. (2019). High‐frequency trading around large institutional orders. The Journal of Finance, 74(3), 1091-1137.spa
dc.relation.referencesVella, V., & Ng, W. L. (2014). Enhancing risk-adjusted performance of stock market intraday trading with neuro-fuzzy systems. Neurocomputing, 141, 170-187.spa
dc.relation.referencesVeryzhenko, I., Arena, L., Harb, E., & Oriol, N. (2017). Time to slow down for high‐frequency trading? Lessons from artificial markets. Intelligent Systems in Accounting, Finance and Management, 24(2-3), 73-79.spa
dc.relation.referencesVillada, F., Muñoz, N., & García, E. (2012). Aplicación de las Redes Neuronales al Pronóstico de Precios en el Mercado de Valores. Información tecnológica, 23(4), 11-20.spa
dc.relation.referencesZhang, H., Li, Z., Shahriar, H., Tao, L., Bhattacharya, P., & Qian, Y. (2019, July). Improving prediction accuracy for logistic regression on imbalanced datasets. In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC) (Vol. 1, pp. 918-919). IEEE.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc330 - Economía::332 - Economía financieraspa
dc.subject.lembInvestments Portfolio
dc.subject.lembPortafolio de inversiones
dc.subject.proposalComercio algorítmicospa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalAprendizaje supervisadospa
dc.subject.proposalMercado financierospa
dc.subject.proposalAlgorithmic tradingeng
dc.subject.proposalArtificial intelligenceeng
dc.subject.proposalSupervised learningeng
dc.subject.proposalFinancial marketeng
dc.titleConformación automática de portafolios de inversión usando analítica financieraspa
dc.title.translatedAutomatic conformation of investment portfolios using financial analyticseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036950970.2022.pdf
Tamaño:
2.14 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería de Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: