Búsqueda de agentes fitosanitarios para el control de enfermedades fúngicas del cultivo del aguacate a partir de hongos endófitos asociados al mismo
dc.contributor.advisor | Ávila Murillo, Mónica Constanza | spa |
dc.contributor.author | Robayo Medina, Angie Tatiana | spa |
dc.contributor.cvlac | Robayo-Medina, Angie T. [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001431123] | spa |
dc.contributor.orcid | Robayo-Medina, Angie T. [0000-0002-7583-3774] | spa |
dc.contributor.researchgroup | Grupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab) | spa |
dc.date.accessioned | 2025-07-29T20:59:34Z | |
dc.date.available | 2025-07-29T20:59:34Z | |
dc.date.issued | 2025-07-27 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Los hongos endófitos son una fuente prometedora de compuestos bioactivos diversos y estructuralmente novedosos que inhiben el crecimiento de una amplia variedad de microorganismos responsables de enfermedades en humanos y cultivos de importancia comercial. En esta investigación, se obtuvieron 88 hongos endófitos de hojas y raíces sanas de aguacate criollo, así como 6 aislamientos fúngicos a partir de raíces secundarias de árboles de aguacate criollo con síntomas de pudrición radicular. A través de ensayos de actividad antifúngica in vitro en combinación con análisis metabolómicos basados en cromatografía líquida acoplada a espectrometría de masas de alta resolución (LC-HRMS) y resonancia magnética nuclear (NMR), se seleccionó un aislamiento endofítico capaz de producir compuestos antifúngicos contra los fitopatógenos Fusarium solani y Fusarium equiseti. Los compuestos citocalasina H (1), citocalasina H1 (2), dicerandrol B (4) y ácido 2-(2-hidroxipropanamido) benzoico (5), previamente descritos en otros endófitos, junto con el compuesto 18-epi-citocalasina H (3), por primera vez reportado, fueron aislados mediante seguimiento orientado por 1H-NMR y fraccionamiento bioguiado del extracto orgánico del cultivo de Diaporthe sp UN310 en caldo levadura- glucosa. El análisis estadístico multivariado permitió identificar las características (m/z, δH) estadísticamente significativas relacionadas con la actividad antifúngica, muchas de las cuales corresponden a la citocalasina H (1), y a otros compuestos relacionados estructuralmente, los cuales fueron determinados en el extracto crudo. Los compuestos 1 y 3 mostraron la mejor actividad antifúngica sobre los patógenos de Fusarium spp., con concentraciones mínimas inhibitorias (CMI) de 50.7 μM. Se concluye que la metabolómica no dirigida demostró ser una herramienta confiable para la bioprospección de hongos endófitos y a través de esta, se comprueba que los aislamientos del género Diaporthe son capaces de producir metabolitos bioactivos que pueden ser una opción para el control de patógenos del aguacate. (Texto tomado de la fuente). | spa |
dc.description.abstract | Fungal endophytes are promising sources of diverse and structurally novel bioactive compounds. They can produce metabolites that inhibit the growth of a wide variety of microorganisms which are responsible for human and crop diseases. In this study, 88 fungal endophytes were isolated from healthy Antillean avocado leaves and roots, and 6 fungal strains were isolated from secondary roots of Antillean avocado trees with root rot symptoms. In vitro antifungal assays in combination with metabolomic analyses based on liquid chromatography- high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) were applied to select an endophytic fungal strain able to produce antifungal compounds against Fusarium solani and Fusarium equiseti phytopathogens. The compounds cytochalasin H (1), cytochalasin H1 (2), dicerandrol B (4) and 2-(2-hydroxypropanamido) benzoic acid (5), previously reported from other endophytes, and 18-epi-cytochalsin-1 (3) reported for the first time, were isolated through 1H-NMR follow up and a bioassay-guided fractionation, from the organic extract of a glucose-yeast extract broth culture of Diaporthe sp. UN310. The multivariate data analysis (MVDA) allowed us to identify statistically significant features (m/z, δH) correlated with the antifungal activity, and many of them correspond to cytochalasin H (1) and to other cytochalasin like compounds determined in the crude extract. Compounds 1 and 3 displayed the best antifungal activities against the Fusarium pathogens mentioned above, with minimal inhibitory concentration (MIC) values of 50.7 μM. The untargeted metabolomics approach proved to be a reliable tool for bioprospecting fungal endophytes and as a result, Diaporthe isolates demonstrated to be able to produce bioactive metabolites that could be used in biocontrol of avocado pathogens. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Química | spa |
dc.description.researcharea | Bioprospección de productos naturales fúngicos | spa |
dc.description.sponsorship | Facultad de Ciencias- Universidad Nacional de Colombia- Sede Bogotá (HERMES: 50092). | spa |
dc.description.sponsorship | Dirección de Investigación y Extensión-Universidad Nacional de Colombia- Sede Bogotá (HERMES: 48477; HERMES: 51310). | spa |
dc.description.sponsorship | Ministerio de Ciencia, Tecnología e Innovación (Proyecto: 46789). | spa |
dc.format.extent | xxv, 211 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88394 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Química | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Química | spa |
dc.relation.indexed | Agrosavia | spa |
dc.relation.indexed | Agrovoc | spa |
dc.relation.references | Agapito Amador, M. E., Cibrián-Llanderal, V. D., Gutiérrez Rojas, M., Ruiz-Juárez, D., López Corona, B., & Rueda-Puente, E. O. (2022). Phytophthora cinnamomi Rands en aguacate. Revista Mexicana de Ciencias Agrícolas, 28, 331–341. https://doi.org/10.29312/remexca.v13i28.3287 | spa |
dc.relation.references | Abdou, R., Attia, G. H., Mojally, M., Dawoud, M., & Rateb, M. E. (2022). Bioguided Isolation of Alternariol Derivatives from Ficus-derived Endophyte Alternaria alternata. Indian Journal of Pharmaceutical Education and Research, 56(2), 497–502. https://doi.org/10.5530/ijper.56.2.71 | spa |
dc.relation.references | Abdou, R., Scherlach, K., Dahse, H. M., Sattler, I., & Hertweck, C. (2010). Botryorhodines A-D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry, 71(1), 110–116. https://doi.org/10.1016/j.phytochem.2009.09.024 | spa |
dc.relation.references | Abdou, R., Shabana, S., & Rateb, M. E. (2018). Terezine E, bioactive prenylated tryptophan analogue from an endophyte of Centaurea stoebe. Natural Product Research, 34(4), 503–510. https://doi.org/10.1080/14786419.2018.1489393 | spa |
dc.relation.references | Adeleke, B. S., & Babalola, O. O. (2021). The plant endosphere-hidden treasures: a review of fungal endophytes. In Biotechnology and Genetic Engineering Reviews (Vol. 37, Issue 2, pp. 154–177). Taylor and Francis Ltd. https://doi.org/10.1080/02648725.2021.1991714 | spa |
dc.relation.references | Ajmal, M., Hussain, A., Ali, A., Chen, H., & Lin, H. (2023). Strategies for Controlling the Sporulation in Fusarium spp. In Journal of Fungi (Vol. 9, Issue 1). MDPI. https://doi.org/10.3390/jof9010010 | spa |
dc.relation.references | Akinsanya, M. A., Muinat, S., Mushafau, A., Ting, A., & Sy, A. (2017). Extraction methods and TLC-bioautography for evaluation of antimicrobial activities of endophytic bacteria from medicinal plants. | spa |
dc.relation.references | Albarracín, L. T., Delgado, W., Cuca, L. E., & Ávila, M. C. (2019). New butyrolactone and other metabolites from the bark of Endlicheria arenosa against of the phytopathogen Colletotrichum tamarilloi. Natural Product Research, 33(5), 687–694. https://doi.org/10.1080/14786419.2017.1408090 | spa |
dc.relation.references | Al-Hadhrami, R. M. S., Al Muniri, R. M. S., & Hossain, M. A. (2016). Evaluation of antimicrobial and cytotoxic activities of polar solvent extracts from leaves of Ammi majus used by the Omanis. Pacific Science Review A: Natural Science and Engineering, 18(1), 62–65. https://doi.org/10.1016/j.psra.2016.08.002 | spa |
dc.relation.references | Alonzo, D. A., & Schmeing, T. M. (2020). Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. In Protein Science (Vol. 29, Issue 12, pp. 2316– 2347). Blackwell Publishing Ltd. https://doi.org/10.1002/pro.3979 | spa |
dc.relation.references | Amirzakariya, B. Z., & Shakeri, A. (2022). Bioactive terpenoids derived from plant endophytic fungi: An updated review (2011–2020). In Phytochemistry (Vol. 197). Elsevier Ltd. https://doi.org/10.1016/j.phytochem.2022.113130 | spa |
dc.relation.references | Andrade-Hoyos, P., Silva-Rojas, H. V., & Romero-Arenas, O. (2020). Endophytic Trichoderma species isolated from Persea americana and Cinnamomum verum roots reduce symptoms caused by phytophthora cinnamomi in avocado. Plants, 9(9), 1–17. https://doi.org/10.3390/plants9091220 | spa |
dc.relation.references | Arnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews, 21, 51–66. https://doi.org/10.1016/j.fbr.2007.05.003 | spa |
dc.relation.references | Ballard, C. E., Yu, H., & Wang, B. (2002). Recent Developments in Depsipeptide Research. In Current Medicinal Chemistry, 9(4): 471-498. https://doi.org/10.2174/0929867023371049 | spa |
dc.relation.references | Banerjee, D. (2011). Endophytic fungal diversity in tropical and subtropical plants. Research Journal of Microbiology, 6(1), 54–62. https://doi.org/10.3923/jm.2011.54.62 | spa |
dc.relation.references | Baraban, E. G., Morin, J. B., Phillips, G. M., Phillips, A. J., Strobel, S. A., & Handelsman, J. (2013). Xyolide, a bioactive nonenolide from an Amazonian endophytic fungus, Xylaria feejeensis. Tetrahedron Letters, 54(31), 4058–4060. https://doi.org/10.1016/j.tetlet.2013.05.093 | spa |
dc.relation.references | Barelli, L., Behie, S. W., Hu, S., & Bidochka, M. J. (2022). Profiling Destruxin Synthesis by Specialist and Generalist Metarhizium Insect Pathogens during Coculture with Plants. Applied and Environmental Microbiology, 88(12). https://doi.org/10.1128/aem.02474-21 | spa |
dc.relation.references | Barnett, H. L., & Hunter, B. B. (1998). Illustrated Genera of Imperfect Fungi (4th ed.). APS Press. | spa |
dc.relation.references | Barthélemy, M., Elie, N., Genta-Jouve, G., Stien, D., Touboul, D., & Eparvier, V. (2021). Identification of Antagonistic Compounds between the Palm Tree Xylariale Endophytic Fungi and the Phytopathogen Fusarium oxysporum. Journal of Agricultural and Food Chemistry, 69(37), 10893–10906. https://doi.org/10.1021/acs.jafc.1c03141 | spa |
dc.relation.references | Bastias, D. A., Martínez-ghersa, M. A., Ballaré, L., & Gundel, P. E. (2017). Epichloë Fungal Endophytes and Plant Defenses : Not Just Alkaloids. Trends in Plant Science, 22(11), 939–948. https://doi.org/10.1016/j.tplants.2017.08.005 | spa |
dc.relation.references | Beno, M. A., & Christoph, G. G. (1976). X-Ray crystal structure of cytochalasin H, a potent new [11]cytochalasan toxin. Journal of the Chemical Society, Chemical Communications, 10, 344. https://doi.org/10.1039/c39760000344 | spa |
dc.relation.references | Beno, M. A., Cox, R. H., Wells, J. M., Cole, R. J., Kirksey, J. W., & Christoph, G. G. (1977). Structure of a new [11]cytochalasin, cytochalasin H or kodo-cytochalasin-1. Journal of the American Chemical Society, 99(12), 4123–4130. https://doi.org/10.1021/ja00454a035 | spa |
dc.relation.references | Bernal Estrada, J., & Díaz Diez, C. (2014). Manual técnico, actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate. Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA https://doi.org/10.21930/agrosavia.manual.7403831 | spa |
dc.relation.references | Betancur, L. A., Forero, A. M., Vinchira-Villarraga, D. M., Cárdenas, J. D., Romero-Otero, A., Chagas, F. O., Pupo, M. T., Castellanos, L., & Ramos, F. A. (2020). NMR-based metabolic profiling to follow the production of anti-phytopathogenic compounds in the culture of the marine strain Streptomyces sp. PNM-9. Microbiological Research, 239(January), 126507. https://doi.org/10.1016/j.micres.2020.126507 | spa |
dc.relation.references | Brun, T., Rabuske, J. E., Luft, L., Confortin, T. C., Todero, I., Aita, B. C., Zabot, G. L., & Mazutti, M. A. (2022). Powder containing biomolecules from Diaporthe schini for weed control. Environmental Technology (United Kingdom), 43(14), 2135–2144. https://doi.org/10.1080/09593330.2020.1867651 | spa |
dc.relation.references | Brunner-Mendoza, C., Navarro-Barranco, H., Ayala-zermeño, M. A., Mellín-Rosas, M., & Toriello, C. (2013). Obtención y caracterización de cultivos monospóricos de Metarhizium anisopliae (Hypocreales: Clavicipitaceae) para genotipificación. Memorias Del XXXVI Congreso Nacional de Control Biológico, November, 52–55. | spa |
dc.relation.references | Burbano-Figueroa, O. (2019). West Indian avocado agroforestry systems in Montes de María (Colombia): a conceptual model of the production system. Revista Chapingo Serie Horticultura, 25(2), 75–102. https://doi.org/10.5154/r.rchsh.2018.09.018 | spa |
dc.relation.references | Burragoni, S. G., & Jeon, J. (2021). Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. In Microbiological Research (Vol. 245). Elsevier GmbH. https://doi.org/10.1016/j.micres.2020.126691 | spa |
dc.relation.references | Busby, P. E., Ridout, M., & Newcombe, G. (2016). Fungal endophytes: modifiers of plant disease. Plant Molecular Biology, 90(6), 645–655. https://doi.org/10.1007/s11103- 015-0412-0 | spa |
dc.relation.references | Cao, L., Yan, W., Gu, C., Wang, Z., Zhao, S., Kang, S., Khan, B., Zhu, H., Li, J., & Ye, Y. (2019). New Alkylitaconic Acid Derivatives from Nodulisporium sp. A21 and Their Auxin Herbicidal Activities on Weed Seeds. Journal of Agricultural and Food Chemistry, 67, 2811–2817. https://doi.org/10.1021/acs.jafc.8b04996 | spa |
dc.relation.references | Cao, L., Zhang, Y., Liu, Y., Yang, T., & Zhang, J. (2016). Anti-phytopathogenic activity of sporothriolide, a metabolite from endophyte Nodulisporium sp. A21 in Ginkgo biloba. Pestic Biochem Physiol., 129, 7–13. https://doi.org/10.1016/j.pestbp.2015.10.002 | spa |
dc.relation.references | Cao, S., McMillin, D. W., Tamayo, G., Delmore, J., Mitsiades, C. S., & Clardy, J. (2012). Inhibition of tumor cells interacting with stromal cells by xanthones isolated from a Costa Rican Penicillium sp. Journal of Natural Products, 75(4), 793–797. https://doi.org/10.1021/np2009863 | spa |
dc.relation.references | Cepero de García, M., Restrepo, S., Franco, A. E., Cárdenas, M., & Vargas, N. (2012). Biología de hongos (E. Uniandes, Ed.; Primera Ed). Disponible en: https://api.pageplace.de/preview/DT0400.9789586957946_A25397967/preview9789586957946_A25397967.pdf | spa |
dc.relation.references | Chang, C. H., Hsiao, G., Wang, S. W., Yen, J. Y., Huang, S. J., Chi, W. C., & Lee, T. H. (2023). Chemical constituents from the medicinal herb-derived fungus Chaetomium globosum Km1226. Botanical Studies, 64(1). https://doi.org/10.1186/s40529-023-00406-8 | spa |
dc.relation.references | Chaudhary, P., Agri, U., Chaudhary, A., Kumar, A., & Kumar, G. (2022). Endophytes and their potential in biotic stress management and crop production. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.933017 | spa |
dc.relation.references | Chen, Y., Yang, Y., Li, X., Zou, C., & Zhao, P. (2015). Diterpenoids from the Endophytic Fungus Botryosphaeria sp. P483 of the Chinese Herbal Medicine Huperzia serrata. Molecules, 20, 16924–16932. https://doi.org/10.3390/molecules200916924 | spa |
dc.relation.references | Chojnacka, K. (2024). Sustainable chemistry in adaptive agriculture: A review. In Current Opinion in Green and Sustainable Chemistry (Vol. 46). Elsevier B.V. https://doi.org/10.1016/j.cogsc.2024.100898 | spa |
dc.relation.references | Christiansen, J. V., Larsen, T. O., & Frisvad, J. C. (2022). Production of Fungal Quinones: Problems and Prospects. Biomolecules, 12(8). https://doi.org/10.3390/biom12081041 | spa |
dc.relation.references | Clements, D. P., & Bihn, E. A. (2019). Safety and Practice for Organic Food. In Safety and Practice for Organic Food (pp. 321–344). Elsevier Inc. https://doi.org/10.1016/B978-0-12-812060-6.00016-7 | spa |
dc.relation.references | Colegate, S., & Molyneux, R. (2008). Bioactive Natural products: Detection, isolation, and structural determination (Second edi). CRC Press Taylor & Francis Group. https://doi.org/10.1201/9781420006889 | spa |
dc.relation.references | Collinge, D. B., Jensen, B., & Jørgensen, H. J. (2022). Fungal endophytes in plants and their relationship to plant disease. In Current Opinion in Microbiology (Vol. 69). Elsevier Ltd. https://doi.org/10.1016/j.mib.2022.102177 | spa |
dc.relation.references | Corsaro, C., Vasi, S., Neri, F., Mezzasalma, A. M., Neri, G., & Fazio, E. (2022). NMR in Metabolomics: From Conventional Statistics to Machine Learning and Neural Network Approaches. In Applied Sciences (Switzerland) (Vol. 12, Issue 6). MDPI. https://doi.org/10.3390/app12062824 | spa |
dc.relation.references | Costa, C., Teodoro, M., Giambò, F., Catania, S., Vivarelli, S., & Fenga, C. (2022). Assessment of Mancozeb Exposure, Absorbed Dose, and Oxidative Damage in Greenhouse Farmers. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191710486 | spa |
dc.relation.references | Cui, H., Yu, J., Chen, S., Ding, M., Huang, X., Yuan, J., & She, Z. (2017). Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum. Bioorganic & Medicinal Chemistry Letters, 27(4), 803–807. https://doi.org/10.1016/j.bmcl.2017.01.029 | spa |
dc.relation.references | DANE. (2016). Cultivo del aguacate Hass (Persea americana Mill; Persea nubigena var. Guatemalensis x Persea americana var. Drymifolia), plagas y enfermedades durante la temporada de lluvias. Boletín Mensual Agosto, Núm 50. República de Colombia. | spa |
dc.relation.references | Das, A., Rahman, M. I., Ferdous, A. S., Amin, A.-, Rahman, M., Nahar, N., Uddin, A., Islam, M. R., & Khan, H. (2017). An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity. PLoS ONE, 12(6), 1–17. https://doi.org/10.1371/journal.pone.0178612 | spa |
dc.relation.references | De Carvalho, C. R., De Lourdes Almeida Vieira, M., Cantrell, C. L., Wedge, D. E., Alves, T. M. A., Zani, C. L., Pimenta, R. S., Sales, P. A., Murta, S. M. F., Romanha, A. J., Rosa, C. A., & Rosa, L. H. (2016). Biological activities of ophiobolin K and 6-epiophiobolin K produced by the endophytic fungus Aspergillus calidoustus. Natural Product Research, 30(4), 478–481. https://doi.org/10.1080/14786419.2015.1022777 | spa |
dc.relation.references | De Carvalho, C. R., Ferreira-D’Silva, A., D.E. Wedge, D. E., Cantrell, C. L., & Rosa, L. H. (2018). Antifungal activities of cytochalasins produced by Diaporthe miriciae, an endophytic fungus associated with tropical medicinal plants. Can J Microbiol., 64(11), 835–843. https://doi.org/10.1139/cjm-2018-0131 | spa |
dc.relation.references | De Carvalho, J. O., Broll, V., Martinelli, A. H. S., & Lopes, F. C. (2020). Endophytic fungi: positive association with plants. In Molecular Aspects of Plant Beneficial Microbes in Agriculture (pp. 321–332). Elsevier. https://doi.org/10.1016/B978-0-12-818469- 1.00026-2 | spa |
dc.relation.references | Deshmukh, S., & Verekar, S. A. (2012). Fungal endophytes: A potential source of antifungal compounds. Frontiers in Bioscience, 4(1), 2045–2070. https://doi.org/10.2741/E524 | spa |
dc.relation.references | Ding, B., Yuan, J., Huang, X., Wen, W., Zhu, X., Liu, Y., Li, H., Lu, Y., He, L., Tan, H., & She, Z. (2013). New Dimeric Members of the Phomoxanthone Family: Phomolactonexanthones A, B and Deacetylphomoxanthone C Isolated from the Fungus Phomopsis sp. Marine Drugs, 11(12), 4961–4972. https://doi.org/10.3390/md11124961 | spa |
dc.relation.references | El-Aswad, A. F., Aly, M. I., Alsahaty, S. A., & Basyony, A. B. A. (2023). Efficacy evaluation of some fumigants against Fusarium oxysporum and enhancement of tomato growth as elicitor-induced defense responses. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-29033-w | spa |
dc.relation.references | Eloff, J. N., Angeh, I. E., & McGaw, L. J. (2017). Solvent-solvent fractionation can increase the antifungal activity of a Melianthus comosus (Melianthaceae) acetone leaf extract to yield a potentially useful commercial antifungal product. Industrial Crops and Products, 110, 103–112. https://doi.org/10.1016/j.indcrop.2017.11.014 | spa |
dc.relation.references | Elsässer, B., Krohn, K., Flörke, U., Root, N., Aust, H., Draeger, S., Schulz, B., Antus, S., & Kurtán, T. (2005). X-ray Structure Determination, Absolute Configuration and Biological Activity of Phomoxanthone A. Eur. J. Org. Chem., 4563–4570. https://doi.org/10.1002/ejoc.200500265 | spa |
dc.relation.references | Euceda, L. R., Giskeodegård, G. F., & Bathen, T. F. (2015). Preprocessing of NMR metabolomics data. In Scandinavian Journal of Clinical and Laboratory Investigation (Vol. 75, Issue 3, pp. 193–203). Informa Healthcare. https://doi.org/10.3109/00365513.2014.1003593 | spa |
dc.relation.references | Everts, K. L., Egel, D. S., Langston, D., & Zhou, X. G. (2014). Chemical management of Fusarium wilt of watermelon. Crop Protection, 66, 114–119. https://doi.org/10.1016/j.cropro.2014.09.003 | spa |
dc.relation.references | Evidente, A. (2022). Fungal bioactive macrolides. Natural Product Reports, 39(8), 1591– 1621. https://doi.org/10.1039/D2NP0 | spa |
dc.relation.references | FAOSTAT. (2023). Organización de las Naciones Unidas para la Alimentación y la Agricultura. Datos. Cultivos y Productos de Ganadería. Disponible en: https://www.fao.org/faostat/es/#home | spa |
dc.relation.references | Farhana, S., Ab, S., Singh, E., Pieterse, C. M. J., & Schenk, P. M. (2017). Emerging Microbial Biocontrol Strategies for Plant Pathogens. Plant Science, 267:102-111. https://doi.org/10.1016/j.plantsci.2017.11.012 | spa |
dc.relation.references | Farouk, H. M., Hashem, Z. S., Attia, E. Z., Shaban, G. M., Glaeser, S. P., Kämpfer, P., Abdelmohsen, U. R., & El-Katatny, M. H. (2023). Bioactivity of crude extract produced by endophytic fungi isolated from Ziziphus spina-christi (Nabq) leaves for antimicrobial evaluation as well as optimization of culture medium conditions. South African Journal of Botany, 162, 873–884. https://doi.org/10.1016/j.sajb.2023.08.071 | spa |
dc.relation.references | Feng, C., Wei, Q., Hu, C., & Zou, Y. (2019). Biosynthesis of Diphenyl Ethers in Fungi. Organic Letters, 21(9), 3114–3118. https://doi.org/10.1021/acs.orglett.9b00768 | spa |
dc.relation.references | Fernando, K., Reddy, P., Guthridge, K. M., Spangenberg, G. C., & Rochfort, S. J. (2022). A Metabolomic Study of Epichloë Endophytes for Screening Antifungal Metabolites. Metabolites, 12(1). https://doi.org/10.3390/metabo12010037 | spa |
dc.relation.references | Fong, Y. K., Anuar, S., Lim, H. P., Tham, F. Y., & Sanderson, F. R. (2000). A modified filter paper technique for long-term preservation of some fungal cultures. Mycologist, 14(3), 127–130. https://doi.org/10.1016/S0269-915X(00)80090-7 | spa |
dc.relation.references | Fonseca Rodríguez, P. E., Escobar, J. V., & Grisales, N. Y. (2019). Protocolo de almacenamiento y maduración de aguacate cv. Hass (Persea americana Mill.) en Antioquia. Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA. https://doi.org/10.21930/agrosavia.brochure.7402957 | spa |
dc.relation.references | Fu, J., Zhou, Y., Li, H., Ye, Y., & Guo, J. (2011). Antifungal metabolites from Phomopsis sp. By254, an endophytic fungus in Gossypium hirsutum. African Journal of Microbiology Research, 5(10), 1231–1236. https://doi.org/10.5897/AJMR11.272 | spa |
dc.relation.references | Fuentes-Aragón, D., Juárez-Vázquez, S. B., Vargas-Hernández, M., & Silva-Rojas, H. V. (2018). Colletotrichum fructicola, a Member of Colletotrichum gloeosporioides sensu lato, is the causal agent of anthracnose and soft rot in avocado fruits cv. “Hass.” Mycobiology, 46(2), 92–100. https://doi.org/10.1080/12298093.2018.1454010 | spa |
dc.relation.references | Fuentes-Aragón, D., Juárez-Vázquez, S. B., Vargas-Hernández, M., & Silva-Rojas, H. V. (2018). Colletotrichum fructicola, a Member of Colletotrichum gloeosporioides sensu lato, is the causal agent of anthracnose and soft rot in avocado fruits cv. “Hass.” Mycobiology, 46(2), 92–100. https://doi.org/10.1080/12298093.2018.1454010 | spa |
dc.relation.references | Gamboa, M. A., Laureano, S., & Bayman, P. (2003). Measuring diversity of endophytic fungi in leaf fragments: Does size matter? Mycopathologia, 156(1), 41–45. https://doi.org/10.1023/A:1021362217723 | spa |
dc.relation.references | Ganesh, S., & Brar, S. (2016). Results of SMILE for Astigmatism Correction with manual Cyclotorsion Compensation. ERLS Potsdam 2016, 88(3), 582–588. | spa |
dc.relation.references | Ganley, R. J., & Newcombe, G. (2006). Fungal endophytes in seeds and needles of Pinus monticola. Mycological Research, 110(3), 318–327. https://doi.org/10.1016/j.mycres.2005.10.005 | spa |
dc.relation.references | Gao, H., Li, G., & Lou, H.-X. (2018). Structural Diversity and Biological Activities of Novel Secondary Metabolites from Endophytes. Molecules, 23(646), 1–31. https://doi.org/10.3390/molecules23030646 | spa |
dc.relation.references | Gao, Y., Du, S. T., Xiao, J., Wang, D. C., Han, W., Zhang, Q., & Gao, J. (2020). Isolation and Characterization of Antifungal Metabolites from the Melia azedarach -Associated Fungus Diaporthe eucalyptorum. J. Agric. Food Chem., 68(8), 2418–2425.https://doi.org/10.1021/acs.jafc.9b07825 | spa |
dc.relation.references | GBIF. (2023). Global Biodiversity Information Facility. Persea Americana Mill. Disponible en: https://www.gbif.org/species/3034046 | spa |
dc.relation.references | Ghorbanpour, M., Omidvari, M., Abbaszadeh-dahaji, P., Omidvar, R., & Kariman, K. (2018). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117, 147–157. https://doi.org/10.1016/j.biocontrol.2017.11.006 | spa |
dc.relation.references | Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z., & Crous, P. W. (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia, 31, 1–41. https://doi.org/10.3767/003158513X666844 | spa |
dc.relation.references | Green, K. A., Berry, D., Feussner, K., Eaton, C. J., Ram, A., Mesarich, C. H., Solomon, P., Feussner, I., & Scott, B. (2020). Lolium perenne apoplast metabolomics for identification of novel metabolites produced by the symbiotic fungus Epichloë festucae. New Phytologist, 227(2), 559–571. https://doi.org/10.1111/nph.16528 | spa |
dc.relation.references | Gu, H., Zhang, S., Liu, L., Yang, Z., Zhao, F., & Tian, Y. (2022). Antimicrobial Potential of Endophytic Fungi From Artemisia argyi and Bioactive Metabolites From Diaporthe sp. AC1. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.908836 | spa |
dc.relation.references | Guerrero Rojas, M., & Ramos Portilla, A. (2016). Prevenga y maneje la pudrición radical del aguacate causada por el Oomycete Phytophthora cinnamomi Rands. Oficina Asesora de Comunicaciones ICA. | spa |
dc.relation.references | Gupta, P., Verma, A., Rai, N., Singh, A. K., Singh, S. K., Kumar, B., Kumar, R., & Gautam, V. (2021). Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chemical Biology, 16(11), 2068–2086. https://doi.org/10.1021/acschembio.1c00581 | spa |
dc.relation.references | Gupta, S., Chaturvedi, P., Kulkarni, M. G., & Van Staden, J. (2020). A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. In Biotechnology Advances (Vol. 39). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2019.107462 | spa |
dc.relation.references | Hafez, M., Telfer, M., Chatterton, S., & Aboukhaddour, R. (2023). Specific Detection and Quantification of Major Fusarium spp. Associated with Cereal and Pulse Crops. In Plant-Pathogen Interactions (Vol. 2659, pp. 1–21). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3159-1_1 | spa |
dc.relation.references | Hakizimana, J. D., Gryzenhout, M., Coutinho, T. A., & van den Berg, N. (2011). Endophytic diversity in Persea americana (avocado) trees and their ability to display biocontrol activity against Phytophthora cinnamomi. VII World Avocado Congress, September, 1–10. Disponible en: https://www.avocado.org.au/wpcontent/uploads/2017/02/Endophytic-Diversity-in-Avocado-Trees-and-BiocontrolActivity-Against-Phytophthora-J-Hakizimana-University-of-Pretoria.pdf | spa |
dc.relation.references | Hall, B. G. (2013). Building Phylogenetic Trees from Molecular Data with MEGA. Mol.Biol.Evol., 30(5), 1229–1235. https://doi.org/10.1093/molbev/mst012 | spa |
dc.relation.references | Hardy, N., Augier, F., Nienow, A. W., Béal, C., & Ben Chaabane, F. (2017). Scale-up agitation criteria for Trichoderma reesei fermentation. Chemical Engineering Science, 172, 158–168. https://doi.org/10.1016/j.ces.2017.06.034 | spa |
dc.relation.references | Hassan, Z. U., Thani, R. Al, Balmas, V., Migheli, Q., & Jaoua, S. (2019). Prevalence of Fusarium fungi and their toxins in marketed feed. Food Control, 104(January), 224– 230. https://doi.org/10.1016/j.foodcont.2019.04.045 | spa |
dc.relation.references | Hassani, M. A., Durán, P., & Hacquard, S. (2018). Microbial interactions within the plant holobiont. In Microbiome (Vol. 6, Issue 1, p. 58). NLM (Medline). https://doi.org/10.1186/s40168-018-0445-0 | spa |
dc.relation.references | Heil, M. (2011). The microbe-free plant: fact or artifact? Frontiers in Plant Science, 2(100), 1–16. https://doi.org/10.3389/fpls.2011.00100 | spa |
dc.relation.references | Hilário, S., & Gonçalves, M. F. M. (2022). Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. In Microorganisms (Vol. 10, Issue 12). MDPI. https://doi.org/10.3390/microorganisms10122453 | spa |
dc.relation.references | Hu, X., Webster, G., Xie, L., Yu, C., Li, Y., & Liao, X. (2014). A new method for the preservation of axenic fungal cultures. Journal of Microbiological Methods, 99(1), 81– 83. https://doi.org/10.1016/j.mimet.2014.02.009 | spa |
dc.relation.references | Huang, D., Cui, L., Sajid, A., Zainab, F., Wu, Q., Wang, X., & Yuan, Z. (2019). The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food and Chemical Toxicology, 123, 595–601. https://doi.org/10.1016/j.fct.2018.10.059 | spa |
dc.relation.references | Huang, S., Xu, J., Li, F., Zhou, D., Xu, L., & Li, C. (2017). Identification and Antifungal Activity of Metabolites from the Mangrove Fungus Phoma sp. L28. Chemistry of Natural Compounds, 53(2), 237–240. https://doi.org/10.1007/s10600-017-1961-z | spa |
dc.relation.references | Huang, W.-Y., Cai, Y.-Z., Xing, J., Corke, H., & Sun, M. (2007). A Potential Antioxidant Resource: Endophytic Fungi from Medicinal Plants. Economic Botany, 61(1), 14–30. https://doi.org/10.1663/0013-0001(2007)61[14:APAREF]2.0.CO;2 | spa |
dc.relation.references | Huang, X., Zhou, D., Liang, Y., Liu, X., Cao, F., Qin, Y., Mo, T., Xu, Z., Li, J., & Yang, R. (2019). Cytochalasins from endophytic Diaporthe sp. GDG-118. Natural Product Research, 1–9. https://doi.org/10.1080/14786419.2019.1700504 | spa |
dc.relation.references | Huang, Z., Cai, X., Shao, C., She, Z., Xia, X., Chen, Y., Yang, J., Zhou, S., & Lin, Y. (2008). Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry, 69, 1604–1608.https://doi.org/10.1016/j.phytochem.2008.02.002 | spa |
dc.relation.references | Hurtado Clopatosky, S. (2020). Aislamiento de endófitos en gulupa (Passiflora edulis Sims f.) y su potencial para promoción de crecimiento de la planta y control del Fitopatógeno Fusarium oxysporum. Universidad Nacional de Colombia. Disponible en: https://repositorio.unal.edu.co/bitstream/handle/unal/79386/1032436500.2020.pdf.pd f;jsessionid=CE849BD4EDEEC0BEDE9AD6B5DBC18480?sequence=1 | spa |
dc.relation.references | Hussain, H., Akhtar, N., Draeger, S., Schulz, B., Pescitelli, G., Salvadori, P., Antus, S., Kurtán, T., & Krohn, K. (2009). New Bioactive 2,3-Epoxycyclohexenes and Isocoumarins from the Endophytic Fungus Phomopsis sp. from Laurus Azorica. Eur. J. Org. Chem., 2009(5), 749–756. https://doi.org/10.1002/ejoc.200801052 | spa |
dc.relation.references | Iantas, J., Savi, D. C., Ponomareva, L. V., Thorson, J. S., Rohr, J., Glienke, C., & Shaaban, K. A. (2022). Paecilins Q and R: Antifungal Chromanones Produced by the Endophytic Fungus Pseudofusicoccum stromaticum CMRP4328. Planta Medica, 89(12), 1178–1189. https://doi.org/10.1055/a-2063-5481 | spa |
dc.relation.references | Ibrahim, S. R. M., Abdallah, H. M., Elkhayat, E. S., Al Musayeib, N. M., Asfour, H. Z., Zayed, M. F., & Mohamed, G. A. (2018). Fusaripeptide A: new antifungal and antimalarial cyclodepsipeptide from the endophytic fungus Fusarium sp. Journal of Asian Natural Products Research, 20(1), 75–85. https://doi.org/10.1080/10286020.2017.1320989 | spa |
dc.relation.references | Ibrahim, S. R. M., Mohamed, G. A., Al Haidari, R. A., El-Kholy, A. A., Zayed, M. F., & Khayat, M. T. (2018). Biologically active fungal depsidones: Chemistry, biosynthesis, structural characterization, and bioactivities. In Fitoterapia (Vol. 129, pp. 317–365). Elsevier B.V. https://doi.org/10.1016/j.fitote.2018.04.012 | spa |
dc.relation.references | ICA (2022, March 31). Instituto Colombiano Agropecuario, ICA. Registros Nacionales de Plaguicidas. | spa |
dc.relation.references | ICA (2024, Junio 23). Instituto Colombiano Agropecuario, ICA. Plaguicidas prohibidos, restringidos y cancelados en Colombia. Disponible en: https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidasquimicos.aspx | spa |
dc.relation.references | Jha, P., Kaur, T., Chhabra, I., Panja, A., Paul, S., Kumar, V., & Malik, T. (2023). Endophytic fungi: hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. In Frontiers in Microbiology (Vol. 14). Frontiers Media SA. https://doi.org/10.3389/fmicb.2023.1227830 | spa |
dc.relation.references | Ji, X., Xia, Y., Zhang, H., & Cui, J. L. (2022). The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. In Microbiological Research (Vol. 261). Elsevier GmbH. https://doi.org/10.1016/j.micres.2022.127056 | spa |
dc.relation.references | Jia, M., Chen, L., Xin, H., Zheng, C., Rahman, K., & Han, T. (2016). A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review. 7(June), 1–14. https://doi.org/10.3389/fmicb.2016.00906 | spa |
dc.relation.references | Kamal, N., Viegelmann, C. V., Clements, C. J., & Edrada-Ebel, R. A. (2017). Metabolomics-Guided Isolation of Anti-trypanosomal Metabolites from the Endophytic Fungus Lasiodiplodia theobromae. Planta Medica, 83(6), 565–573. https://doi.org/10.1055/s-0042-118601 | spa |
dc.relation.references | Kasettrathat, C., Ngamrojanavanich, N., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2008). Cytotoxic and antiplasmodial substances from marine-derived fungi, Nodulisporium sp. and CRI247-01. Phytochemistry, 69, 2621–2626. https://doi.org/10.1016/j.phytochem.2008.08.005 | spa |
dc.relation.references | Kashyap, N., Singh, S. K., Yadav, N., Singh, V. K., Kumari, M., Kumar, D., Shukla, L., Kaushalendra, Bhardwaj, N., & Kumar, A. (2023). Biocontrol Screening of Endophytes: Applications and Limitations. In Plants (Vol. 12, Issue 13). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/plants12132480 | spa |
dc.relation.references | Keller, N. P. (2019). Fungal secondary metabolism: regulation, function and drug discovery. In Nature Reviews Microbiology (Vol. 17, Issue 3, pp. 167–180). Nature Publishing Group. https://doi.org/10.1038/s41579-018-0121-1 | spa |
dc.relation.references | Khanam, H., & Shamsuzzaman. (2015). Bioactive Benzofuran derivatives: A review. In European Journal of Medicinal Chemistry (Vol. 97, Issue 1, pp. 483–504). Elsevier Masson SAS. https://doi.org/10.1016/j.ejmech.2014.11.039 | spa |
dc.relation.references | Khattab, A. R., & Farag, M. A. (2020). Current status and perspectives of xanthones production using cultured plant biocatalyst models aided by in-silico tools for its optimization. In Critical Reviews in Biotechnology (Vol. 40, Issue 3, pp. 415–431). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2020.1721426 | spa |
dc.relation.references | "Khattab, A. R., & Farag, M. A. (2022). Marine and terrestrial endophytic fungi: a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications. In Critical Reviews in Biotechnology (Vol. 42, Issue 3, pp. 403–430). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2021.1940087" | spa |
dc.relation.references | Kiefer, A., Arnholdt, M., Grimm, V., Geske, L., Groß, J., Vierengel, N., Opatz, T., & Erkel, G. (2023). Structure elucidation and biological activities of perylenequinones from an Alternaria species. Mycotoxin Research, 39(3), 303–316. https://doi.org/10.1007/s12550-023-00495-1 | spa |
dc.relation.references | Kjer, J., Debbab, A., Aly, A. H., & Proksch, P. (2010). Methods for isolation of marinederived endophytic fungi and their bioactive secondary products. Nature Protocols, 5(3), 479–490. https://doi.org/10.1038/nprot.2009.233 | spa |
dc.relation.references | Koli, P., Bhardwaj, N. R., & Mahawer, S. K. (2019). Climate Change and Agricultural Ecosystems. In Climate Change and Agricultural Ecosystems (pp. 65–94). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816483-9.00004-9 | spa |
dc.relation.references | Kong, L. W., Qiu, W. Y., Chen, M. S., Yang, W. L., Shen, J. R., Tang, X. B., He, X. H., Li, Y. K., Hu, Q. F., & Kong, G. H. (2023). Two New Antifungal Indole Alkaloids from an Endophytic Fungi Aspergillus felis Obtained from Cigar Tobacco. Chemistry of Natural Compounds. https://doi.org/10.1007/s10600-023-04210-5 | spa |
dc.relation.references | Kongue Tatong, M. D., Talontsi, F. M., Abdel Rahim, H. M. D., Islam, M. T., Oswald, R. B., & Laatsch, H. (2014). Banchromene and other secondary metabolites from the endophytic fungus Fusarium sp. obtained from Piper guineense inhibit the motility of phytopathogenic Plasmopara viticola zoospores. Tetrahedron Letters, 55(30), 4057– 4061. https://doi.org/10.1016/j.tetlet.2014.06.001 | spa |
dc.relation.references | Krska, R., Welzig, E., & Boudra, H. (2007). Analysis of Fusarium toxins in feed. Animal Feed Science and Technology, 137, 241–264. https://doi.org/10.1016/j.anifeedsci.2007.06.004 | spa |
dc.relation.references | Kumar, S., Kaushik, N., & Proksch, P. (2013). Identification of antifungal principle in the solvent extract of an endophytic fungus Chaetomium globosum from Withania somnifera. http://www.springerplus.com/content/2/1/37 | spa |
dc.relation.references | Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X : Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol.Biol.Evol., 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 | spa |
dc.relation.references | Kusari, S., Hertweck, C., & Spiteller, M. (2012). Perspective Chemical Ecology of Endophytic Fungi: Origins of Secondary Metabolites. CHBIOL, 19(7), 792–798. https://doi.org/10.1016/j.chembiol.2012.06.004 | spa |
dc.relation.references | Lahlali, R., Peng, G., Gossen, B. D., McGregor, L., Yu, F. Q., Hynes, R. K., Hwang, S. F., McDonald, M. R., & Boyetchko, S. M. (2013). Evidence that the biofungicide serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology, 103(3), 245–254. https://doi.org/10.1094/PHYTO06-12-0123-R | spa |
dc.relation.references | Legein, M., Smets, W., Vandenheuvel, D., Eilers, T., Muyshondt, B., Prinsen, E., Samson, R., & Lebeer, S. (2020). Modes of Action of Microbial Biocontrol in the Phyllosphere. In Frontiers in Microbiology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2020.01619 | spa |
dc.relation.references | Leonardi, G. R., Polizzi, G., Vitale, A., & Aiello, D. (2023). Efficacy of Biological Control Agents and Resistance Inducer for Control of Mal Secco Disease. Plants, 12(9). https://doi.org/10.3390/plants12091735 | spa |
dc.relation.references | Leslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual (J. Leslie & Summerell B., Eds.; First Edition). Blackwell Publishing. https://doi.org/10.1002/9780470278376 | spa |
dc.relation.references | Leylaie, S., & Zafari, D. (2018). Antiproliferative and Antimicrobial Activities of Secondary Metabolites and Phylogenetic Study of Endophytic Trichoderma Species From Vinca Plants. Front. Microbiol., 9(1484), 1–16. https://doi.org/10.3389/fmicb.2018.01484 | spa |
dc.relation.references | Li, E., Jiang, L., Guo, L., Zhang, H., & Che, Y. (2008). Bioorganic & Medicinal Chemistry Pestalachlorides A – C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorganic & Medicinal Chemistry, 16, 7894–7899. https://doi.org/10.1016/j.bmc.2008.07.075 | spa |
dc.relation.references | Li, G., Jian, T., Liu, X., Lv, Q., Zhang, G., & Ling, J. (2022). Application of Metabolomics in Fungal Research. In Molecules (Vol. 27, Issue 21). MDPI. https://doi.org/10.3390/molecules27217365 | spa |
dc.relation.references | Li, J. Y., & Strobel, G. A. (2001). Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry, 57, 261–265. | spa |
dc.relation.references | Li, X.-J., Zhang, Q., Zhang, A.-L., & Gao, J.-M. (2012). Metabolites from Aspergillus fumigatus, an Endophytic Fungus Associated with Melia azedarach, and Their Antifungal, Antifeedant, and Toxic Activities. Journal of Agricultural and Food Chemistry, 60(13), 3424–3431. https://doi.org/10.1021/jf300146n | spa |
dc.relation.references | Li, Y., Kumar, P. S., Tan, Q., Tan, X., Yuan, M., Luo, J., & He, M. (2021). Diversity and chemical fingerprinting of endo-metabolomes from endophytes associated with Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang possessing antibacterial activity against multidrug resistant bacterial pathogens. Journal of Infection and Public Health, 14(12), 1917–1926. https://doi.org/10.1016/j.jiph.2021.10.019 | spa |
dc.relation.references | Li, Z., Xiong, K., Wen, W., Li, L., & Xu, D. (2023). Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications. In International Journal of Molecular Sciences (Vol. 24, Issue 2). MDPI. https://doi.org/10.3390/ijms24021153 | spa |
dc.relation.references | Lim, C., Hynix, S. K., Ponnusamy, K., & Kim, S.-U. (2010). Identification, Fermentation, and Bioactivity Against Xanthomonas oryzae of Antimicrobial Metabolites Isolated from Phomopsis longicolla S1B4. Journal of Microbiology and Biotechnology, 20(3), 494–500. https://doi.org/10.4014/jmb.0909.09026 | spa |
dc.relation.references | Lima, G. S., Lima, N. M., Roque, J. V., de Aguiar, D. V. A., Oliveira, J. V. A., dos Santos, G. F., Chaves, A. R., & Vaz, B. G. (2022). LC-HRMS/MS-Based Metabolomics Approaches Applied to the Detection of Antifungal Compounds and a Metabolic Dynamic Assessment of Orchidaceae. Molecules, 27(22). https://doi.org/10.3390/molecules27227937 | spa |
dc.relation.references | Liu, F., Ma, Z. Y., Hou, L. W., Diao, Y. Z., Wu, W. P., Damm, U., Song, S., & Cai, L. (2022). Updating species diversity of Colletotrichum, with a phylogenomic overview. Studies in Mycology, 101(1), 1–56. https://doi.org/10.3114/sim.2022.101.01 | spa |
dc.relation.references | Liu, J., & Liu, G. (2018). Chapter 3: Analysis of Secondary Metabolites from Plant Endophytic Fungi. In Plant Pathogenic Fungi and Oomycetes: Methods and Protocols, Methods in Molecular Biology (Vol. 1848, pp. 25–38). https://doi.org/10.1007/978-1-4939-8724-5_3 | spa |
dc.relation.references | Liu, J., Zhu, X., Kim, S. J., & Zhang, W. (2016). Antimycin-type depsipeptides: Discovery, biosynthesis, chemical synthesis, and bioactivities. In Natural Product Reports (Vol. 33, Issue 10, pp. 1146–1165). Royal Society of Chemistry. https://doi.org/10.1039/c6np00004e | spa |
dc.relation.references | Liu, L., Liu, S., Chen, X., Guo, L., & Che, Y. (2009). Bioorganic & Medicinal Chemistry Pestalofones A–E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorganic & Medicinal Chemistry, 17(2), 606–613. https://doi.org/10.1016/j.bmc.2008.11.066 | spa |
dc.relation.references | Liu, S. S., Huang, R., Zhang, S. P., Xu, T. C., Hu, K., & Wu, S. H. (2022). Antimicrobial secondary metabolites from an endophytic fungus Aspergillus polyporicola. Fitoterapia, 162. https://doi.org/10.1016/j.fitote.2022.105297 | spa |
dc.relation.references | Liu, X., Mingsheng, D., Xiaohong, C., Mei, J., Xin, L., & Jianzhong, Z. (2008). Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol, 78, 241–247. https://doi.org/10.1007/s00253-007-1305-1 | spa |
dc.relation.references | Liu, Y., Ruan, Q., Jiang, S., Qu, Y., Chen, J., Zhao, M., & Yang, B. (2019). Cytochalasins and polyketides from the fungus Diaporthe sp. GZU-1021 and their anti-inflammatory activity. Fitoterapia, 137, 104187. https://doi.org/10.1016/j.fitote.2019.104187 | spa |
dc.relation.references | Liu, Z., Zhao, J., Sun, S., Li, Y., & Liu, Y. (2018). Fungi: outstanding source of novel chemical scaffolds. Journal of Asian Natural Products Research, 22(2), 99–120. https://doi.org/10.1080/10286020.2018.1488833 | spa |
dc.relation.references | Lopes, H., Humberto, G., Castro-gamboa, I., Pereira, O., Costa-neto, C. M., Bolzani, S., Haddad, R., Nogueira, M., Claudia, M., Young, M., & Arau, R. (2005). Benzopyrans from Curvularia sp., an endophytic fungus associated with Ocotea corymbosa (Lauraceae). Phytochemistry, 66, 2363–2367. https://doi.org/10.1016/j.phytochem.2005.04.043 | spa |
dc.relation.references | Ludwig-Müller, J. (2015). Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37, 1325–1334. https://doi.org/10.1007/s10529- 015-1814-4 | spa |
dc.relation.references | Lunardelli Negreiros de Carvalho, P., de Oliveira Silva, E., Aparecida Chagas-Paula, D., Honorata Hortolan Luiz, J., & Ikegaki, M. (2016). Importance and Implications of the Production of Phenolic Secondary Metabolites by Endophytic Fungi: A Mini-Review. Mini-Reviews in Medicinal Chemistry, 16(4), 259–271. https://doi.org/10.2174/1389557515666151016123923 | spa |
dc.relation.references | "Lv, J., Zhou, H., Dong, L., Wang, H., Yang, L., Yu, H., Wu, P., Zhou, L., Yang, Q., Liang, Y., & Luo, B. (2023). Three new furanones from endophytic fungus Hypoxylon vinosopulvinatum DYR-1-7 from Cinnamomum cassia with their antifungal activity. Natural Product Research, 1–8. https://doi.org/10.1080/14786419.2023.2218530" | spa |
dc.relation.references | Ma, Y. M., Zhang, H. C., Zhao, J., & Li, X. Q. (2012). Secondary anti-fungi metabolites from the endophytic fungus Fusarium sp. in Eucommia ulmoides. Chemistry of Natural Compounds, 48(1), 170–171. https://doi.org/10.1007/s10600-012-0195-3 | spa |
dc.relation.references | Ma, Y., Qiao, K., Kong, Y., Li, M., Guo, L., Miao, Z., & Fan, C. (2016). A new isoquinolone alkaloid from an endophytic fungus R22 of Nerium indicum. Natural Product Research, 31(8), 951–958. https://doi.org/10.1080/14786419.2016.1258556 | spa |
dc.relation.references | Macías-Rubalcava, M. L., Hernández-Bautista, B. E., Jiménez-Estrada, M., González, M. C., Glenn, A. E., Hanlin, R. T., Saucedo-García, A., Muria-González, J. M., Anaya, A. L., & Hernández-Ortega, S. (2008). Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry, 69, 1185–1196. https://doi.org/10.1016/j.phytochem.2007.12.006 | spa |
dc.relation.references | Macías-rubalcava, M. L., Sánchez-fernández, R. E., Roque-flores, G., Lappe-oliveras, P., & Medina-romero, Y. M. (2018). Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Journal Of Food Microbiology, 76, 363–373. https://doi.org/10.1016/j.fm.2018.06.014 | spa |
dc.relation.references | Martinez-klimova, E., Rodríguez-peña, K., & Sánchez, S. (2017). Endophytes as sources of antibiotics. Biochemical Pharmacology, 134, 1–17. https://doi.org/10.1016/j.bcp.2016.10.010 | spa |
dc.relation.references | Matzen, N., Heick, T. M., & Jørgensen, L. N. (2019). Control of powdery mildew (Blumeria graminis spp.) in cereals by Serenade®ASO (Bacillus amyloliquefaciens (former subtilis) strain QST 713). Biological Control, 139. https://doi.org/10.1016/j.biocontrol.2019.104067 | spa |
dc.relation.references | Mbasa, W. V., Nene, W. A., Kapinga, F. A., Lilai, S. A., & Tibuhwa, D. D. (2021). Characterization and chemical management of Cashew Fusarium Wilt Disease caused by Fusarium oxysporum in Tanzania. Crop Protection, 139. https://doi.org/10.1016/j.cropro.2020.105379 | spa |
dc.relation.references | McMillan, J. A., Chiang, C. C., Greensley, M. K., Paul, I. C., Patwardhan, S. A., Dev, S., Beno, M. A., & Christoph, G. G. (1977). X-Ray crystal and molecular structure of kodo-cytochalasin-1. Journal of the Chemical Society, Chemical Communications, 4, 105. https://doi.org/10.1039/c39770000105 | spa |
dc.relation.references | Mcwilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y. M., Buso, N., Cowley, A. P., & Lopez, R. (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Research, 41, 597–600. https://doi.org/10.1093/nar/gkt376 | spa |
dc.relation.references | Medeiros, C., Vargas, B., Padro, G., Maria, L., Morandini, B., Andrade, G., Regina, K., Farias, A., Luiz, S., & Cristine, R. (2019). Antifungal and antibacterial activity of extracts produced from Diaporthe schini. Journal of Biotechnology, 294, 30–37. https://doi.org/10.1016/j.jbiotec.2019.01.022 | spa |
dc.relation.references | Min, H., Ping, L., Lan, Q., Bo, W., Zhang, S., Wen, Z., Ning, Y., Jun, Z., & Xiang, R. (2017). Nodupetide, a potent insecticide and antimicrobial from Nodulisporium sp. associated with Riptortus pedestris. Tetrahedron Letters, 58(7), 663–665. https://doi.org/10.1016/j.tetlet.2017.01.009 | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2020). Cadena productiva Aguacate. Disponible en: https://sioc.minagricultura.gov.co/Aguacate/Documentos/2020-03- 30%20Cifras%20Sectoriales.pdf | spa |
dc.relation.references | Mishra, S., Priyanka, & Sharma, S. (2022). Metabolomic Insights Into Endophyte-Derived Bioactive Compounds. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.835931 | spa |
dc.relation.references | Mohamed, H., Ebrahim, W., El-Neketi, M., Awad, M. F., Zhang, H., Zhang, Y., & Song, Y. (2022). In Vitro Phytobiological Investigation of Bioactive Secondary Metabolites from the Malus domestica-Derived Endophytic Fungus Aspergillus tubingensis Strain AN103. Molecules, 27(12). https://doi.org/10.3390/molecules27123762 | spa |
dc.relation.references | Molnár, A., Knapp, D. G., Lovas, M., Tóth, G., Boldizsár, I., Váczy, K. Z., & Kovács, G. M. (2023). Untargeted metabolomic analyses support the main phylogenetic groups of the common plant-associated Alternaria fungi isolated from grapevine (Vitis vinifera). Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-46020-3 | spa |
dc.relation.references | Mondani, L., Chiusa, G., & Battilani, P. (2021). Chemical and biological control of Fusarium species involved in garlic dry rot at early crop stages. European Journal of Plant Pathology, 160(3), 575–587. https://doi.org/10.1007/s10658-021-02265-0 | spa |
dc.relation.references | Mondol, M. A. M., Farthouse, J., Islam, M. T., Schüffler, A., & Laatsch, H. (2017). Metabolites from the Endophytic Fungus Curvularia sp. M12 Act as Motility Inhibitors against Phytophthora capsici Zoospores. Journal of Natural Products, 80(2), 347– 355. https://doi.org/10.1021/acs.jnatprod.6b00785 | spa |
dc.relation.references | Monteiro, M. S., Carvalho, M., Bastos, M. L., & Pinho, P. G. De. (2013). Metabolomics Analysis for Biomarker Discovery: Advances and Challenges. Current Medicinal Chemistry, 20(2), 257–271. https://doi.org/10.2174/092986713804806621 | spa |
dc.relation.references | Morales-Sánchez, V., Díaz, C. E., Trujillo, E., Olmeda, S. A., Valcarcel, F., Muñoz, R., Andrés, M. F., & González-Coloma, A. (2021). Bioactive metabolites from the endophytic fungus Aspergillus sp. SPH2. Journal of Fungi, 7(2), 1–12. https://doi.org/10.3390/jof7020109 | spa |
dc.relation.references | Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T. L., Agarwala, R., & Schäffer, A. A. (2008). Database indexing for production MegaBLAST searches. Bioinformatics, 24(16), 1757–1764. https://doi.org/10.1093/bioinformatics/btn322 | spa |
dc.relation.references | Mousa, W. K., Schwan, A., Davidson, J., Strange, P., Liu, H., Zhou, T., Auzanneau, F., & Raizada, M. N. (2015). An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Frontiers in Microbiology, 6(1157), 1–16. https://doi.org/10.3389/fmicb.2015.01157 | spa |
dc.relation.references | Nagarajan, K., Ibrahim, B., Bawadikji, A. A., Lim, J. W., Tong, W. Y., Leong, C. R., Khaw, K. Y., & Tan, W. N. (2022). Recent Developments in Metabolomics Studies of Endophytic Fungi. In Journal of Fungi (Vol. 8, Issue 1). MDPI. https://doi.org/10.3390/jof8010028 | spa |
dc.relation.references | Nair, D. N., & Padmavathy, S. (2017). Impact of Endophytic Microorganisms on Plants, Environment and Humans Impact of Endophytic Microorganisms on Plants. The Scientific World Journal, 2014, 250693. https://doi.org/10.1155/2014/250693 | spa |
dc.relation.references | Nickles, G., Ludwikoski, I., Bok, J. W., & Keller, N. P. (2021). Comprehensive Guide to Extracting and Expressing Fungal Secondary Metabolites with Aspergillus fumigatus as a Case Study. Current Protocols, 1(12). https://doi.org/10.1002/cpz1.321 | spa |
dc.relation.references | "Nisa, H., Kamili, A. N., Nawchoo, I. A., Sha, S., Shameem, N., & Bandh, S. A. (2015). Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microbial Pathogenesis Journal, 82, 50–59. https://doi.org/10.1016/j.micpath.2015.04.001" | spa |
dc.relation.references | Nishmitha, K., Dubey, S. C., & Kamil, D. (2022). Diversity analysis of different Diaporthe (Phomopsis) species and development of molecular marker to identify quarantine important species Phomopsis phaseolorum. 3 Biotech, 12(1). https://doi.org/10.1007/s13205-021-03075-1 | spa |
dc.relation.references | Noor, A. O., Almasri, D. M., Bagalagel, A. A., Abdallah, H. M., Mohamed, S. G. A., Mohamed, G. A., & Ibrahim, S. R. M. (2020). Naturally occurring isocoumarins derivatives from endophytic fungi: Sources, isolation, structural characterization, biosynthesis, and biological activities. In Molecules (Vol. 25, Issue 2). MDPI AG. https://doi.org/10.3390/molecules25020395 | spa |
dc.relation.references | Novoa-Yánez, R. S., Araújo-Vásquez, A., Cadena-Torres, J., Grandett-Martínez, L. M., López-Rebolledo, L. A., Dagor, B., Panza-Tapia, M., & Medina-Mérida, M. J. (2023). Manual de producción de semilla de aguacate criollo en vivero en los Montes de María (R. Segundo, Ed.; Primera Edición). AGROSAVIA. | spa |
dc.relation.references | Olalde-Lira, G. G., Raya Montaño, Y. A., Apáez Barrios, P., Vargas-Sandoval, M., Pedraza Santos, M. E., Raymundo, T., Valenzuela R., & Lara-Chávez, Ma. B. N. (2020). Characterization of Fusarium spp., a Phytopathogen of avocado (Persea americana Miller var. drymifolia (Schltdl. and Cham.)) in Michoacán, México. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 52(2), 301-316. Disponible en: https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853- 86652020000200024&lng=es&tlng=en | spa |
dc.relation.references | Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. In Trends in Microbiology (Vol. 16, Issue 3, pp. 115–125). Elsevier Ltd. https://doi.org/10.1016/j.tim.2007.12.009 | spa |
dc.relation.references | Orjuela Corchuelo, D., & Avila Murillo, M. (2018). Microorganismos endófitos como alternativa para el control de hongos patógenos asociados al cultivo del aguacate en Colombia. Disponible en: https://repositorio.unal.edu.co/bitstream/handle/unal/76173/DianaOrjuela.2017.pdf?s equence=1 | spa |
dc.relation.references | Ortiz Caranguay, H. E., & Hoyos Carvajal, L. M. (2012). Etiología de enfermedades asociadas a Fusariosis en el cultivo de gulupa (Passiflora edulis Sims.) en la región del Sumapaz. In Re. Universidad Nacional de Colombia. Disponible en: https://repositorio.unal.edu.co/handle/unal/9567 | spa |
dc.relation.references | Osorio-Almanza, L., Burbano-Figueroa, O., Arcila-C, A. M., Vásquez-B., A. M., CarrascalPérez, F., & Romero-F., J. (2017). Distribución espacial del riesgo potencial de marchitamiento del aguacate causado por Phytophthora cinnamomi en la subregión de Montes de María. Revista Colombiana de Ciencias Hortícolas, 11(2), 273–285. https://doi.org/10.17584/rcch.2017v11i2.7329 | spa |
dc.relation.references | Palacios Joya, L. (2021). Caracterización de microorganismos asociados a la pudrición de raíces de aguacate Persea americana Mill en viveros del Valle del Cauca, Colombia. In Re. Universidad Nacional de Colombia. Disponible en: https://repositorio.unal.edu.co/handle/unal/80343 | spa |
dc.relation.references | Pan, F., Liu, Z. Q., Chen, Q., Xu, Y. W., Hou, K., & Wu, W. (2016). Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity. Brazilian Journal of Microbiology, 47(2), 480–488. https://doi.org/10.1016/j.bjm.2016.01.006 | spa |
dc.relation.references | Parikh, L., Kodati, S., Eskelson, M. J., & Adesemoye, A. O. (2018). Identification and pathogenicity of Fusarium spp. in row crops in Nebraska. Crop Protection, 108, 120– 127. https://doi.org/10.1016/j.cropro.2018.02.019 | spa |
dc.relation.references | Parkinson, L. E., Shivas, R. G., & Dann, E. K. (2017). Pathogenicity of nectriaceous fungi on avocado in Australia. Phytopathology, 107(12), 1479–1485. https://doi.org/10.1094/PHYTO-03-17-0084-R | spa |
dc.relation.references | Parra Amin, J. E., Cuca, L. E., & González-Coloma, A. (2021). Antifungal and phytotoxic activity of benzoic acid derivatives from inflorescences of Piper cumanense. Natural Product Research, 35(16), 2763–2771. https://doi.org/10.1080/14786419.2019.1662010 | spa |
dc.relation.references | Patchett, A., & Newman, J. A. (2021). Comparison of plant metabolites in root exudates of lolium perenne infected with different strains of the fungal endophyte epichloë festucae var. Lolii. Journal of Fungi, 7(2), 1–29. https://doi.org/10.3390/jof7020148 | spa |
dc.relation.references | Patil, M., Patil, R., Mohammad, S., & Maheshwari, V. (2017). Bioactivities of phenolicsrich fraction from Diaporthe arengae TATW2, an endophytic fungus from Terminalia arjuna (Roxb.). Biocatalysis and Agricultural Biotechnology, 10, 396–402. https://doi.org/10.1016/j.bcab.2017.05.002 | spa |
dc.relation.references | Patwardhan, S. A., Pandey, R. C., Dev, S., & Pendse, G. S. (1974). Toxic cytochalasins of Phomopsis paspalli, a pathogen of kodo millet. Phytochemistry, 13(9), 1985–1988. https://doi.org/10.1016/0031-9422(74)85130-7 | spa |
dc.relation.references | Peng, X., Sun, F., Li, G., Wang, C., Zhang, Y., Wu, C., Zhang, C., Sun, Y., Wu, S., Zhang, Y., Zong, H., Guo, R., & Lou, H. (2021). New Xanthones with Antiagricultural Fungal Pathogen Activities from the Endophytic Fungus Diaporthe goulteri L17. Journal of Agricultural and Food Chemistry, 69(38), 11216–11224. https://doi.org/10.1021/acs.jafc.1c03513 | spa |
dc.relation.references | Pérez- Álvarez, S., Ávila-Quezada, G., & Coto-Arbelo, O. (2015). Avocado (Persea americana Mill). Cultivos Tropicales, 36(2), 111–123. https://doi.org/10.13140/RG.2.2.19879.55200 | spa |
dc.relation.references | Pérez-Martínez, J., Ploetz, R. C., & Konkol, J. L. (2018). Significant in vitro antagonism of the laurel wilt pathogen by endophytic fungi from the xylem of avocado does not predict their ability to control the disease. Plant Pathology, 67(8), 1768–1776. https://doi.org/10.1111/ppa.12878 | spa |
dc.relation.references | Pliego, C., Zumaquero, A., Martínez- Ferri, E., & López-Herrera, C. (2016). Principales Podredumbres Radiculares del Aguacate en el Litoral Andaluz. Instituto de Investigación y Formación Agraria y Pesquera, Sevilla, 1–11. | spa |
dc.relation.references | Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-395 | spa |
dc.relation.references | Pohanka, A., Capieau, K., Broberg, A., Stenlid, J., Stenström, E., & Kenne, L. (2004). Enniatins of Fusarium sp. strain F31 and their inhibition of Botrytis cinerea spore germination. Journal of Natural Products, 67(5), 851–857. https://doi.org/10.1021/np0340448 | spa |
dc.relation.references | Puello, A. (2016). La transformación de la estructura productiva de los Montes de María: de despensa agrícola a distrito minero-energético. Revista Digital de Historia y Arqueología Desde El Caribe, 29, 52–83. | spa |
dc.relation.references | Qin, J., Zhang, Y., Gao, J., Bai, M., & Yang, S. (2009). Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorganic & Medicinal Chemistry Letters, 19(6), 1572–1574. https://doi.org/10.1016/j.bmcl.2009.02.025 | spa |
dc.relation.references | Ramírez-Gil, J. G. (2018). Avocado wilt complex disease, implications and management in Colombia. Revista Facultad Nacional de Agronomía, 71(2), 8525–8541. https://doi.org/10.15446/rfna.v71n2.66465 | spa |
dc.relation.references | Ramos, G. da C., Silva-Silva, J. V., Watanabe, L. A., Siqueira, J. E. de S., AlmeidaSouza, F., Calabrese, K. S., Marinho, A. M. do R., Marinho, P. S. B., & Oliveira, A. S. de. (2022). Phomoxanthone A, Compound of Endophytic Fungi Paecilomyces sp. and Its Potential Antimicrobial and Antiparasitic. Antibiotics, 11(10), 1332. https://doi.org/10.3390/antibiotics11101332 | spa |
dc.relation.references | Rampersad, S. N. (2020). Pathogenomics and management of Fusarium diseases in plants. In Pathogens (Vol. 9, Issue 5). MDPI AG. https://doi.org/10.3390/pathogens9050340 | spa |
dc.relation.references | Reyes-Estebanez, M., Sanmartín, P., Camacho-Chab, J. C., De la Rosa-García, S. C., Chan-Bacab, M. J., Águila-Ramírez, R. N., Carrillo-Villanueva, F., De la RosaEscalante, E., Arteaga-Garma, J. L., Serrano, M., & Ortega-Morales, B. O. (2020). Characterization of a native Bacillus velezensis-like strain for the potential biocontrol of tropical fruit pathogens. Biological Control, 141. https://doi.org/10.1016/j.biocontrol.2019.104127 | spa |
dc.relation.references | Richardson, S. N., Walker, A. K., Nsiama, T. K., Mcfarlane, J., Sumarah, M. W., Ibrahim, A., & Miller, J. D. (2014). Griseofulvin-producing Xylaria endophytes of Pinus strobus and Vaccinium angustifolium: evidence for a conifer-understory species endophyte ecology. Fungal Ecology, 11, 107–113. https://doi.org/10.1016/j.funeco.2014.05.004 | spa |
dc.relation.references | Robinson-Boyer, L., Jeger, M. J., Xu, X. M., & Jeffries, P. (2009). Management of strawberry grey mould using mixtures of biocontrol agents with different mechanisms of action. Biocontrol Science and Technology, 19(10), 1051–1065. https://doi.org/10.1080/09583150903289105 | spa |
dc.relation.references | Rodríguez-López, É. S., Cárdenas-Soriano, E., Hernández-Delgado, S., Gutiérrez-Diez, A., & Mayek-Pérez, N. (2013). Analysis of Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. infection of avocado fruits. Revista Brasileira de Fruticultura, 35(3), 898–905. https://doi.org/10.1590/S0100-29452013000300029 | spa |
dc.relation.references | Rodriquez-Tudela, J. L., Donnelly, J. P., Arendrup, M. C., Arikan, S., Barchiesi, F., Bille, J., Chryssanthou, E., Cuenca-Estrella, M., Dannaoui, E., Denning, D., Fegeler, W., Gaustad, P., Lass-Flörl, C., Moore, C., Richardson, M., Schmalreck, A., Velegraki, J. A., & Verweij, P. (2008). EUCAST technical note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidiaforming moulds. Clinical Microbiology and Infection, 14(10), 982–984. https://doi.org/10.1111/j.1469-0691.2008.02086.x | spa |
dc.relation.references | Roessner, U., & Dias, D. A. (n.d.). Metabolomics Tools for Natural Product Discovery IN Series Editor (2013th ed.). Springer Protocols. | spa |
dc.relation.references | Rohr, M., Kiefer, A. M., Kauhl, U., Groß, J., Opatz, T., & Erkel, G. (2022). Antiinflammatory dihydroxanthones from a Diaporthe species. Biological Chemistry, 403(1), 89–101. https://doi.org/10.1515/hsz-2021-0192 | spa |
dc.relation.references | Rojas Guerrero, M., & Portilla Ramos, A. (2016). Prevenga y maneje la pudrición radical del aguacate causada por el Oomycete Phytophthora cinnamomi Rands (2016th ed.). Oficina Asesora de Comunicaciones, Instituto Colombiano Agropecuario. | spa |
dc.relation.references | Rosenberg, E., Koren, O., Reshef, L., & Efrony, R. (2007). The role of microorganisms in coral health, disease and evolution. Narure Reviews, 5, 355–362. https://doi.org/10.1038/nrmicro1635 | spa |
dc.relation.references | Rossana, A., Souza, C. De, Bortoluzzi, D., Lima, J., Porto, V., Marcuz, C., Camargo, R., Kuhn, R. C., Jacques, R. J. S., Guedes, J. V. C., & Mazutti, M. A. (2015). Bioherbicide production by Diaporthe sp. isolated from the Brazilian Pampa biome. Biocatalysis and Agricultural Biotechnology, 4(4), 575–578. https://doi.org/10.1016/j.bcab.2015.09.005 | spa |
dc.relation.references | Rutkowska, N., Drożdżyński, P., Ryngajłło, M., & Marchut-Mikołajczyk, O. (2023). Plants as the Extended Phenotype of Endophytes—The Actual Source of Bioactive Compounds. In International Journal of Molecular Sciences (Vol. 24, Issue 12). MDPI. https://doi.org/10.3390/ijms241210096 | spa |
dc.relation.references | Sánchez-Fernández, R. E., & Macías-Rubalcava, M. L. (2017). Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol, 33(15), 1–22. https://doi.org/10.1007/s11274-016- 2174-5 | spa |
dc.relation.references | Sánchez-fernández, R. E., Diaz, D., Duarte, G., Lappe-oliveras, P., Sánchez, S., Macíasrubalcava, M. L., & Macías-rubalcava, M. L. (2016). Antifungal Volatile Organic Compounds from the Endophyte Nodulisporium sp. Strain GS4d2II1a: a Qualitative Change in the Intraspecific and Interspecific Interactions with Pythium aphanidermatum interaction. Microb. Ecol., 71, 347–364. https://doi.org/10.1007/s00248-015-0679-3 | spa |
dc.relation.references | Sánchez-Fernández, R. E., Sánchez-ortiz, B. L., Sandoval-espinosa, Y. K. M., Ulloabenítez, Á., Armendáriz-guillén, B., Claudia, M., & Martha, G. (2013). Hongos endófitos: fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP Revista Especializada En Ciencias Químico-Biológicas, 16(2), 132–146. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-888X2013000200006&lng=es&tlng=es. | spa |
dc.relation.references | Santiago, C., Fitchett, C., Munro, M. H. G., Jalil, J., & Santhanam, J. (2012). Cytotoxic and Antifungal Activities of 5-Hydroxyramulosin, a Compound Produced by an Endophytic Fungus Isolated from Cinnamomum mollisimum. Evidence-Based Complementary and Alternative Medicine, 2012, 1–6. https://doi.org/10.1155/2012/689310 | spa |
dc.relation.references | Santos, Á., Soares, J. X., Cravo, S., Tiritan, M. E., Reis, S., Afonso, C., Fernandes, C., & Pinto, M. M. M. (2018). Lipophilicity assessement in drug discovery: Experimental and theoretical methods applied to xanthone derivatives. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1072, 182–192. https://doi.org/10.1016/j.jchromb.2017.10.018 | spa |
dc.relation.references | Saucedo-Bazalar, M., Masias, P., Nouchi-Moromizato, E., Santos, C., Mialhe, E., & Cedeño, V. (2023). MALDI mass spectrometry-based identification of antifungal molecules from endophytic Bacillus strains with biocontrol potential of Lasiodiplodia theobromae, a grapevine trunk pathogen in Peru. Current Research in Microbial Sciences, 5. https://doi.org/10.1016/j.crmicr.2023.100201 | spa |
dc.relation.references | Savi, D. C., Noriler, S. A., Ponomareva, L. V, Thorson, J. S., Rohr, J., Glienke, C., & Shaaban, K. A. (2020). Dihydroisocoumarins produced by Diaporthe cf . heveae LGMF1631 inhibiting citrus pathogens. Folia Microbiologica, 65, 381–392. https://doi.org/10.1007/s12223-019-00746-8 | spa |
dc.relation.references | Sayed, A. M., Sherif, N. H., El-Gendy, A. O., Shamikh, Y. I., Ali, A. T., Attia, E. Z., ElKatatny, M. H., Khalifa, B. A., Hassan, H. M., & Abdelmohsen, U. R. (2022). Metabolomic profiling and antioxidant potential of three fungal endophytes derived from Artemisia annua and Medicago sativa. Natural Product Research, 36(9), 2404– 2408. https://doi.org/10.1080/14786419.2020.1831495 | spa |
dc.relation.references | Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D., & McLean, J. A. (2016). Untargeted Metabolomics Strategies—Challenges and Emerging Directions. Journal of the American Society for Mass Spectrometry, 27(12), 1897–1905. https://doi.org/10.1007/s13361-016-1469-y | spa |
dc.relation.references | Schueffler, A., & Anke, T. (2014). Fungal natural products in research and development. Nat. Prod. Rep., 31, 1425–1448. https://doi.org/10.1039/C4NP00060A | spa |
dc.relation.references | Schulz, B., & Boyle, C. (2005). The endophytic continuum. Mycol. Res., 109(6), 661–686. https://doi.org/10.1017/S095375620500273X | spa |
dc.relation.references | Schulz, B., & Boyle, C. (2006). What are Endophytes? In Soil Biology (Vol. 9, pp. 1–14). Springer. https://doi.org/10.1007/3-540-33526-9_1 | spa |
dc.relation.references | Segaran, G., & Sathiavelu, M. (2019). Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatalysis and Agricultural Biotechnology, 21, 101284. https://doi.org/10.1016/j.bcab.2019.101284 | spa |
dc.relation.references | Segre, J. A. (2013). What does it take to satisfy Koch’s postulates two centuries later?: Microbial genomics and propionibacteria acnes. Journal of Investigative Dermatology, 133(9), 2141–2142. https://doi.org/10.1038/jid.2013.260 | spa |
dc.relation.references | Shahzad, R., Khan, A. L., Bilal, S., Asaf, S., & Lee, I. (2018). What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth. Frontiers in Plant Science, 9(24), 1–10. https://doi.org/10.3389/fpls.2018.00024 | spa |
dc.relation.references | Shang, Z., Raju, R., Salim, A. A., Khalil, Z. G., & Capon, R. J. (2017). Cytochalasins from an Australian Marine Sediment-Derived Phomopsis sp. (CMB-M0042F): AcidMediated Intramolecular Cycloadditions Enhance Chemical Diversity. The Journal of Organic Chemistry, 82(18), 9704–9709. https://doi.org/10.1021/acs.joc.7b01793 | spa |
dc.relation.references | Sharma, G., Maymon, M., & Freeman, S. (2017). Epidemiology, pathology and identification of Colletotrichum including a novel species associated with avocado (Persea americana) anthracnose in Israel. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-15946-w | spa |
dc.relation.references | Shetty, K. G., Rivadeneira, D. V, Jayachandran, K., & Walker, D. M. (2016). Isolation and molecular characterization of the fungal endophytic microbiome from conventionally and organically grown avocado trees in South Florida. Mycological Progress, 15, 977–986. https://doi.org/10.1007/s11557-016-1219-3 | spa |
dc.relation.references | Siebatcheu, E. C., Wetadieu, D., Youassi Youassi, O., Bedine Boat, M. A., Bedane, K. G., Tchameni, N. S., & Sameza, M. L. (2023). Secondary metabolites from an endophytic fungus Trichoderma erinaceum with antimicrobial activity towards Pythium ultimum. Natural Product Research, 37(4), 657–662. https://doi.org/10.1080/14786419.2022.2075360 | spa |
dc.relation.references | Silva, G., de Oliveira, C., Teles, H., Bolzani, V., Araujo, A., Pfenning, L. H., Young, M. C. M., Costa-neto, C. M., & Haddad, R. (2010). Citocalasinas produzidas por Xylaria sp., um fungo endofítivo de Piper aduncum (PIPERACEAE). Quim. Nova, 33(10), 2038–2041. https://doi.org/10.1590/S0100-40422010001000006 | spa |
dc.relation.references | Silva, N. I. D. E., Brooks, S., Lumyong, S., & Hyde, K. D. (2018). Use of endophytes as biocontrol agents. Fungal Biology Reviews, 33(2), 133–148. https://doi.org/10.1016/j.fbr.2018.10.001 | spa |
dc.relation.references | Singh, A., Kumar, J., Sharma, V. K., Singh, D. K., Kumari, P., Nishad, J. H., Gautam, V. S., & Kharwar, R. N. (2021). Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. South African Journal of Botany, 140, 87–94. https://doi.org/10.1016/j.sajb.2021.03.004 | spa |
dc.relation.references | Singh, K. S., & Singh, A. (2022). Chemical diversities, biological activities and chemical synthesis of marine diphenyl ether and their derivatives. In Journal of Molecular Structure (Vol. 1265). Elsevier B.V. https://doi.org/10.1016/j.molstruc.2022.133302 | spa |
dc.relation.references | Singh, V. K., & Kumar, A. (2023). Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. In Symbiosis (Vol. 90, Issue 2, pp. 111–125). Springer Science and Business Media B.V. https://doi.org/10.1007/s13199-023-00925-9 | spa |
dc.relation.references | Skellam, E. (2017). The biosynthesis of cytochalasans. Natural Product Reports, 34(11), 1252–1263. https://doi.org/10.1039/c7np00036g | spa |
dc.relation.references | Solhaug, A., Eriksen, G. S., & Holme, J. A. (2016). Mechanisms of Action and Toxicity of the Mycotoxin Alternariol: A Review. Basic & Clinical Pharmacology & Toxicology, 119(6), 533–539. https://doi.org/10.1111/bcpt.12635 | spa |
dc.relation.references | Song, Q., Nan, Z., Gao, K., Song, H., Tian, P., Xing-Xu, Z., Chunjie, L., Wen-Bo, X., & Xiu-Zhang Li. (2015a). Antifungal, Phytotoxic, and Cytotoxic Activities of Metabolites from Epichloë bromicola, a Fungus Obtained from Elymus tangutorum Grass. J. Agric. Food Chem., 63(40), 8787–8792. https://doi.org/10.1021/acs.jafc.5b04260 | spa |
dc.relation.references | Song, Z., Sun, Y. J., Xu, S., Li, G., Yuan, C., & Zhou, K. (2023). Secondary metabolites from the Endophytic fungi Fusarium decemcellulare F25 and their antifungal activities. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1127971 | spa |
dc.relation.references | Štiblariková, M., Lásiková, A., & Gracza, T. (2023). Benzyl Alcohol/Salicylaldehyde-Type Polyketide Metabolites of Fungi: Sources, Biosynthesis, Biological Activities, and Synthesis. In Marine Drugs (Vol. 21, Issue 1). MDPI. https://doi.org/10.3390/md21010019 | spa |
dc.relation.references | Strobel, G. A. (2003). Endophytes as sources of bioactive products. Microbes and Infection, 5, 535–544. https://doi.org/10.1016/s1286-4579(03)00073-x | spa |
dc.relation.references | Strobel, G., & Daisy, B. (2003). Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiology and Molecular Biology Reviews, 67(4), 491–502. https://doi.org/10.1128/MMBR.67.4.491 | spa |
dc.relation.references | Sun, J., Yang, X. Q., Wan, J. L., Han, H. L., Zhao, Y. D., Cai, L., Yang, Y. Bin, & Ding, Z. T. (2023). The antifungal metabolites isolated from maize endophytic fungus Fusarium sp. induced by OSMAC strategy. Fitoterapia, 171. https://doi.org/10.1016/j.fitote.2023.105710 | spa |
dc.relation.references | Suryanarayanan, T. S. (2012). Diversity of Fungal Endophytes in Tropical Trees. In Endophytes of forest trees: biology and applications (p. 68). Springer. https://doi.org/10.1007/978-94-007-1599-8 | spa |
dc.relation.references | Suryanarayanan, T. S., Thirunavukkarasu, N., & Govindarajulu, M. B. (2009). Fungal endophytes and bioprospecting. Fungal Biology Reviews, 23(1–2), 9–19. https://doi.org/10.1016/j.fbr.2009.07.001 | spa |
dc.relation.references | Suwannarach, N., Kumla, J., Bussaban, B., Nuangmek, W., & Matsui, K. (2013). Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Protection, 45, 63–70. https://doi.org/10.1016/j.cropro.2012.11.015 | spa |
dc.relation.references | Talontsi, F. M., Dittrich, B., Schüffler, A., Sun, H., & Laatsch, H. (2013). Epicoccolides: Antimicrobial and antifungal polyketides from an endophytic fungus Epicoccum sp associated with Theobroma cacao. European Journal of Organic Chemistry, 15, 3174–3180.https://doi.org/10.1002/ejoc.201300146 | spa |
dc.relation.references | Tamayo, P. J. (2007). Enfermedades del Aguacate. Revista Politécnica, 3(4), 51–70 | spa |
dc.relation.references | Tanney, J. B., Mcmullin, D. R., Green, B. D., Miller, J. D., & Seifert, K. A. (2016). Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biology, 120(11), 1448–1457. https://doi.org/10.1016/j.funbio.2016.05.007 | spa |
dc.relation.references | Tata, A., Perez, C., Campos, M. L., Bayfield, M. A., Eberlin, M. N., & Ifa, D. R. (2015). Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging for Monitoring Secondary Metabolites Production during Antagonistic Interaction of Fungi. Analytical Chemistry, 87(24), 12298–12305. https://doi.org/10.1021/acs.analchem.5b03614 | spa |
dc.relation.references | Terhonen, E., Sipari, N., & Asiegbu, F. O. (2016). Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biological Control, 99, 53–63. https://doi.org/10.1016/j.biocontrol.2016.04.006 | spa |
dc.relation.references | Thomas, E. J., & Whitehead, J. W. F. (1989). Cytochalasan synthesis: total synthesis of cytochalasin H. Journal of the Chemical Society, Perkin Transactions 1, 1(3), 507. https://doi.org/10.1039/p19890000507 | spa |
dc.relation.references | Tonial, F., Maia, B. H. L. N. S., Sobottka, A. M., Vicente, A., Gomes, R. R., Glienke, C., & Savi, D. C. (2017). Biological activity of Diaporthe terebinthifolii extracts against Phyllosticta citricarpa. FEMS Microbiology Letters, 364, 1–7. https://doi.org/10.1093/femsle/fnx026 | spa |
dc.relation.references | Tör, M., & Woods-Tör, A. (2017). Genetic Modification of Disease Resistance: Fungal and Oomycete Pathogens. Encyclopedia of Applied Plant Sciences, 3, 83–87. https://doi.org/10.1016/B978-0-12-394807-6.00054-X | spa |
dc.relation.references | Triastuti, A., Vansteelandt, M., Barakat, F., Amasifuen, C., Jargeat, P., & Haddad, M. (2023). Untargeted metabolomics to evaluate antifungal mechanism: a study of Cophinforma mamane and Candida albicans interaction. Natural Products and Bioprospecting, 13(1). https://doi.org/10.1007/s13659-022-00365-w | spa |
dc.relation.references | Triba, M. N., Le Moyec, L., Amathieu, R., Goossens, C., Bouchemal, N., Nahon, P., Rutledge, D. N., & Savarin, P. (2015). PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. In Molecular BioSystems (Vol. 11, Issue 1, pp. 13–19). Royal Society of Chemistry. https://doi.org/10.1039/c4mb00414k | spa |
dc.relation.references | Tsantrizos, Y. S. (1995). Bioactive Metabolites of the Genus Phomopsis. Studies in Natural Products Chemistry, 15, 341–359. https://doi.org/10.1016/S1572- 5995(06)80136-5 | spa |
dc.relation.references | Tsivileva, O. M., Koftin, O. V., & Evseeva, N. V. (2022). Coumarins as Fungal Metabolites with Potential Medicinal Properties. In Antibiotics (Vol. 11, Issue 9). MDPI. https://doi.org/10.3390/antibiotics11091156 | spa |
dc.relation.references | Tuiche, M. V., Lopes, A. A., Silva, D. B., Lopes, N. P., & Pupo, M. T. (2014). Direct MALDI-TOF/TOF analyses of unnatural beauvericins produced by the endophytic fungus Fusarium oxysporum SS46. Revista Brasileira de Farmacognosia, 24(4), 433–438. https://doi.org/10.1016/j.bjp.2014.06.002 | spa |
dc.relation.references | Udayanga, D., & Liu, X. (2012). A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Diversity, 56, 157–171. https://doi.org/10.1007/s13225-012- 0190-9 | spa |
dc.relation.references | Ul-Hassan, R., Strobel, G., Geary, B., & Sears, J. (2013). An Endophytic Nodulisporium sp. from Central America Producing Volatile Organic Compounds with Both Biological and Fuel Potential. J. Microbiol. Biotechnol., 23(1), 29–35. https://doi.org/10.4014/jmb.1208.04062 | spa |
dc.relation.references | van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7. https://doi.org/10.1186/1471-2164-7-142 | spa |
dc.relation.references | Varughese, T., Rios, N., Higginbotham, S., Elizabeth Arnold, A., Coley, P. D., Kursar, T. A., Gerwick, W. H., & Rios, L. C. (2012a). Antifungal depsidone metabolites from Cordyceps dipterigena, an endophytic fungus antagonistic to the phytopathogen Gibberella fujikuroi. Tetrahedron Letters, 53(13), 1624–1626. https://doi.org/10.1016/j.tetlet.2012.01.076 | spa |
dc.relation.references | Vega, J. (2012). El aguacate en Colombia. Estudio de caso de los Montes de María, en el Caribe Colombiano. Banco de La República de Colombia. Centro de Estudios Económicos Regionales., 171, 1–35. Disponible en: https://www.banrep.gov.co/sites/default/files/publicaciones/archivos/dtser_171.pdf | spa |
dc.relation.references | Venkateswarulu, N., Shameer, S., Bramhachari, P. V, Basha, S. K. T., Nagaraju, C., & Vijaya, T. (2018). Isolation and characterization of plumbagin (5-hydroxyl-2- methylnaptalene-1,4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants. Biotechnol Rep (Amst)., 20, 1–10. https://doi.org/10.1016/j.btre.2018.e00282 | spa |
dc.relation.references | Venugopalan, A., Potunuru, U. R., Dixit, M., & Srivastava, S. (2016). Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresource Technology, 206, 104–111. https://doi.org/10.1016/j.biortech.2016.01.079 | spa |
dc.relation.references | Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1–20. https://doi.org/10.1016/j.bej.2007.05.012 | spa |
dc.relation.references | Verma, S. K., Kingsley, K. L., Bergen, M. S., Kowalski, K. P., & White, J. F. (2018). Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-associated endophytic bacteria from invasive phragmites australis. Microorganisms, 6(1). https://doi.org/10.3390/microorganisms6010021 | spa |
dc.relation.references | Verma, V., & Gange, A. (2014). Advances in Endophytic Research. Springer. https://doi.org/10.1007/978-81-322-1575-2 | spa |
dc.relation.references | Verma, V., & Gange, A. (2014). Microbial Endophytes: Their Resilience for Innovative Treatment Solution to Neglected Tropical Diseases. In Advances in Endophytic Research (pp. 161–176). https://doi.org/10.1007/978-81-322-1575-2 | spa |
dc.relation.references | Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma – plant – pathogen interactions. Soil Biology and Biochemistry, 40, 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002 | spa |
dc.relation.references | Volcy, C. (2008). Génesis y evolución de los postulados de Koch y su relación con la fitopatología. Una revisión Genesis and evolution of Koch postulates and their relationship with phytopathology. A review. Genesis, 26(1), 107– 115. https://revistas.unal.edu.co/index.php/agrocol/article/view/13924 | spa |
dc.relation.references | Wagenaar, M. M., & Clardy, J. (2001). Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. Journal of Natural Products, 64(8), 1006–1009. https://doi.org/10.1021/np010020u | spa |
dc.relation.references | Waheedam, K., & Shyam, K. (2017). Formulation of Novel Surface Sterilization Method and Culture Media for the Isolation of Endophytic Actinomycetes from Medicinal Plants and its Antibacterial Activity. Journal of Plant Pathology & Microbiology, 8(2), 1–9. https://doi.org/10.4172/2157-7471.1000399 | spa |
dc.relation.references | Wang, C. F., Ma, J., Jing, Q. Q., Cao, X. Z., Chen, L., Chao, R., Zheng, J. Y., Shao, C. L., He, X. X., & Wei, M. Y. (2022). Integrating Activity-Guided Strategy and Fingerprint Analysis to Target Potent Cytotoxic Brefeldin A from a Fungal Library of the Medicinal Mangrove Acanthus ilicifolius. Marine Drugs, 20(7). https://doi.org/10.3390/md20070432 | spa |
dc.relation.references | Wang, D. L., Yang, X. Q., Shi, W. Z., Cen, R. H., Yang, Y. Bin, & Ding, Z. T. (2021). The selective anti-fungal metabolites from Irpex lacteus and applications in the chemical interaction of Gastrodia elata, Armillaria sp., and endophytes. Fitoterapia, 155. https://doi.org/10.1016/j.fitote.2021.105035 | spa |
dc.relation.references | Wang, D., Zhuang, X., Yin, Y., Wu, D., He, W., Zhu, W., Xu, Y., Zuo, M., & Wang, L. (2023). Indole Diterpene Derivatives from the Aspergillus flavus GZWMJZ-288, an Endophytic Fungus from Garcinia multiflora. Molecules, 28(23). https://doi.org/10.3390/molecules28237931 | spa |
dc.relation.references | Wang, H., Fewer, D. P., Holm, L., Rouhiainen, L., & Sivonen, K. (2014). Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9259–9264. https://doi.org/10.1073/pnas.1401734111 | spa |
dc.relation.references | Wang, J. F., Huang, R., Song, Z. Q., Yang, Q. R., Li, X. P., Liu, S. S., & Wu, S. H. (2022). Polyhydroxylated sesquiterpenes and ergostane glycosides produced by the endophytic fungus Xylaria sp. from Azadirachta indic | spa |
dc.relation.references | Wang, J., Qiu, J., Yang, X., Yang, J., Zhao, S., Zhou, Q., & Chen, L. (2022). Identification of Lipopeptide Iturin A Produced by Bacillus amyloliquefaciens NCPSJ7 and Its Antifungal Activities against Fusarium oxysporum f. sp. niveum. Foods, 11(19). https://doi.org/10.3390/foods11192996 | spa |
dc.relation.references | Wang, J., Wang, G., Zhang, Y., Zheng, B., Zhang, C., & Wang, L. (2014). Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites. World J Microbiol Biotechnol Antifungal, 30(10), 2639–2644. https://doi.org/10.1007/s11274-014-1686-0 | spa |
dc.relation.references | Wang, J., Zhao, Y., Men, L., Zhang, Y., Liu, Z., Sun, T., Geng, Y., & Yu, Z. (2014). Secondary Metabolites of the Marine Fungus Penicillium chrysogenum. Chemistry of Natural Compounds, 50(3), 405–407. https://doi.org/10.1007/s10600-014-0971-3 | spa |
dc.relation.references | Wang, X., Gong, X., Li, P., Lai, D., & Zhou, L. (2018). Structural diversity and biological activities of cyclic depsipeptides from fungi. In Molecules (Vol. 23, Issue 1). MDPI AG. https://doi.org/10.3390/molecules23010169 | spa |
dc.relation.references | Wang, X., Radwan, M. M., Taráwneh, A. H., Gao, J., Wedge, D. E., Rosa, L. H., Cutler, H. G., & Cutler, S. J. (2013). Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. Journal of Agricultural and Food Chemistry, 61(19), 4551–4555. https://doi.org/10.1021/jf400212y | spa |
dc.relation.references | Wanjiku, E. K., Waceke, J. W., Wanjala, B. W., & Mbaka, J. N. (2020). Identification and Pathogenicity of Fungal Pathogens Associated with Stem End Rots of Avocado Fruits in Kenya. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/4063697 | spa |
dc.relation.references | Wei, P., Fei, Y. O. U., Xiao-li, L. I., Min, J. I. A., Cheng-jian, Z., & Ting, H. A. N. (2013). A new diphenyl ether from the endophytic fungus Verticillium sp. isolated from Rehmannia glutinosa. Chinese Journal of Natural Medicines, 11(6), 673–675. https://doi.org/10.1016/S1875-5364(13)60078-3 | spa |
dc.relation.references | Werres, S. (2015). Laboratory Protocols for Phytophthora Species: Preparation of hyphal tip Phytophthora cultures. https://doi.org/10.1094/9780890544969.01.09.1.pdf | spa |
dc.relation.references | Wezeman, T., Bräse, S., & Masters, K. S. (2015). Xanthone dimers: A compound family which is both common and privileged. In Natural Product Reports (Vol. 32, Issue 1, pp. 6–28). Royal Society of Chemistry. https://doi.org/10.1039/c4np00050a | spa |
dc.relation.references | Wicklow, D. T., Roth, S., Deyrup, S. T., & Gloer, J. B. (2005). A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol. Res., 109(5), 610–618. https://doi.org/10.1017/S0953756205002820 | spa |
dc.relation.references | Wolfender, J., Marti, G., Thomas, A., & Bertrand, S. (2015). Current approaches and challenges for the metabolite profiling of complex natural extracts. Journal of Chromatography A, 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.10.091 | spa |
dc.relation.references | Worley, B., & Powers, R. (2013). Multivariate Analysis in Metabolomics. Current Metabolomics, 1(1), 92–107. https://doi.org/10.2174/2213235x11301010092 | spa |
dc.relation.references | Worley, B., & Powers, R. (2016). PCA as a Practical Indicator of OPLS-DA Model Reliability. Current Metabolomics, 4(2), 97–103. https://doi.org/10.2174/2213235x04666160613122429 | spa |
dc.relation.references | Wu, S., He, J., Li, X., Huang, R., Song, F., Chen, Y., & Miao, C. (2014). Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. Phytochemistry, 105, 197–204. https://doi.org/10.1016/j.phytochem.2014.04.016 | spa |
dc.relation.references | Wu, Z., Chen, J., Zhang, X., Chen, Z., Li, T., She, Z., Ding, W., & Li, C. (2019b). Four New Isocoumarins and a New Natural Tryptamine with Antifungal Activities from a Mangrove Endophytic Fungus Botryosphaeria ramosa L29. Mar. Drugs, 17(88), 1–9. https://doi.org/10.3390/md17020088 | spa |
dc.relation.references | Xiao, J., Zhang, Q., Gao, Y. Q., Shi, X. W., & Gao, J. M. (2014). Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach. Natural Product Research, 28(17), 1388–1392. https://doi.org/10.1080/14786419.2014.904308 | spa |
dc.relation.references | Xiao, J., Zhang, Q., Gao, Y. Q., Tang, J. J., Zhang, A. L., & Gao, J. M. (2014). Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. Journal of Agricultural and Food Chemistry, 62(16), 3584–3590. https://doi.org/10.1021/jf500054f | spa |
dc.relation.references | Xie, J., Strobel, G. A., Feng, T., Ren, H., Mends, M. T., Zhou, Z., & Geary, B. (2015). An endophytic Coniochaeta velutina producing broad spectrum antimycotics. Journal of Microbiology, 53(6), 390–397. https://doi.org/10.1007/s12275-015-5105-5 | spa |
dc.relation.references | Xu, D., Zhang, B., & Yang, X. (2016). Antifungal monoterpene derivatives from the plant endophytic fungus Pestalotiopsis foedan. Chemistry & Biodiversity, 13(10), 1422– 1425. https://doi.org/10.1002/cbdv.201600114 | spa |
dc.relation.references | Xu, K., Li, X. Q., Zhao, D. L., & Zhang, P. (2021). Antifungal Secondary Metabolites Produced by the Fungal Endophytes: Chemical Diversity and Potential Use in the Development of Biopesticides. In Frontiers in Microbiology (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2021.689527 | spa |
dc.relation.references | Xu, T. C., Lu, Y. H., Wang, J. F., Song, Z. Q., Hou, Y. G., Liu, S. S., Liu, C. S., & Wu, S. H. (2021). Bioactive secondary metabolites of the genus Diaporthe and anamorph Phomopsis from terrestrial and marine habitats and endophytes: 2010–2019. In Microorganisms (Vol. 9, Issue 2, pp. 1–49). MDPI AG. https://doi.org/10.3390/microorganisms9020217 | spa |
dc.relation.references | Yan, L., Zhao, H., Zhao, X., Xu, X., Di, Y., Jiang, C., Shi, J., Shao, D., Huang, Q., Yang, H., & Jin, M. (2018). Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions. In Applied Microbiology and Biotechnology (Vol. 102, Issue 15, pp. 6279–6298). Springer Verlag. https://doi.org/10.1007/s00253-018-9101-7 | spa |
dc.relation.references | Yan, L., Zhu, J., Zhao, X., Shi, J., Jiang, C., & Shao, D. (2019). Beneficial effects of endophytic fungi colonization on plants. In Applied Microbiology and Biotechnology (Vol. 103, Issue 8, pp. 3327–3340). Springer Verlag. https://doi.org/10.1007/s00253- 019-09713-2 | spa |
dc.relation.references | Yan, W., Wei, W., Zhang, Y., Wang, J., Ping, X., & Xu, J. (2018). Nigrosporanenes C and D, two new cyclohexene derivatives from the enphytic fungus Nigrospora oryzae S4. Journal of Asian Natural Products Research, 20(10), 957–961. https://doi.org/10.1080/10286020.2018.1424140 | spa |
dc.relation.references | Yang, X., Wang, N., Kang, Y., & Ma, Y. (2018). A new furan derivative from an endophytic Aspergillus tubingensis of Decaisnea insignis (Griff.) Hook.f. & Thomson. Natural Product Research, 33(19), 2777–2783. https://doi.org/10.1080/14786419.2018.1501687 | spa |
dc.relation.references | Yang, X., Xu, X., Wang, S., Zhang, L., Shen, G., Teng, H., Yang, C., Song, C., Xiang, W., Wang, X., & Zhao, J. (2022). Identification, Pathogenicity, and Genetic Diversity of Fusarium spp. Associated with Maize Sheath Rot in Heilongjiang Province, China. International Journal of Molecular Sciences, 23(18). https://doi.org/10.3390/ijms231810821 | spa |
dc.relation.references | Yin, Q., Liu, X., Zhang, Z., Lei, H., & Wu, B. (2023). Chemistry and bioactivities of alkaloids isolated from marine fungi (covering 2016–2022). In Fitoterapia (Vol. 164). Elsevier B.V. https://doi.org/10.1016/j.fitote.2022.105377 | spa |
dc.relation.references | You, F., Han, T., Wu, J., Huang, B., & Qin, L. (2009). Antifungal secondary metabolites from endophytic Verticillium sp. Biochemical Systematics and Ecology, 37(3), 162– 165. https://doi.org/10.1016/j.bse.2009.03.008 | spa |
dc.relation.references | Yu, E., Riyaz-ul-hassan, S., & Geary, B. (2012). An Endophytic Nodulisporium sp. Producing Volatile Organic Compounds Having Bioactivity and Fuel Potential. J. Pet. Environ. Biotechnol, 3(3), 1–7. https://doi.org/10.4172/2157-7463.1000117 | spa |
dc.relation.references | Yu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., Sun, P., & Ã, L. Q. (2010). Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiological Research, 165(6), 437–449. https://doi.org/10.1016/j.micres.2009.11.009 | spa |
dc.relation.references | Zabalgogeazcoa, I. (2008). Fungal endophytes and their interaction with plant pathogens. Spanish Journal of Agricultural Research, 6, 138–146. https://doi.org/10.5424/sjar/200806S1-382 | spa |
dc.relation.references | Zakaria, L. (2023). Fusarium Species Associated with Diseases of Major Tropical Fruit Crops. Horticulturae, 9(3), 322. https://doi.org/10.3390/horticulturae9030322 | spa |
dc.relation.references | Zang, Z., Yang, W., Cui, H., Cai, R., Li, C., Zou, G., Wang, B., & She, Z. (2022). Two Antimicrobial Heterodimeric Tetrahydroxanthones with a 7,7′-Linkage from Mangrove Endophytic Fungus Aspergillus flavus QQYZ. Molecules, 27(9). https://doi.org/10.3390/molecules27092691 | spa |
dc.relation.references | Zhang, D., Sun, W., Xu, W., Ji, C., Zhou, Y., Sun, J., Tian, Y., Li, Y., Zhao, F., & Tian, Y. (2023). Antimicrobial and Cytotoxic Activity of Endophytic Fungi from Lagopsis supina. Journal of Microbiology and Biotechnology, 33(4), 543–551. https://doi.org/10.4014/jmb.2211.11055 | spa |
dc.relation.references | Zhang, G., Zhang, Y., Qin, J., Qu, X., Liu, J., Li, X., & Pan, H. (2013). Antifungal Metabolites Produced by Chaetomium globosum No.04, an Endophytic Fungus Isolated from Ginkgo biloba. Indian J Microbiol, 53(2), 175–180. https://doi.org/10.1007/s12088-013-0362-7 | spa |
dc.relation.references | Zhang, H. W., Song, Y. C., & Tan, R. X. (2006). Biology and chemistry of endophytes. Natural Product Reports, 23(5), 753–771. https://doi.org/10.1039/b609472b | spa |
dc.relation.references | Zhang, H., Ma, Y., Liu, R., & Zhou, F. (2012). Endophytic fungus Aspergillus tamarii from Ficus carica L ., a new source of indolyl diketopiperazines. Biochemical Systematics and Ecology, 45, 31–33. https://doi.org/10.1016/j.bse.2012.07.020 | spa |
dc.relation.references | Zhang, P., Li, X., Yuan, X., Du, Y., Wang, B., & Zhang, Z. (2018a). Antifungal Prenylated Diphenyl Ethers from Arthrinium arundinis, an Endophytic Fungus Isolated from the Leaves of Tobacco (Nicotiana tabacum L.). Molecules, 23(3179), 1–7. https://doi.org/10.3390/molecules23123179 | spa |
dc.relation.references | Zhang, Q., Huang, Z. pu, Zhao, Y. ying, Zhao, Q., Chen, J. hong, Ma, W. guang, & Zhang, X. mei. (2022). Six 19,20-epoxycytochalasans from endophytic Diaporthe sp. RJ-47. Natural Product Research, 36(13), 3375–3380. https://doi.org/10.1080/14786419.2020.1859504 | spa |
dc.relation.references | Zhang, W., Xu, L., Yang, L., Huang, Y., Li, S., & Shen, Y. (2014). Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia, 96, 146–151. https://doi.org/10.1016/j.fitote.2014.05.001 | spa |
dc.relation.references | Zhao, M., Guo, D., Liu, G., Fu, X., Gu, Y., Ding, L., & Zhou, Y. (2020). Antifungal Halogenated Cyclopentenones from the Endophytic Fungus Saccharicola bicolor of Bergenia purpurascens by One Strain-Many Compounds Strategy. J. Agric. Food Chem, 68(1), 185–192. https://doi.org/10.1021/acs.jafc.9b06594 | spa |
dc.relation.references | Zhao, S. S., Zhang, Y. Y., Yan, W., Cao, L.-L., Xiao, Y., & Ye, Y.-H. (2017). Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol Lett., 364(3), 1–17. https://doi.org/10.1093/femsle/fnw287 | spa |
dc.relation.references | Zhao, W. Y., Yi, J., Chang, Y. B., Sun, C. P., & Ma, X. C. (2022). Recent studies on terpenoids in Aspergillus fungi: Chemical diversity, biosynthesis, and bioactivity. In Phytochemistry (Vol. 193). Elsevier Ltd. https://doi.org/10.1016/j.phytochem.2021.113011 | spa |
dc.relation.references | Zheng, C.-J., Xu, L. L., Li, Y. Y., Han, T., Zhang, Q. Y., Ming, Q. L., Rahman, K., & Qin, L. P. (2013). Cytotoxic metabolites from the cultures of endophytic fungi from Panax ginseng. Applied Microbiology and Biotechnology, 97(17), 7617–7625. https://doi.org/10.1007/s00253-013-5015-6 | spa |
dc.relation.references | Zhibo, H., Yiwen, T., Xingyu, T., Qinhua, S., Jiachun, C., Weijia, D., & Chunyuan, L. (2019). Sesquiterpenes with Phytopathogenic Fungi Inhibitory Activities from Fungus Trichoderma virens from Litchi chinensis Sonn. J. Agric. Food Chem., 67(38), 10646–10652. https://doi.org/10.1021/acs.jafc.9b04053 | spa |
dc.relation.references | Zhou, P., Li, Q., Chen, C., Zhu, H., & Zhang, Y. (2022). Macrocyclic polyketides from microorganisms: structural diversities and bioactivities. Journal of Holistic Integrative Pharmacy, 3(3), 268–299. https://doi.org/10.1016/S2707-3688(23)00049-3 | spa |
dc.relation.references | Zhu, H., Chen, C., Tong, Q., Zhou, Y., Ye, Y., Gu, L., & Zhang, Y. (2021). Progress in the Chemistry of Cytochalasans. Progress in the Chemistry of Organic Natural Products, 114, 1–134. https://doi.org/10.1007/978-3-030-59444-2_1 | spa |
dc.relation.references | Zhu, J. J., HUANG, Q. Sen, LIU, S. Q., DING, W. J., XIONG, Y. H., & LI, C. Y. (2022). Four new diphenyl ether derivatives from a mangrove endophytic fungus Epicoccum sorghinum. Chinese Journal of Natural Medicines, 20(7), 537–540. https://doi.org/10.1016/S1875-5364(22)60171-7 | spa |
dc.relation.references | Zhu, J., Song, L., Shen, S., Fu, W., Zhu, Y., & Liu, L. (2023). Bioactive Alkaloids as Secondary Metabolites from Plant Endophytic Aspergillus Genus. In Molecules (Vol. 28, Issue 23). Multidisciplinary Digital Publishing Institute (MDPI).https://doi.org/10.3390/molecules28237789 | spa |
dc.relation.references | Zhu, X., Zhong, Y., Xie, Z., Wu, M., Hu, Z., Ding, W., & Li, C. (2018). Fusarihexins A and B: Novel Cyclic Hexadepsipeptides from the Mangrove Endophytic Fungus Fusarium sp. R5 with Antifungal Activities. Planta Med, 84(18), 1355–1362. https://doi.org/10.1055/a-0647-7048 | spa |
dc.relation.references | Zhu, X., Zhou, D., Liang, F., Wu, Z., She, Z., & Li, C. (2017). Penochalasin K, a new unusual chaetoglobosin from the mangrove endophytic fungus Penicillium chrysogenum V11 and its effective semi- synthesis. Fitoterapia, 123, 23–28. https://doi.org/10.1016/j.fitote.2017.09.016 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.agrovoc | Endofita | spa |
dc.subject.agrovoc | endophytes | eng |
dc.subject.agrovoc | Enfermedad de las plantas | spa |
dc.subject.agrovoc | plant diseases | eng |
dc.subject.agrovoc | Aguacate | spa |
dc.subject.agrovoc | avocados | eng |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura) | spa |
dc.subject.ddc | 570 - Biología::577 - Ecología | spa |
dc.subject.proposal | Persea americana | lat |
dc.subject.proposal | Diaporthe sp. | lat |
dc.subject.proposal | Fusarium solani | lat |
dc.subject.proposal | Fusarium equiseti | lat |
dc.subject.proposal | Metabolómica | spa |
dc.subject.proposal | Metabolomics | eng |
dc.subject.proposal | Análisis estadístico multivariado | spa |
dc.subject.proposal | Multivariate Data Analysis | eng |
dc.subject.proposal | Descubrimiento de biomarcadores | spa |
dc.subject.proposal | Biomarker discovery | eng |
dc.title | Búsqueda de agentes fitosanitarios para el control de enfermedades fúngicas del cultivo del aguacate a partir de hongos endófitos asociados al mismo | spa |
dc.title.translated | Phytosanitary agents for the control of fungal diseases in avocado crops from associated endophytic fungi | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032431758.2025.pdf
- Tamaño:
- 8.32 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: