Búsqueda de agentes fitosanitarios para el control de enfermedades fúngicas del cultivo del aguacate a partir de hongos endófitos asociados al mismo

dc.contributor.advisorÁvila Murillo, Mónica Constanzaspa
dc.contributor.authorRobayo Medina, Angie Tatianaspa
dc.contributor.cvlacRobayo-Medina, Angie T. [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001431123]spa
dc.contributor.orcidRobayo-Medina, Angie T. [0000-0002-7583-3774]spa
dc.contributor.researchgroupGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)spa
dc.date.accessioned2025-07-29T20:59:34Z
dc.date.available2025-07-29T20:59:34Z
dc.date.issued2025-07-27
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLos hongos endófitos son una fuente prometedora de compuestos bioactivos diversos y estructuralmente novedosos que inhiben el crecimiento de una amplia variedad de microorganismos responsables de enfermedades en humanos y cultivos de importancia comercial. En esta investigación, se obtuvieron 88 hongos endófitos de hojas y raíces sanas de aguacate criollo, así como 6 aislamientos fúngicos a partir de raíces secundarias de árboles de aguacate criollo con síntomas de pudrición radicular. A través de ensayos de actividad antifúngica in vitro en combinación con análisis metabolómicos basados en cromatografía líquida acoplada a espectrometría de masas de alta resolución (LC-HRMS) y resonancia magnética nuclear (NMR), se seleccionó un aislamiento endofítico capaz de producir compuestos antifúngicos contra los fitopatógenos Fusarium solani y Fusarium equiseti. Los compuestos citocalasina H (1), citocalasina H1 (2), dicerandrol B (4) y ácido 2-(2-hidroxipropanamido) benzoico (5), previamente descritos en otros endófitos, junto con el compuesto 18-epi-citocalasina H (3), por primera vez reportado, fueron aislados mediante seguimiento orientado por 1H-NMR y fraccionamiento bioguiado del extracto orgánico del cultivo de Diaporthe sp UN310 en caldo levadura- glucosa. El análisis estadístico multivariado permitió identificar las características (m/z, δH) estadísticamente significativas relacionadas con la actividad antifúngica, muchas de las cuales corresponden a la citocalasina H (1), y a otros compuestos relacionados estructuralmente, los cuales fueron determinados en el extracto crudo. Los compuestos 1 y 3 mostraron la mejor actividad antifúngica sobre los patógenos de Fusarium spp., con concentraciones mínimas inhibitorias (CMI) de 50.7 μM. Se concluye que la metabolómica no dirigida demostró ser una herramienta confiable para la bioprospección de hongos endófitos y a través de esta, se comprueba que los aislamientos del género Diaporthe son capaces de producir metabolitos bioactivos que pueden ser una opción para el control de patógenos del aguacate. (Texto tomado de la fuente).spa
dc.description.abstractFungal endophytes are promising sources of diverse and structurally novel bioactive compounds. They can produce metabolites that inhibit the growth of a wide variety of microorganisms which are responsible for human and crop diseases. In this study, 88 fungal endophytes were isolated from healthy Antillean avocado leaves and roots, and 6 fungal strains were isolated from secondary roots of Antillean avocado trees with root rot symptoms. In vitro antifungal assays in combination with metabolomic analyses based on liquid chromatography- high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) were applied to select an endophytic fungal strain able to produce antifungal compounds against Fusarium solani and Fusarium equiseti phytopathogens. The compounds cytochalasin H (1), cytochalasin H1 (2), dicerandrol B (4) and 2-(2-hydroxypropanamido) benzoic acid (5), previously reported from other endophytes, and 18-epi-cytochalsin-1 (3) reported for the first time, were isolated through 1H-NMR follow up and a bioassay-guided fractionation, from the organic extract of a glucose-yeast extract broth culture of Diaporthe sp. UN310. The multivariate data analysis (MVDA) allowed us to identify statistically significant features (m/z, δH) correlated with the antifungal activity, and many of them correspond to cytochalasin H (1) and to other cytochalasin like compounds determined in the crude extract. Compounds 1 and 3 displayed the best antifungal activities against the Fusarium pathogens mentioned above, with minimal inhibitory concentration (MIC) values of 50.7 μM. The untargeted metabolomics approach proved to be a reliable tool for bioprospecting fungal endophytes and as a result, Diaporthe isolates demonstrated to be able to produce bioactive metabolites that could be used in biocontrol of avocado pathogens.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaBioprospección de productos naturales fúngicosspa
dc.description.sponsorshipFacultad de Ciencias- Universidad Nacional de Colombia- Sede Bogotá (HERMES: 50092).spa
dc.description.sponsorshipDirección de Investigación y Extensión-Universidad Nacional de Colombia- Sede Bogotá (HERMES: 48477; HERMES: 51310).spa
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación (Proyecto: 46789).spa
dc.format.extentxxv, 211 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88394
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAgapito Amador, M. E., Cibrián-Llanderal, V. D., Gutiérrez Rojas, M., Ruiz-Juárez, D., López Corona, B., & Rueda-Puente, E. O. (2022). Phytophthora cinnamomi Rands en aguacate. Revista Mexicana de Ciencias Agrícolas, 28, 331–341. https://doi.org/10.29312/remexca.v13i28.3287spa
dc.relation.referencesAbdou, R., Attia, G. H., Mojally, M., Dawoud, M., & Rateb, M. E. (2022). Bioguided Isolation of Alternariol Derivatives from Ficus-derived Endophyte Alternaria alternata. Indian Journal of Pharmaceutical Education and Research, 56(2), 497–502. https://doi.org/10.5530/ijper.56.2.71spa
dc.relation.referencesAbdou, R., Scherlach, K., Dahse, H. M., Sattler, I., & Hertweck, C. (2010). Botryorhodines A-D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry, 71(1), 110–116. https://doi.org/10.1016/j.phytochem.2009.09.024spa
dc.relation.referencesAbdou, R., Shabana, S., & Rateb, M. E. (2018). Terezine E, bioactive prenylated tryptophan analogue from an endophyte of Centaurea stoebe. Natural Product Research, 34(4), 503–510. https://doi.org/10.1080/14786419.2018.1489393spa
dc.relation.referencesAdeleke, B. S., & Babalola, O. O. (2021). The plant endosphere-hidden treasures: a review of fungal endophytes. In Biotechnology and Genetic Engineering Reviews (Vol. 37, Issue 2, pp. 154–177). Taylor and Francis Ltd. https://doi.org/10.1080/02648725.2021.1991714spa
dc.relation.referencesAjmal, M., Hussain, A., Ali, A., Chen, H., & Lin, H. (2023). Strategies for Controlling the Sporulation in Fusarium spp. In Journal of Fungi (Vol. 9, Issue 1). MDPI. https://doi.org/10.3390/jof9010010spa
dc.relation.referencesAkinsanya, M. A., Muinat, S., Mushafau, A., Ting, A., & Sy, A. (2017). Extraction methods and TLC-bioautography for evaluation of antimicrobial activities of endophytic bacteria from medicinal plants.spa
dc.relation.referencesAlbarracín, L. T., Delgado, W., Cuca, L. E., & Ávila, M. C. (2019). New butyrolactone and other metabolites from the bark of Endlicheria arenosa against of the phytopathogen Colletotrichum tamarilloi. Natural Product Research, 33(5), 687–694. https://doi.org/10.1080/14786419.2017.1408090spa
dc.relation.referencesAl-Hadhrami, R. M. S., Al Muniri, R. M. S., & Hossain, M. A. (2016). Evaluation of antimicrobial and cytotoxic activities of polar solvent extracts from leaves of Ammi majus used by the Omanis. Pacific Science Review A: Natural Science and Engineering, 18(1), 62–65. https://doi.org/10.1016/j.psra.2016.08.002spa
dc.relation.referencesAlonzo, D. A., & Schmeing, T. M. (2020). Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. In Protein Science (Vol. 29, Issue 12, pp. 2316– 2347). Blackwell Publishing Ltd. https://doi.org/10.1002/pro.3979spa
dc.relation.referencesAmirzakariya, B. Z., & Shakeri, A. (2022). Bioactive terpenoids derived from plant endophytic fungi: An updated review (2011–2020). In Phytochemistry (Vol. 197). Elsevier Ltd. https://doi.org/10.1016/j.phytochem.2022.113130spa
dc.relation.referencesAndrade-Hoyos, P., Silva-Rojas, H. V., & Romero-Arenas, O. (2020). Endophytic Trichoderma species isolated from Persea americana and Cinnamomum verum roots reduce symptoms caused by phytophthora cinnamomi in avocado. Plants, 9(9), 1–17. https://doi.org/10.3390/plants9091220spa
dc.relation.referencesArnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews, 21, 51–66. https://doi.org/10.1016/j.fbr.2007.05.003spa
dc.relation.referencesBallard, C. E., Yu, H., & Wang, B. (2002). Recent Developments in Depsipeptide Research. In Current Medicinal Chemistry, 9(4): 471-498. https://doi.org/10.2174/0929867023371049spa
dc.relation.referencesBanerjee, D. (2011). Endophytic fungal diversity in tropical and subtropical plants. Research Journal of Microbiology, 6(1), 54–62. https://doi.org/10.3923/jm.2011.54.62spa
dc.relation.referencesBaraban, E. G., Morin, J. B., Phillips, G. M., Phillips, A. J., Strobel, S. A., & Handelsman, J. (2013). Xyolide, a bioactive nonenolide from an Amazonian endophytic fungus, Xylaria feejeensis. Tetrahedron Letters, 54(31), 4058–4060. https://doi.org/10.1016/j.tetlet.2013.05.093spa
dc.relation.referencesBarelli, L., Behie, S. W., Hu, S., & Bidochka, M. J. (2022). Profiling Destruxin Synthesis by Specialist and Generalist Metarhizium Insect Pathogens during Coculture with Plants. Applied and Environmental Microbiology, 88(12). https://doi.org/10.1128/aem.02474-21spa
dc.relation.referencesBarnett, H. L., & Hunter, B. B. (1998). Illustrated Genera of Imperfect Fungi (4th ed.). APS Press.spa
dc.relation.referencesBarthélemy, M., Elie, N., Genta-Jouve, G., Stien, D., Touboul, D., & Eparvier, V. (2021). Identification of Antagonistic Compounds between the Palm Tree Xylariale Endophytic Fungi and the Phytopathogen Fusarium oxysporum. Journal of Agricultural and Food Chemistry, 69(37), 10893–10906. https://doi.org/10.1021/acs.jafc.1c03141spa
dc.relation.referencesBastias, D. A., Martínez-ghersa, M. A., Ballaré, L., & Gundel, P. E. (2017). Epichloë Fungal Endophytes and Plant Defenses : Not Just Alkaloids. Trends in Plant Science, 22(11), 939–948. https://doi.org/10.1016/j.tplants.2017.08.005spa
dc.relation.referencesBeno, M. A., & Christoph, G. G. (1976). X-Ray crystal structure of cytochalasin H, a potent new [11]cytochalasan toxin. Journal of the Chemical Society, Chemical Communications, 10, 344. https://doi.org/10.1039/c39760000344spa
dc.relation.referencesBeno, M. A., Cox, R. H., Wells, J. M., Cole, R. J., Kirksey, J. W., & Christoph, G. G. (1977). Structure of a new [11]cytochalasin, cytochalasin H or kodo-cytochalasin-1. Journal of the American Chemical Society, 99(12), 4123–4130. https://doi.org/10.1021/ja00454a035spa
dc.relation.referencesBernal Estrada, J., & Díaz Diez, C. (2014). Manual técnico, actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate. Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA https://doi.org/10.21930/agrosavia.manual.7403831spa
dc.relation.referencesBetancur, L. A., Forero, A. M., Vinchira-Villarraga, D. M., Cárdenas, J. D., Romero-Otero, A., Chagas, F. O., Pupo, M. T., Castellanos, L., & Ramos, F. A. (2020). NMR-based metabolic profiling to follow the production of anti-phytopathogenic compounds in the culture of the marine strain Streptomyces sp. PNM-9. Microbiological Research, 239(January), 126507. https://doi.org/10.1016/j.micres.2020.126507spa
dc.relation.referencesBrun, T., Rabuske, J. E., Luft, L., Confortin, T. C., Todero, I., Aita, B. C., Zabot, G. L., & Mazutti, M. A. (2022). Powder containing biomolecules from Diaporthe schini for weed control. Environmental Technology (United Kingdom), 43(14), 2135–2144. https://doi.org/10.1080/09593330.2020.1867651spa
dc.relation.referencesBrunner-Mendoza, C., Navarro-Barranco, H., Ayala-zermeño, M. A., Mellín-Rosas, M., & Toriello, C. (2013). Obtención y caracterización de cultivos monospóricos de Metarhizium anisopliae (Hypocreales: Clavicipitaceae) para genotipificación. Memorias Del XXXVI Congreso Nacional de Control Biológico, November, 52–55.spa
dc.relation.referencesBurbano-Figueroa, O. (2019). West Indian avocado agroforestry systems in Montes de María (Colombia): a conceptual model of the production system. Revista Chapingo Serie Horticultura, 25(2), 75–102. https://doi.org/10.5154/r.rchsh.2018.09.018spa
dc.relation.referencesBurragoni, S. G., & Jeon, J. (2021). Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. In Microbiological Research (Vol. 245). Elsevier GmbH. https://doi.org/10.1016/j.micres.2020.126691spa
dc.relation.referencesBusby, P. E., Ridout, M., & Newcombe, G. (2016). Fungal endophytes: modifiers of plant disease. Plant Molecular Biology, 90(6), 645–655. https://doi.org/10.1007/s11103- 015-0412-0spa
dc.relation.referencesCao, L., Yan, W., Gu, C., Wang, Z., Zhao, S., Kang, S., Khan, B., Zhu, H., Li, J., & Ye, Y. (2019). New Alkylitaconic Acid Derivatives from Nodulisporium sp. A21 and Their Auxin Herbicidal Activities on Weed Seeds. Journal of Agricultural and Food Chemistry, 67, 2811–2817. https://doi.org/10.1021/acs.jafc.8b04996spa
dc.relation.referencesCao, L., Zhang, Y., Liu, Y., Yang, T., & Zhang, J. (2016). Anti-phytopathogenic activity of sporothriolide, a metabolite from endophyte Nodulisporium sp. A21 in Ginkgo biloba. Pestic Biochem Physiol., 129, 7–13. https://doi.org/10.1016/j.pestbp.2015.10.002spa
dc.relation.referencesCao, S., McMillin, D. W., Tamayo, G., Delmore, J., Mitsiades, C. S., & Clardy, J. (2012). Inhibition of tumor cells interacting with stromal cells by xanthones isolated from a Costa Rican Penicillium sp. Journal of Natural Products, 75(4), 793–797. https://doi.org/10.1021/np2009863spa
dc.relation.referencesCepero de García, M., Restrepo, S., Franco, A. E., Cárdenas, M., & Vargas, N. (2012). Biología de hongos (E. Uniandes, Ed.; Primera Ed). Disponible en: https://api.pageplace.de/preview/DT0400.9789586957946_A25397967/preview9789586957946_A25397967.pdfspa
dc.relation.referencesChang, C. H., Hsiao, G., Wang, S. W., Yen, J. Y., Huang, S. J., Chi, W. C., & Lee, T. H. (2023). Chemical constituents from the medicinal herb-derived fungus Chaetomium globosum Km1226. Botanical Studies, 64(1). https://doi.org/10.1186/s40529-023-00406-8spa
dc.relation.referencesChaudhary, P., Agri, U., Chaudhary, A., Kumar, A., & Kumar, G. (2022). Endophytes and their potential in biotic stress management and crop production. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.933017spa
dc.relation.referencesChen, Y., Yang, Y., Li, X., Zou, C., & Zhao, P. (2015). Diterpenoids from the Endophytic Fungus Botryosphaeria sp. P483 of the Chinese Herbal Medicine Huperzia serrata. Molecules, 20, 16924–16932. https://doi.org/10.3390/molecules200916924spa
dc.relation.referencesChojnacka, K. (2024). Sustainable chemistry in adaptive agriculture: A review. In Current Opinion in Green and Sustainable Chemistry (Vol. 46). Elsevier B.V. https://doi.org/10.1016/j.cogsc.2024.100898spa
dc.relation.referencesChristiansen, J. V., Larsen, T. O., & Frisvad, J. C. (2022). Production of Fungal Quinones: Problems and Prospects. Biomolecules, 12(8). https://doi.org/10.3390/biom12081041spa
dc.relation.referencesClements, D. P., & Bihn, E. A. (2019). Safety and Practice for Organic Food. In Safety and Practice for Organic Food (pp. 321–344). Elsevier Inc. https://doi.org/10.1016/B978-0-12-812060-6.00016-7spa
dc.relation.referencesColegate, S., & Molyneux, R. (2008). Bioactive Natural products: Detection, isolation, and structural determination (Second edi). CRC Press Taylor & Francis Group. https://doi.org/10.1201/9781420006889spa
dc.relation.referencesCollinge, D. B., Jensen, B., & Jørgensen, H. J. (2022). Fungal endophytes in plants and their relationship to plant disease. In Current Opinion in Microbiology (Vol. 69). Elsevier Ltd. https://doi.org/10.1016/j.mib.2022.102177spa
dc.relation.referencesCorsaro, C., Vasi, S., Neri, F., Mezzasalma, A. M., Neri, G., & Fazio, E. (2022). NMR in Metabolomics: From Conventional Statistics to Machine Learning and Neural Network Approaches. In Applied Sciences (Switzerland) (Vol. 12, Issue 6). MDPI. https://doi.org/10.3390/app12062824spa
dc.relation.referencesCosta, C., Teodoro, M., Giambò, F., Catania, S., Vivarelli, S., & Fenga, C. (2022). Assessment of Mancozeb Exposure, Absorbed Dose, and Oxidative Damage in Greenhouse Farmers. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191710486spa
dc.relation.referencesCui, H., Yu, J., Chen, S., Ding, M., Huang, X., Yuan, J., & She, Z. (2017). Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum. Bioorganic & Medicinal Chemistry Letters, 27(4), 803–807. https://doi.org/10.1016/j.bmcl.2017.01.029spa
dc.relation.referencesDANE. (2016). Cultivo del aguacate Hass (Persea americana Mill; Persea nubigena var. Guatemalensis x Persea americana var. Drymifolia), plagas y enfermedades durante la temporada de lluvias. Boletín Mensual Agosto, Núm 50. República de Colombia.spa
dc.relation.referencesDas, A., Rahman, M. I., Ferdous, A. S., Amin, A.-, Rahman, M., Nahar, N., Uddin, A., Islam, M. R., & Khan, H. (2017). An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity. PLoS ONE, 12(6), 1–17. https://doi.org/10.1371/journal.pone.0178612spa
dc.relation.referencesDe Carvalho, C. R., De Lourdes Almeida Vieira, M., Cantrell, C. L., Wedge, D. E., Alves, T. M. A., Zani, C. L., Pimenta, R. S., Sales, P. A., Murta, S. M. F., Romanha, A. J., Rosa, C. A., & Rosa, L. H. (2016). Biological activities of ophiobolin K and 6-epiophiobolin K produced by the endophytic fungus Aspergillus calidoustus. Natural Product Research, 30(4), 478–481. https://doi.org/10.1080/14786419.2015.1022777spa
dc.relation.referencesDe Carvalho, C. R., Ferreira-D’Silva, A., D.E. Wedge, D. E., Cantrell, C. L., & Rosa, L. H. (2018). Antifungal activities of cytochalasins produced by Diaporthe miriciae, an endophytic fungus associated with tropical medicinal plants. Can J Microbiol., 64(11), 835–843. https://doi.org/10.1139/cjm-2018-0131spa
dc.relation.referencesDe Carvalho, J. O., Broll, V., Martinelli, A. H. S., & Lopes, F. C. (2020). Endophytic fungi: positive association with plants. In Molecular Aspects of Plant Beneficial Microbes in Agriculture (pp. 321–332). Elsevier. https://doi.org/10.1016/B978-0-12-818469- 1.00026-2spa
dc.relation.referencesDeshmukh, S., & Verekar, S. A. (2012). Fungal endophytes: A potential source of antifungal compounds. Frontiers in Bioscience, 4(1), 2045–2070. https://doi.org/10.2741/E524spa
dc.relation.referencesDing, B., Yuan, J., Huang, X., Wen, W., Zhu, X., Liu, Y., Li, H., Lu, Y., He, L., Tan, H., & She, Z. (2013). New Dimeric Members of the Phomoxanthone Family: Phomolactonexanthones A, B and Deacetylphomoxanthone C Isolated from the Fungus Phomopsis sp. Marine Drugs, 11(12), 4961–4972. https://doi.org/10.3390/md11124961spa
dc.relation.referencesEl-Aswad, A. F., Aly, M. I., Alsahaty, S. A., & Basyony, A. B. A. (2023). Efficacy evaluation of some fumigants against Fusarium oxysporum and enhancement of tomato growth as elicitor-induced defense responses. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-29033-wspa
dc.relation.referencesEloff, J. N., Angeh, I. E., & McGaw, L. J. (2017). Solvent-solvent fractionation can increase the antifungal activity of a Melianthus comosus (Melianthaceae) acetone leaf extract to yield a potentially useful commercial antifungal product. Industrial Crops and Products, 110, 103–112. https://doi.org/10.1016/j.indcrop.2017.11.014spa
dc.relation.referencesElsässer, B., Krohn, K., Flörke, U., Root, N., Aust, H., Draeger, S., Schulz, B., Antus, S., & Kurtán, T. (2005). X-ray Structure Determination, Absolute Configuration and Biological Activity of Phomoxanthone A. Eur. J. Org. Chem., 4563–4570. https://doi.org/10.1002/ejoc.200500265spa
dc.relation.referencesEuceda, L. R., Giskeodegård, G. F., & Bathen, T. F. (2015). Preprocessing of NMR metabolomics data. In Scandinavian Journal of Clinical and Laboratory Investigation (Vol. 75, Issue 3, pp. 193–203). Informa Healthcare. https://doi.org/10.3109/00365513.2014.1003593spa
dc.relation.referencesEverts, K. L., Egel, D. S., Langston, D., & Zhou, X. G. (2014). Chemical management of Fusarium wilt of watermelon. Crop Protection, 66, 114–119. https://doi.org/10.1016/j.cropro.2014.09.003spa
dc.relation.referencesEvidente, A. (2022). Fungal bioactive macrolides. Natural Product Reports, 39(8), 1591– 1621. https://doi.org/10.1039/D2NP0spa
dc.relation.referencesFAOSTAT. (2023). Organización de las Naciones Unidas para la Alimentación y la Agricultura. Datos. Cultivos y Productos de Ganadería. Disponible en: https://www.fao.org/faostat/es/#homespa
dc.relation.referencesFarhana, S., Ab, S., Singh, E., Pieterse, C. M. J., & Schenk, P. M. (2017). Emerging Microbial Biocontrol Strategies for Plant Pathogens. Plant Science, 267:102-111. https://doi.org/10.1016/j.plantsci.2017.11.012spa
dc.relation.referencesFarouk, H. M., Hashem, Z. S., Attia, E. Z., Shaban, G. M., Glaeser, S. P., Kämpfer, P., Abdelmohsen, U. R., & El-Katatny, M. H. (2023). Bioactivity of crude extract produced by endophytic fungi isolated from Ziziphus spina-christi (Nabq) leaves for antimicrobial evaluation as well as optimization of culture medium conditions. South African Journal of Botany, 162, 873–884. https://doi.org/10.1016/j.sajb.2023.08.071spa
dc.relation.referencesFeng, C., Wei, Q., Hu, C., & Zou, Y. (2019). Biosynthesis of Diphenyl Ethers in Fungi. Organic Letters, 21(9), 3114–3118. https://doi.org/10.1021/acs.orglett.9b00768spa
dc.relation.referencesFernando, K., Reddy, P., Guthridge, K. M., Spangenberg, G. C., & Rochfort, S. J. (2022). A Metabolomic Study of Epichloë Endophytes for Screening Antifungal Metabolites. Metabolites, 12(1). https://doi.org/10.3390/metabo12010037spa
dc.relation.referencesFong, Y. K., Anuar, S., Lim, H. P., Tham, F. Y., & Sanderson, F. R. (2000). A modified filter paper technique for long-term preservation of some fungal cultures. Mycologist, 14(3), 127–130. https://doi.org/10.1016/S0269-915X(00)80090-7spa
dc.relation.referencesFonseca Rodríguez, P. E., Escobar, J. V., & Grisales, N. Y. (2019). Protocolo de almacenamiento y maduración de aguacate cv. Hass (Persea americana Mill.) en Antioquia. Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA. https://doi.org/10.21930/agrosavia.brochure.7402957spa
dc.relation.referencesFu, J., Zhou, Y., Li, H., Ye, Y., & Guo, J. (2011). Antifungal metabolites from Phomopsis sp. By254, an endophytic fungus in Gossypium hirsutum. African Journal of Microbiology Research, 5(10), 1231–1236. https://doi.org/10.5897/AJMR11.272spa
dc.relation.referencesFuentes-Aragón, D., Juárez-Vázquez, S. B., Vargas-Hernández, M., & Silva-Rojas, H. V. (2018). Colletotrichum fructicola, a Member of Colletotrichum gloeosporioides sensu lato, is the causal agent of anthracnose and soft rot in avocado fruits cv. “Hass.” Mycobiology, 46(2), 92–100. https://doi.org/10.1080/12298093.2018.1454010spa
dc.relation.referencesFuentes-Aragón, D., Juárez-Vázquez, S. B., Vargas-Hernández, M., & Silva-Rojas, H. V. (2018). Colletotrichum fructicola, a Member of Colletotrichum gloeosporioides sensu lato, is the causal agent of anthracnose and soft rot in avocado fruits cv. “Hass.” Mycobiology, 46(2), 92–100. https://doi.org/10.1080/12298093.2018.1454010spa
dc.relation.referencesGamboa, M. A., Laureano, S., & Bayman, P. (2003). Measuring diversity of endophytic fungi in leaf fragments: Does size matter? Mycopathologia, 156(1), 41–45. https://doi.org/10.1023/A:1021362217723spa
dc.relation.referencesGanesh, S., & Brar, S. (2016). Results of SMILE for Astigmatism Correction with manual Cyclotorsion Compensation. ERLS Potsdam 2016, 88(3), 582–588.spa
dc.relation.referencesGanley, R. J., & Newcombe, G. (2006). Fungal endophytes in seeds and needles of Pinus monticola. Mycological Research, 110(3), 318–327. https://doi.org/10.1016/j.mycres.2005.10.005spa
dc.relation.referencesGao, H., Li, G., & Lou, H.-X. (2018). Structural Diversity and Biological Activities of Novel Secondary Metabolites from Endophytes. Molecules, 23(646), 1–31. https://doi.org/10.3390/molecules23030646spa
dc.relation.referencesGao, Y., Du, S. T., Xiao, J., Wang, D. C., Han, W., Zhang, Q., & Gao, J. (2020). Isolation and Characterization of Antifungal Metabolites from the Melia azedarach -Associated Fungus Diaporthe eucalyptorum. J. Agric. Food Chem., 68(8), 2418–2425.https://doi.org/10.1021/acs.jafc.9b07825spa
dc.relation.referencesGBIF. (2023). Global Biodiversity Information Facility. Persea Americana Mill. Disponible en: https://www.gbif.org/species/3034046spa
dc.relation.referencesGhorbanpour, M., Omidvari, M., Abbaszadeh-dahaji, P., Omidvar, R., & Kariman, K. (2018). Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117, 147–157. https://doi.org/10.1016/j.biocontrol.2017.11.006spa
dc.relation.referencesGomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z., & Crous, P. W. (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia, 31, 1–41. https://doi.org/10.3767/003158513X666844spa
dc.relation.referencesGreen, K. A., Berry, D., Feussner, K., Eaton, C. J., Ram, A., Mesarich, C. H., Solomon, P., Feussner, I., & Scott, B. (2020). Lolium perenne apoplast metabolomics for identification of novel metabolites produced by the symbiotic fungus Epichloë festucae. New Phytologist, 227(2), 559–571. https://doi.org/10.1111/nph.16528spa
dc.relation.referencesGu, H., Zhang, S., Liu, L., Yang, Z., Zhao, F., & Tian, Y. (2022). Antimicrobial Potential of Endophytic Fungi From Artemisia argyi and Bioactive Metabolites From Diaporthe sp. AC1. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.908836spa
dc.relation.referencesGuerrero Rojas, M., & Ramos Portilla, A. (2016). Prevenga y maneje la pudrición radical del aguacate causada por el Oomycete Phytophthora cinnamomi Rands. Oficina Asesora de Comunicaciones ICA.spa
dc.relation.referencesGupta, P., Verma, A., Rai, N., Singh, A. K., Singh, S. K., Kumar, B., Kumar, R., & Gautam, V. (2021). Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chemical Biology, 16(11), 2068–2086. https://doi.org/10.1021/acschembio.1c00581spa
dc.relation.referencesGupta, S., Chaturvedi, P., Kulkarni, M. G., & Van Staden, J. (2020). A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. In Biotechnology Advances (Vol. 39). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2019.107462spa
dc.relation.referencesHafez, M., Telfer, M., Chatterton, S., & Aboukhaddour, R. (2023). Specific Detection and Quantification of Major Fusarium spp. Associated with Cereal and Pulse Crops. In Plant-Pathogen Interactions (Vol. 2659, pp. 1–21). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3159-1_1spa
dc.relation.referencesHakizimana, J. D., Gryzenhout, M., Coutinho, T. A., & van den Berg, N. (2011). Endophytic diversity in Persea americana (avocado) trees and their ability to display biocontrol activity against Phytophthora cinnamomi. VII World Avocado Congress, September, 1–10. Disponible en: https://www.avocado.org.au/wpcontent/uploads/2017/02/Endophytic-Diversity-in-Avocado-Trees-and-BiocontrolActivity-Against-Phytophthora-J-Hakizimana-University-of-Pretoria.pdfspa
dc.relation.referencesHall, B. G. (2013). Building Phylogenetic Trees from Molecular Data with MEGA. Mol.Biol.Evol., 30(5), 1229–1235. https://doi.org/10.1093/molbev/mst012spa
dc.relation.referencesHardy, N., Augier, F., Nienow, A. W., Béal, C., & Ben Chaabane, F. (2017). Scale-up agitation criteria for Trichoderma reesei fermentation. Chemical Engineering Science, 172, 158–168. https://doi.org/10.1016/j.ces.2017.06.034spa
dc.relation.referencesHassan, Z. U., Thani, R. Al, Balmas, V., Migheli, Q., & Jaoua, S. (2019). Prevalence of Fusarium fungi and their toxins in marketed feed. Food Control, 104(January), 224– 230. https://doi.org/10.1016/j.foodcont.2019.04.045spa
dc.relation.referencesHassani, M. A., Durán, P., & Hacquard, S. (2018). Microbial interactions within the plant holobiont. In Microbiome (Vol. 6, Issue 1, p. 58). NLM (Medline). https://doi.org/10.1186/s40168-018-0445-0spa
dc.relation.referencesHeil, M. (2011). The microbe-free plant: fact or artifact? Frontiers in Plant Science, 2(100), 1–16. https://doi.org/10.3389/fpls.2011.00100spa
dc.relation.referencesHilário, S., & Gonçalves, M. F. M. (2022). Endophytic Diaporthe as Promising Leads for the Development of Biopesticides and Biofertilizers for a Sustainable Agriculture. In Microorganisms (Vol. 10, Issue 12). MDPI. https://doi.org/10.3390/microorganisms10122453spa
dc.relation.referencesHu, X., Webster, G., Xie, L., Yu, C., Li, Y., & Liao, X. (2014). A new method for the preservation of axenic fungal cultures. Journal of Microbiological Methods, 99(1), 81– 83. https://doi.org/10.1016/j.mimet.2014.02.009spa
dc.relation.referencesHuang, D., Cui, L., Sajid, A., Zainab, F., Wu, Q., Wang, X., & Yuan, Z. (2019). The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food and Chemical Toxicology, 123, 595–601. https://doi.org/10.1016/j.fct.2018.10.059spa
dc.relation.referencesHuang, S., Xu, J., Li, F., Zhou, D., Xu, L., & Li, C. (2017). Identification and Antifungal Activity of Metabolites from the Mangrove Fungus Phoma sp. L28. Chemistry of Natural Compounds, 53(2), 237–240. https://doi.org/10.1007/s10600-017-1961-zspa
dc.relation.referencesHuang, W.-Y., Cai, Y.-Z., Xing, J., Corke, H., & Sun, M. (2007). A Potential Antioxidant Resource: Endophytic Fungi from Medicinal Plants. Economic Botany, 61(1), 14–30. https://doi.org/10.1663/0013-0001(2007)61[14:APAREF]2.0.CO;2spa
dc.relation.referencesHuang, X., Zhou, D., Liang, Y., Liu, X., Cao, F., Qin, Y., Mo, T., Xu, Z., Li, J., & Yang, R. (2019). Cytochalasins from endophytic Diaporthe sp. GDG-118. Natural Product Research, 1–9. https://doi.org/10.1080/14786419.2019.1700504spa
dc.relation.referencesHuang, Z., Cai, X., Shao, C., She, Z., Xia, X., Chen, Y., Yang, J., Zhou, S., & Lin, Y. (2008). Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry, 69, 1604–1608.https://doi.org/10.1016/j.phytochem.2008.02.002spa
dc.relation.referencesHurtado Clopatosky, S. (2020). Aislamiento de endófitos en gulupa (Passiflora edulis Sims f.) y su potencial para promoción de crecimiento de la planta y control del Fitopatógeno Fusarium oxysporum. Universidad Nacional de Colombia. Disponible en: https://repositorio.unal.edu.co/bitstream/handle/unal/79386/1032436500.2020.pdf.pd f;jsessionid=CE849BD4EDEEC0BEDE9AD6B5DBC18480?sequence=1spa
dc.relation.referencesHussain, H., Akhtar, N., Draeger, S., Schulz, B., Pescitelli, G., Salvadori, P., Antus, S., Kurtán, T., & Krohn, K. (2009). New Bioactive 2,3-Epoxycyclohexenes and Isocoumarins from the Endophytic Fungus Phomopsis sp. from Laurus Azorica. Eur. J. Org. Chem., 2009(5), 749–756. https://doi.org/10.1002/ejoc.200801052spa
dc.relation.referencesIantas, J., Savi, D. C., Ponomareva, L. V., Thorson, J. S., Rohr, J., Glienke, C., & Shaaban, K. A. (2022). Paecilins Q and R: Antifungal Chromanones Produced by the Endophytic Fungus Pseudofusicoccum stromaticum CMRP4328. Planta Medica, 89(12), 1178–1189. https://doi.org/10.1055/a-2063-5481spa
dc.relation.referencesIbrahim, S. R. M., Abdallah, H. M., Elkhayat, E. S., Al Musayeib, N. M., Asfour, H. Z., Zayed, M. F., & Mohamed, G. A. (2018). Fusaripeptide A: new antifungal and antimalarial cyclodepsipeptide from the endophytic fungus Fusarium sp. Journal of Asian Natural Products Research, 20(1), 75–85. https://doi.org/10.1080/10286020.2017.1320989spa
dc.relation.referencesIbrahim, S. R. M., Mohamed, G. A., Al Haidari, R. A., El-Kholy, A. A., Zayed, M. F., & Khayat, M. T. (2018). Biologically active fungal depsidones: Chemistry, biosynthesis, structural characterization, and bioactivities. In Fitoterapia (Vol. 129, pp. 317–365). Elsevier B.V. https://doi.org/10.1016/j.fitote.2018.04.012spa
dc.relation.referencesICA (2022, March 31). Instituto Colombiano Agropecuario, ICA. Registros Nacionales de Plaguicidas.spa
dc.relation.referencesICA (2024, Junio 23). Instituto Colombiano Agropecuario, ICA. Plaguicidas prohibidos, restringidos y cancelados en Colombia. Disponible en: https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidasquimicos.aspxspa
dc.relation.referencesJha, P., Kaur, T., Chhabra, I., Panja, A., Paul, S., Kumar, V., & Malik, T. (2023). Endophytic fungi: hidden treasure chest of antimicrobial metabolites interrelationship of endophytes and metabolites. In Frontiers in Microbiology (Vol. 14). Frontiers Media SA. https://doi.org/10.3389/fmicb.2023.1227830spa
dc.relation.referencesJi, X., Xia, Y., Zhang, H., & Cui, J. L. (2022). The microscopic mechanism between endophytic fungi and host plants: From recognition to building stable mutually beneficial relationships. In Microbiological Research (Vol. 261). Elsevier GmbH. https://doi.org/10.1016/j.micres.2022.127056spa
dc.relation.referencesJia, M., Chen, L., Xin, H., Zheng, C., Rahman, K., & Han, T. (2016). A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review. 7(June), 1–14. https://doi.org/10.3389/fmicb.2016.00906spa
dc.relation.referencesKamal, N., Viegelmann, C. V., Clements, C. J., & Edrada-Ebel, R. A. (2017). Metabolomics-Guided Isolation of Anti-trypanosomal Metabolites from the Endophytic Fungus Lasiodiplodia theobromae. Planta Medica, 83(6), 565–573. https://doi.org/10.1055/s-0042-118601spa
dc.relation.referencesKasettrathat, C., Ngamrojanavanich, N., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2008). Cytotoxic and antiplasmodial substances from marine-derived fungi, Nodulisporium sp. and CRI247-01. Phytochemistry, 69, 2621–2626. https://doi.org/10.1016/j.phytochem.2008.08.005spa
dc.relation.referencesKashyap, N., Singh, S. K., Yadav, N., Singh, V. K., Kumari, M., Kumar, D., Shukla, L., Kaushalendra, Bhardwaj, N., & Kumar, A. (2023). Biocontrol Screening of Endophytes: Applications and Limitations. In Plants (Vol. 12, Issue 13). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/plants12132480spa
dc.relation.referencesKeller, N. P. (2019). Fungal secondary metabolism: regulation, function and drug discovery. In Nature Reviews Microbiology (Vol. 17, Issue 3, pp. 167–180). Nature Publishing Group. https://doi.org/10.1038/s41579-018-0121-1spa
dc.relation.referencesKhanam, H., & Shamsuzzaman. (2015). Bioactive Benzofuran derivatives: A review. In European Journal of Medicinal Chemistry (Vol. 97, Issue 1, pp. 483–504). Elsevier Masson SAS. https://doi.org/10.1016/j.ejmech.2014.11.039spa
dc.relation.referencesKhattab, A. R., & Farag, M. A. (2020). Current status and perspectives of xanthones production using cultured plant biocatalyst models aided by in-silico tools for its optimization. In Critical Reviews in Biotechnology (Vol. 40, Issue 3, pp. 415–431). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2020.1721426spa
dc.relation.references"Khattab, A. R., & Farag, M. A. (2022). Marine and terrestrial endophytic fungi: a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications. In Critical Reviews in Biotechnology (Vol. 42, Issue 3, pp. 403–430). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2021.1940087"spa
dc.relation.referencesKiefer, A., Arnholdt, M., Grimm, V., Geske, L., Groß, J., Vierengel, N., Opatz, T., & Erkel, G. (2023). Structure elucidation and biological activities of perylenequinones from an Alternaria species. Mycotoxin Research, 39(3), 303–316. https://doi.org/10.1007/s12550-023-00495-1spa
dc.relation.referencesKjer, J., Debbab, A., Aly, A. H., & Proksch, P. (2010). Methods for isolation of marinederived endophytic fungi and their bioactive secondary products. Nature Protocols, 5(3), 479–490. https://doi.org/10.1038/nprot.2009.233spa
dc.relation.referencesKoli, P., Bhardwaj, N. R., & Mahawer, S. K. (2019). Climate Change and Agricultural Ecosystems. In Climate Change and Agricultural Ecosystems (pp. 65–94). Elsevier Inc. https://doi.org/10.1016/B978-0-12-816483-9.00004-9spa
dc.relation.referencesKong, L. W., Qiu, W. Y., Chen, M. S., Yang, W. L., Shen, J. R., Tang, X. B., He, X. H., Li, Y. K., Hu, Q. F., & Kong, G. H. (2023). Two New Antifungal Indole Alkaloids from an Endophytic Fungi Aspergillus felis Obtained from Cigar Tobacco. Chemistry of Natural Compounds. https://doi.org/10.1007/s10600-023-04210-5spa
dc.relation.referencesKongue Tatong, M. D., Talontsi, F. M., Abdel Rahim, H. M. D., Islam, M. T., Oswald, R. B., & Laatsch, H. (2014). Banchromene and other secondary metabolites from the endophytic fungus Fusarium sp. obtained from Piper guineense inhibit the motility of phytopathogenic Plasmopara viticola zoospores. Tetrahedron Letters, 55(30), 4057– 4061. https://doi.org/10.1016/j.tetlet.2014.06.001spa
dc.relation.referencesKrska, R., Welzig, E., & Boudra, H. (2007). Analysis of Fusarium toxins in feed. Animal Feed Science and Technology, 137, 241–264. https://doi.org/10.1016/j.anifeedsci.2007.06.004spa
dc.relation.referencesKumar, S., Kaushik, N., & Proksch, P. (2013). Identification of antifungal principle in the solvent extract of an endophytic fungus Chaetomium globosum from Withania somnifera. http://www.springerplus.com/content/2/1/37spa
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X : Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol.Biol.Evol., 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096spa
dc.relation.referencesKusari, S., Hertweck, C., & Spiteller, M. (2012). Perspective Chemical Ecology of Endophytic Fungi: Origins of Secondary Metabolites. CHBIOL, 19(7), 792–798. https://doi.org/10.1016/j.chembiol.2012.06.004spa
dc.relation.referencesLahlali, R., Peng, G., Gossen, B. D., McGregor, L., Yu, F. Q., Hynes, R. K., Hwang, S. F., McDonald, M. R., & Boyetchko, S. M. (2013). Evidence that the biofungicide serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology, 103(3), 245–254. https://doi.org/10.1094/PHYTO06-12-0123-Rspa
dc.relation.referencesLegein, M., Smets, W., Vandenheuvel, D., Eilers, T., Muyshondt, B., Prinsen, E., Samson, R., & Lebeer, S. (2020). Modes of Action of Microbial Biocontrol in the Phyllosphere. In Frontiers in Microbiology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2020.01619spa
dc.relation.referencesLeonardi, G. R., Polizzi, G., Vitale, A., & Aiello, D. (2023). Efficacy of Biological Control Agents and Resistance Inducer for Control of Mal Secco Disease. Plants, 12(9). https://doi.org/10.3390/plants12091735spa
dc.relation.referencesLeslie, J. F., & Summerell, B. A. (2006). The Fusarium Laboratory Manual (J. Leslie & Summerell B., Eds.; First Edition). Blackwell Publishing. https://doi.org/10.1002/9780470278376spa
dc.relation.referencesLeylaie, S., & Zafari, D. (2018). Antiproliferative and Antimicrobial Activities of Secondary Metabolites and Phylogenetic Study of Endophytic Trichoderma Species From Vinca Plants. Front. Microbiol., 9(1484), 1–16. https://doi.org/10.3389/fmicb.2018.01484spa
dc.relation.referencesLi, E., Jiang, L., Guo, L., Zhang, H., & Che, Y. (2008). Bioorganic & Medicinal Chemistry Pestalachlorides A – C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorganic & Medicinal Chemistry, 16, 7894–7899. https://doi.org/10.1016/j.bmc.2008.07.075spa
dc.relation.referencesLi, G., Jian, T., Liu, X., Lv, Q., Zhang, G., & Ling, J. (2022). Application of Metabolomics in Fungal Research. In Molecules (Vol. 27, Issue 21). MDPI. https://doi.org/10.3390/molecules27217365spa
dc.relation.referencesLi, J. Y., & Strobel, G. A. (2001). Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri. Phytochemistry, 57, 261–265.spa
dc.relation.referencesLi, X.-J., Zhang, Q., Zhang, A.-L., & Gao, J.-M. (2012). Metabolites from Aspergillus fumigatus, an Endophytic Fungus Associated with Melia azedarach, and Their Antifungal, Antifeedant, and Toxic Activities. Journal of Agricultural and Food Chemistry, 60(13), 3424–3431. https://doi.org/10.1021/jf300146nspa
dc.relation.referencesLi, Y., Kumar, P. S., Tan, Q., Tan, X., Yuan, M., Luo, J., & He, M. (2021). Diversity and chemical fingerprinting of endo-metabolomes from endophytes associated with Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang possessing antibacterial activity against multidrug resistant bacterial pathogens. Journal of Infection and Public Health, 14(12), 1917–1926. https://doi.org/10.1016/j.jiph.2021.10.019spa
dc.relation.referencesLi, Z., Xiong, K., Wen, W., Li, L., & Xu, D. (2023). Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications. In International Journal of Molecular Sciences (Vol. 24, Issue 2). MDPI. https://doi.org/10.3390/ijms24021153spa
dc.relation.referencesLim, C., Hynix, S. K., Ponnusamy, K., & Kim, S.-U. (2010). Identification, Fermentation, and Bioactivity Against Xanthomonas oryzae of Antimicrobial Metabolites Isolated from Phomopsis longicolla S1B4. Journal of Microbiology and Biotechnology, 20(3), 494–500. https://doi.org/10.4014/jmb.0909.09026spa
dc.relation.referencesLima, G. S., Lima, N. M., Roque, J. V., de Aguiar, D. V. A., Oliveira, J. V. A., dos Santos, G. F., Chaves, A. R., & Vaz, B. G. (2022). LC-HRMS/MS-Based Metabolomics Approaches Applied to the Detection of Antifungal Compounds and a Metabolic Dynamic Assessment of Orchidaceae. Molecules, 27(22). https://doi.org/10.3390/molecules27227937spa
dc.relation.referencesLiu, F., Ma, Z. Y., Hou, L. W., Diao, Y. Z., Wu, W. P., Damm, U., Song, S., & Cai, L. (2022). Updating species diversity of Colletotrichum, with a phylogenomic overview. Studies in Mycology, 101(1), 1–56. https://doi.org/10.3114/sim.2022.101.01spa
dc.relation.referencesLiu, J., & Liu, G. (2018). Chapter 3: Analysis of Secondary Metabolites from Plant Endophytic Fungi. In Plant Pathogenic Fungi and Oomycetes: Methods and Protocols, Methods in Molecular Biology (Vol. 1848, pp. 25–38). https://doi.org/10.1007/978-1-4939-8724-5_3spa
dc.relation.referencesLiu, J., Zhu, X., Kim, S. J., & Zhang, W. (2016). Antimycin-type depsipeptides: Discovery, biosynthesis, chemical synthesis, and bioactivities. In Natural Product Reports (Vol. 33, Issue 10, pp. 1146–1165). Royal Society of Chemistry. https://doi.org/10.1039/c6np00004espa
dc.relation.referencesLiu, L., Liu, S., Chen, X., Guo, L., & Che, Y. (2009). Bioorganic & Medicinal Chemistry Pestalofones A–E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorganic & Medicinal Chemistry, 17(2), 606–613. https://doi.org/10.1016/j.bmc.2008.11.066spa
dc.relation.referencesLiu, S. S., Huang, R., Zhang, S. P., Xu, T. C., Hu, K., & Wu, S. H. (2022). Antimicrobial secondary metabolites from an endophytic fungus Aspergillus polyporicola. Fitoterapia, 162. https://doi.org/10.1016/j.fitote.2022.105297spa
dc.relation.referencesLiu, X., Mingsheng, D., Xiaohong, C., Mei, J., Xin, L., & Jianzhong, Z. (2008). Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol, 78, 241–247. https://doi.org/10.1007/s00253-007-1305-1spa
dc.relation.referencesLiu, Y., Ruan, Q., Jiang, S., Qu, Y., Chen, J., Zhao, M., & Yang, B. (2019). Cytochalasins and polyketides from the fungus Diaporthe sp. GZU-1021 and their anti-inflammatory activity. Fitoterapia, 137, 104187. https://doi.org/10.1016/j.fitote.2019.104187spa
dc.relation.referencesLiu, Z., Zhao, J., Sun, S., Li, Y., & Liu, Y. (2018). Fungi: outstanding source of novel chemical scaffolds. Journal of Asian Natural Products Research, 22(2), 99–120. https://doi.org/10.1080/10286020.2018.1488833spa
dc.relation.referencesLopes, H., Humberto, G., Castro-gamboa, I., Pereira, O., Costa-neto, C. M., Bolzani, S., Haddad, R., Nogueira, M., Claudia, M., Young, M., & Arau, R. (2005). Benzopyrans from Curvularia sp., an endophytic fungus associated with Ocotea corymbosa (Lauraceae). Phytochemistry, 66, 2363–2367. https://doi.org/10.1016/j.phytochem.2005.04.043spa
dc.relation.referencesLudwig-Müller, J. (2015). Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37, 1325–1334. https://doi.org/10.1007/s10529- 015-1814-4spa
dc.relation.referencesLunardelli Negreiros de Carvalho, P., de Oliveira Silva, E., Aparecida Chagas-Paula, D., Honorata Hortolan Luiz, J., & Ikegaki, M. (2016). Importance and Implications of the Production of Phenolic Secondary Metabolites by Endophytic Fungi: A Mini-Review. Mini-Reviews in Medicinal Chemistry, 16(4), 259–271. https://doi.org/10.2174/1389557515666151016123923spa
dc.relation.references"Lv, J., Zhou, H., Dong, L., Wang, H., Yang, L., Yu, H., Wu, P., Zhou, L., Yang, Q., Liang, Y., & Luo, B. (2023). Three new furanones from endophytic fungus Hypoxylon vinosopulvinatum DYR-1-7 from Cinnamomum cassia with their antifungal activity. Natural Product Research, 1–8. https://doi.org/10.1080/14786419.2023.2218530"spa
dc.relation.referencesMa, Y. M., Zhang, H. C., Zhao, J., & Li, X. Q. (2012). Secondary anti-fungi metabolites from the endophytic fungus Fusarium sp. in Eucommia ulmoides. Chemistry of Natural Compounds, 48(1), 170–171. https://doi.org/10.1007/s10600-012-0195-3spa
dc.relation.referencesMa, Y., Qiao, K., Kong, Y., Li, M., Guo, L., Miao, Z., & Fan, C. (2016). A new isoquinolone alkaloid from an endophytic fungus R22 of Nerium indicum. Natural Product Research, 31(8), 951–958. https://doi.org/10.1080/14786419.2016.1258556spa
dc.relation.referencesMacías-Rubalcava, M. L., Hernández-Bautista, B. E., Jiménez-Estrada, M., González, M. C., Glenn, A. E., Hanlin, R. T., Saucedo-García, A., Muria-González, J. M., Anaya, A. L., & Hernández-Ortega, S. (2008). Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry, 69, 1185–1196. https://doi.org/10.1016/j.phytochem.2007.12.006spa
dc.relation.referencesMacías-rubalcava, M. L., Sánchez-fernández, R. E., Roque-flores, G., Lappe-oliveras, P., & Medina-romero, Y. M. (2018). Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Journal Of Food Microbiology, 76, 363–373. https://doi.org/10.1016/j.fm.2018.06.014spa
dc.relation.referencesMartinez-klimova, E., Rodríguez-peña, K., & Sánchez, S. (2017). Endophytes as sources of antibiotics. Biochemical Pharmacology, 134, 1–17. https://doi.org/10.1016/j.bcp.2016.10.010spa
dc.relation.referencesMatzen, N., Heick, T. M., & Jørgensen, L. N. (2019). Control of powdery mildew (Blumeria graminis spp.) in cereals by Serenade®ASO (Bacillus amyloliquefaciens (former subtilis) strain QST 713). Biological Control, 139. https://doi.org/10.1016/j.biocontrol.2019.104067spa
dc.relation.referencesMbasa, W. V., Nene, W. A., Kapinga, F. A., Lilai, S. A., & Tibuhwa, D. D. (2021). Characterization and chemical management of Cashew Fusarium Wilt Disease caused by Fusarium oxysporum in Tanzania. Crop Protection, 139. https://doi.org/10.1016/j.cropro.2020.105379spa
dc.relation.referencesMcMillan, J. A., Chiang, C. C., Greensley, M. K., Paul, I. C., Patwardhan, S. A., Dev, S., Beno, M. A., & Christoph, G. G. (1977). X-Ray crystal and molecular structure of kodo-cytochalasin-1. Journal of the Chemical Society, Chemical Communications, 4, 105. https://doi.org/10.1039/c39770000105spa
dc.relation.referencesMcwilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y. M., Buso, N., Cowley, A. P., & Lopez, R. (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Research, 41, 597–600. https://doi.org/10.1093/nar/gkt376spa
dc.relation.referencesMedeiros, C., Vargas, B., Padro, G., Maria, L., Morandini, B., Andrade, G., Regina, K., Farias, A., Luiz, S., & Cristine, R. (2019). Antifungal and antibacterial activity of extracts produced from Diaporthe schini. Journal of Biotechnology, 294, 30–37. https://doi.org/10.1016/j.jbiotec.2019.01.022spa
dc.relation.referencesMin, H., Ping, L., Lan, Q., Bo, W., Zhang, S., Wen, Z., Ning, Y., Jun, Z., & Xiang, R. (2017). Nodupetide, a potent insecticide and antimicrobial from Nodulisporium sp. associated with Riptortus pedestris. Tetrahedron Letters, 58(7), 663–665. https://doi.org/10.1016/j.tetlet.2017.01.009spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2020). Cadena productiva Aguacate. Disponible en: https://sioc.minagricultura.gov.co/Aguacate/Documentos/2020-03- 30%20Cifras%20Sectoriales.pdfspa
dc.relation.referencesMishra, S., Priyanka, & Sharma, S. (2022). Metabolomic Insights Into Endophyte-Derived Bioactive Compounds. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.835931spa
dc.relation.referencesMohamed, H., Ebrahim, W., El-Neketi, M., Awad, M. F., Zhang, H., Zhang, Y., & Song, Y. (2022). In Vitro Phytobiological Investigation of Bioactive Secondary Metabolites from the Malus domestica-Derived Endophytic Fungus Aspergillus tubingensis Strain AN103. Molecules, 27(12). https://doi.org/10.3390/molecules27123762spa
dc.relation.referencesMolnár, A., Knapp, D. G., Lovas, M., Tóth, G., Boldizsár, I., Váczy, K. Z., & Kovács, G. M. (2023). Untargeted metabolomic analyses support the main phylogenetic groups of the common plant-associated Alternaria fungi isolated from grapevine (Vitis vinifera). Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-46020-3spa
dc.relation.referencesMondani, L., Chiusa, G., & Battilani, P. (2021). Chemical and biological control of Fusarium species involved in garlic dry rot at early crop stages. European Journal of Plant Pathology, 160(3), 575–587. https://doi.org/10.1007/s10658-021-02265-0spa
dc.relation.referencesMondol, M. A. M., Farthouse, J., Islam, M. T., Schüffler, A., & Laatsch, H. (2017). Metabolites from the Endophytic Fungus Curvularia sp. M12 Act as Motility Inhibitors against Phytophthora capsici Zoospores. Journal of Natural Products, 80(2), 347– 355. https://doi.org/10.1021/acs.jnatprod.6b00785spa
dc.relation.referencesMonteiro, M. S., Carvalho, M., Bastos, M. L., & Pinho, P. G. De. (2013). Metabolomics Analysis for Biomarker Discovery: Advances and Challenges. Current Medicinal Chemistry, 20(2), 257–271. https://doi.org/10.2174/092986713804806621spa
dc.relation.referencesMorales-Sánchez, V., Díaz, C. E., Trujillo, E., Olmeda, S. A., Valcarcel, F., Muñoz, R., Andrés, M. F., & González-Coloma, A. (2021). Bioactive metabolites from the endophytic fungus Aspergillus sp. SPH2. Journal of Fungi, 7(2), 1–12. https://doi.org/10.3390/jof7020109spa
dc.relation.referencesMorgulis, A., Coulouris, G., Raytselis, Y., Madden, T. L., Agarwala, R., & Schäffer, A. A. (2008). Database indexing for production MegaBLAST searches. Bioinformatics, 24(16), 1757–1764. https://doi.org/10.1093/bioinformatics/btn322spa
dc.relation.referencesMousa, W. K., Schwan, A., Davidson, J., Strange, P., Liu, H., Zhou, T., Auzanneau, F., & Raizada, M. N. (2015). An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Frontiers in Microbiology, 6(1157), 1–16. https://doi.org/10.3389/fmicb.2015.01157spa
dc.relation.referencesNagarajan, K., Ibrahim, B., Bawadikji, A. A., Lim, J. W., Tong, W. Y., Leong, C. R., Khaw, K. Y., & Tan, W. N. (2022). Recent Developments in Metabolomics Studies of Endophytic Fungi. In Journal of Fungi (Vol. 8, Issue 1). MDPI. https://doi.org/10.3390/jof8010028spa
dc.relation.referencesNair, D. N., & Padmavathy, S. (2017). Impact of Endophytic Microorganisms on Plants, Environment and Humans Impact of Endophytic Microorganisms on Plants. The Scientific World Journal, 2014, 250693. https://doi.org/10.1155/2014/250693spa
dc.relation.referencesNickles, G., Ludwikoski, I., Bok, J. W., & Keller, N. P. (2021). Comprehensive Guide to Extracting and Expressing Fungal Secondary Metabolites with Aspergillus fumigatus as a Case Study. Current Protocols, 1(12). https://doi.org/10.1002/cpz1.321spa
dc.relation.references"Nisa, H., Kamili, A. N., Nawchoo, I. A., Sha, S., Shameem, N., & Bandh, S. A. (2015). Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microbial Pathogenesis Journal, 82, 50–59. https://doi.org/10.1016/j.micpath.2015.04.001"spa
dc.relation.referencesNishmitha, K., Dubey, S. C., & Kamil, D. (2022). Diversity analysis of different Diaporthe (Phomopsis) species and development of molecular marker to identify quarantine important species Phomopsis phaseolorum. 3 Biotech, 12(1). https://doi.org/10.1007/s13205-021-03075-1spa
dc.relation.referencesNoor, A. O., Almasri, D. M., Bagalagel, A. A., Abdallah, H. M., Mohamed, S. G. A., Mohamed, G. A., & Ibrahim, S. R. M. (2020). Naturally occurring isocoumarins derivatives from endophytic fungi: Sources, isolation, structural characterization, biosynthesis, and biological activities. In Molecules (Vol. 25, Issue 2). MDPI AG. https://doi.org/10.3390/molecules25020395spa
dc.relation.referencesNovoa-Yánez, R. S., Araújo-Vásquez, A., Cadena-Torres, J., Grandett-Martínez, L. M., López-Rebolledo, L. A., Dagor, B., Panza-Tapia, M., & Medina-Mérida, M. J. (2023). Manual de producción de semilla de aguacate criollo en vivero en los Montes de María (R. Segundo, Ed.; Primera Edición). AGROSAVIA.spa
dc.relation.referencesOlalde-Lira, G. G., Raya Montaño, Y. A., Apáez Barrios, P., Vargas-Sandoval, M., Pedraza Santos, M. E., Raymundo, T., Valenzuela R., & Lara-Chávez, Ma. B. N. (2020). Characterization of Fusarium spp., a Phytopathogen of avocado (Persea americana Miller var. drymifolia (Schltdl. and Cham.)) in Michoacán, México. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 52(2), 301-316. Disponible en: https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853- 86652020000200024&lng=es&tlng=enspa
dc.relation.referencesOngena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. In Trends in Microbiology (Vol. 16, Issue 3, pp. 115–125). Elsevier Ltd. https://doi.org/10.1016/j.tim.2007.12.009spa
dc.relation.referencesOrjuela Corchuelo, D., & Avila Murillo, M. (2018). Microorganismos endófitos como alternativa para el control de hongos patógenos asociados al cultivo del aguacate en Colombia. Disponible en: https://repositorio.unal.edu.co/bitstream/handle/unal/76173/DianaOrjuela.2017.pdf?s equence=1spa
dc.relation.referencesOrtiz Caranguay, H. E., & Hoyos Carvajal, L. M. (2012). Etiología de enfermedades asociadas a Fusariosis en el cultivo de gulupa (Passiflora edulis Sims.) en la región del Sumapaz. In Re. Universidad Nacional de Colombia. Disponible en: https://repositorio.unal.edu.co/handle/unal/9567spa
dc.relation.referencesOsorio-Almanza, L., Burbano-Figueroa, O., Arcila-C, A. M., Vásquez-B., A. M., CarrascalPérez, F., & Romero-F., J. (2017). Distribución espacial del riesgo potencial de marchitamiento del aguacate causado por Phytophthora cinnamomi en la subregión de Montes de María. Revista Colombiana de Ciencias Hortícolas, 11(2), 273–285. https://doi.org/10.17584/rcch.2017v11i2.7329spa
dc.relation.referencesPalacios Joya, L. (2021). Caracterización de microorganismos asociados a la pudrición de raíces de aguacate Persea americana Mill en viveros del Valle del Cauca, Colombia. In Re. Universidad Nacional de Colombia. Disponible en: https://repositorio.unal.edu.co/handle/unal/80343spa
dc.relation.referencesPan, F., Liu, Z. Q., Chen, Q., Xu, Y. W., Hou, K., & Wu, W. (2016). Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity. Brazilian Journal of Microbiology, 47(2), 480–488. https://doi.org/10.1016/j.bjm.2016.01.006spa
dc.relation.referencesParikh, L., Kodati, S., Eskelson, M. J., & Adesemoye, A. O. (2018). Identification and pathogenicity of Fusarium spp. in row crops in Nebraska. Crop Protection, 108, 120– 127. https://doi.org/10.1016/j.cropro.2018.02.019spa
dc.relation.referencesParkinson, L. E., Shivas, R. G., & Dann, E. K. (2017). Pathogenicity of nectriaceous fungi on avocado in Australia. Phytopathology, 107(12), 1479–1485. https://doi.org/10.1094/PHYTO-03-17-0084-Rspa
dc.relation.referencesParra Amin, J. E., Cuca, L. E., & González-Coloma, A. (2021). Antifungal and phytotoxic activity of benzoic acid derivatives from inflorescences of Piper cumanense. Natural Product Research, 35(16), 2763–2771. https://doi.org/10.1080/14786419.2019.1662010spa
dc.relation.referencesPatchett, A., & Newman, J. A. (2021). Comparison of plant metabolites in root exudates of lolium perenne infected with different strains of the fungal endophyte epichloë festucae var. Lolii. Journal of Fungi, 7(2), 1–29. https://doi.org/10.3390/jof7020148spa
dc.relation.referencesPatil, M., Patil, R., Mohammad, S., & Maheshwari, V. (2017). Bioactivities of phenolicsrich fraction from Diaporthe arengae TATW2, an endophytic fungus from Terminalia arjuna (Roxb.). Biocatalysis and Agricultural Biotechnology, 10, 396–402. https://doi.org/10.1016/j.bcab.2017.05.002spa
dc.relation.referencesPatwardhan, S. A., Pandey, R. C., Dev, S., & Pendse, G. S. (1974). Toxic cytochalasins of Phomopsis paspalli, a pathogen of kodo millet. Phytochemistry, 13(9), 1985–1988. https://doi.org/10.1016/0031-9422(74)85130-7spa
dc.relation.referencesPeng, X., Sun, F., Li, G., Wang, C., Zhang, Y., Wu, C., Zhang, C., Sun, Y., Wu, S., Zhang, Y., Zong, H., Guo, R., & Lou, H. (2021). New Xanthones with Antiagricultural Fungal Pathogen Activities from the Endophytic Fungus Diaporthe goulteri L17. Journal of Agricultural and Food Chemistry, 69(38), 11216–11224. https://doi.org/10.1021/acs.jafc.1c03513spa
dc.relation.referencesPérez- Álvarez, S., Ávila-Quezada, G., & Coto-Arbelo, O. (2015). Avocado (Persea americana Mill). Cultivos Tropicales, 36(2), 111–123. https://doi.org/10.13140/RG.2.2.19879.55200spa
dc.relation.referencesPérez-Martínez, J., Ploetz, R. C., & Konkol, J. L. (2018). Significant in vitro antagonism of the laurel wilt pathogen by endophytic fungi from the xylem of avocado does not predict their ability to control the disease. Plant Pathology, 67(8), 1768–1776. https://doi.org/10.1111/ppa.12878spa
dc.relation.referencesPliego, C., Zumaquero, A., Martínez- Ferri, E., & López-Herrera, C. (2016). Principales Podredumbres Radiculares del Aguacate en el Litoral Andaluz. Instituto de Investigación y Formación Agraria y Pesquera, Sevilla, 1–11.spa
dc.relation.referencesPluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-395spa
dc.relation.referencesPohanka, A., Capieau, K., Broberg, A., Stenlid, J., Stenström, E., & Kenne, L. (2004). Enniatins of Fusarium sp. strain F31 and their inhibition of Botrytis cinerea spore germination. Journal of Natural Products, 67(5), 851–857. https://doi.org/10.1021/np0340448spa
dc.relation.referencesPuello, A. (2016). La transformación de la estructura productiva de los Montes de María: de despensa agrícola a distrito minero-energético. Revista Digital de Historia y Arqueología Desde El Caribe, 29, 52–83.spa
dc.relation.referencesQin, J., Zhang, Y., Gao, J., Bai, M., & Yang, S. (2009). Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorganic & Medicinal Chemistry Letters, 19(6), 1572–1574. https://doi.org/10.1016/j.bmcl.2009.02.025spa
dc.relation.referencesRamírez-Gil, J. G. (2018). Avocado wilt complex disease, implications and management in Colombia. Revista Facultad Nacional de Agronomía, 71(2), 8525–8541. https://doi.org/10.15446/rfna.v71n2.66465spa
dc.relation.referencesRamos, G. da C., Silva-Silva, J. V., Watanabe, L. A., Siqueira, J. E. de S., AlmeidaSouza, F., Calabrese, K. S., Marinho, A. M. do R., Marinho, P. S. B., & Oliveira, A. S. de. (2022). Phomoxanthone A, Compound of Endophytic Fungi Paecilomyces sp. and Its Potential Antimicrobial and Antiparasitic. Antibiotics, 11(10), 1332. https://doi.org/10.3390/antibiotics11101332spa
dc.relation.referencesRampersad, S. N. (2020). Pathogenomics and management of Fusarium diseases in plants. In Pathogens (Vol. 9, Issue 5). MDPI AG. https://doi.org/10.3390/pathogens9050340spa
dc.relation.referencesReyes-Estebanez, M., Sanmartín, P., Camacho-Chab, J. C., De la Rosa-García, S. C., Chan-Bacab, M. J., Águila-Ramírez, R. N., Carrillo-Villanueva, F., De la RosaEscalante, E., Arteaga-Garma, J. L., Serrano, M., & Ortega-Morales, B. O. (2020). Characterization of a native Bacillus velezensis-like strain for the potential biocontrol of tropical fruit pathogens. Biological Control, 141. https://doi.org/10.1016/j.biocontrol.2019.104127spa
dc.relation.referencesRichardson, S. N., Walker, A. K., Nsiama, T. K., Mcfarlane, J., Sumarah, M. W., Ibrahim, A., & Miller, J. D. (2014). Griseofulvin-producing Xylaria endophytes of Pinus strobus and Vaccinium angustifolium: evidence for a conifer-understory species endophyte ecology. Fungal Ecology, 11, 107–113. https://doi.org/10.1016/j.funeco.2014.05.004spa
dc.relation.referencesRobinson-Boyer, L., Jeger, M. J., Xu, X. M., & Jeffries, P. (2009). Management of strawberry grey mould using mixtures of biocontrol agents with different mechanisms of action. Biocontrol Science and Technology, 19(10), 1051–1065. https://doi.org/10.1080/09583150903289105spa
dc.relation.referencesRodríguez-López, É. S., Cárdenas-Soriano, E., Hernández-Delgado, S., Gutiérrez-Diez, A., & Mayek-Pérez, N. (2013). Analysis of Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. infection of avocado fruits. Revista Brasileira de Fruticultura, 35(3), 898–905. https://doi.org/10.1590/S0100-29452013000300029spa
dc.relation.referencesRodriquez-Tudela, J. L., Donnelly, J. P., Arendrup, M. C., Arikan, S., Barchiesi, F., Bille, J., Chryssanthou, E., Cuenca-Estrella, M., Dannaoui, E., Denning, D., Fegeler, W., Gaustad, P., Lass-Flörl, C., Moore, C., Richardson, M., Schmalreck, A., Velegraki, J. A., & Verweij, P. (2008). EUCAST technical note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidiaforming moulds. Clinical Microbiology and Infection, 14(10), 982–984. https://doi.org/10.1111/j.1469-0691.2008.02086.xspa
dc.relation.referencesRoessner, U., & Dias, D. A. (n.d.). Metabolomics Tools for Natural Product Discovery IN Series Editor (2013th ed.). Springer Protocols.spa
dc.relation.referencesRohr, M., Kiefer, A. M., Kauhl, U., Groß, J., Opatz, T., & Erkel, G. (2022). Antiinflammatory dihydroxanthones from a Diaporthe species. Biological Chemistry, 403(1), 89–101. https://doi.org/10.1515/hsz-2021-0192spa
dc.relation.referencesRojas Guerrero, M., & Portilla Ramos, A. (2016). Prevenga y maneje la pudrición radical del aguacate causada por el Oomycete Phytophthora cinnamomi Rands (2016th ed.). Oficina Asesora de Comunicaciones, Instituto Colombiano Agropecuario.spa
dc.relation.referencesRosenberg, E., Koren, O., Reshef, L., & Efrony, R. (2007). The role of microorganisms in coral health, disease and evolution. Narure Reviews, 5, 355–362. https://doi.org/10.1038/nrmicro1635spa
dc.relation.referencesRossana, A., Souza, C. De, Bortoluzzi, D., Lima, J., Porto, V., Marcuz, C., Camargo, R., Kuhn, R. C., Jacques, R. J. S., Guedes, J. V. C., & Mazutti, M. A. (2015). Bioherbicide production by Diaporthe sp. isolated from the Brazilian Pampa biome. Biocatalysis and Agricultural Biotechnology, 4(4), 575–578. https://doi.org/10.1016/j.bcab.2015.09.005spa
dc.relation.referencesRutkowska, N., Drożdżyński, P., Ryngajłło, M., & Marchut-Mikołajczyk, O. (2023). Plants as the Extended Phenotype of Endophytes—The Actual Source of Bioactive Compounds. In International Journal of Molecular Sciences (Vol. 24, Issue 12). MDPI. https://doi.org/10.3390/ijms241210096spa
dc.relation.referencesSánchez-Fernández, R. E., & Macías-Rubalcava, M. L. (2017). Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol, 33(15), 1–22. https://doi.org/10.1007/s11274-016- 2174-5spa
dc.relation.referencesSánchez-fernández, R. E., Diaz, D., Duarte, G., Lappe-oliveras, P., Sánchez, S., Macíasrubalcava, M. L., & Macías-rubalcava, M. L. (2016). Antifungal Volatile Organic Compounds from the Endophyte Nodulisporium sp. Strain GS4d2II1a: a Qualitative Change in the Intraspecific and Interspecific Interactions with Pythium aphanidermatum interaction. Microb. Ecol., 71, 347–364. https://doi.org/10.1007/s00248-015-0679-3spa
dc.relation.referencesSánchez-Fernández, R. E., Sánchez-ortiz, B. L., Sandoval-espinosa, Y. K. M., Ulloabenítez, Á., Armendáriz-guillén, B., Claudia, M., & Martha, G. (2013). Hongos endófitos: fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP Revista Especializada En Ciencias Químico-Biológicas, 16(2), 132–146. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-888X2013000200006&lng=es&tlng=es.spa
dc.relation.referencesSantiago, C., Fitchett, C., Munro, M. H. G., Jalil, J., & Santhanam, J. (2012). Cytotoxic and Antifungal Activities of 5-Hydroxyramulosin, a Compound Produced by an Endophytic Fungus Isolated from Cinnamomum mollisimum. Evidence-Based Complementary and Alternative Medicine, 2012, 1–6. https://doi.org/10.1155/2012/689310spa
dc.relation.referencesSantos, Á., Soares, J. X., Cravo, S., Tiritan, M. E., Reis, S., Afonso, C., Fernandes, C., & Pinto, M. M. M. (2018). Lipophilicity assessement in drug discovery: Experimental and theoretical methods applied to xanthone derivatives. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1072, 182–192. https://doi.org/10.1016/j.jchromb.2017.10.018spa
dc.relation.referencesSaucedo-Bazalar, M., Masias, P., Nouchi-Moromizato, E., Santos, C., Mialhe, E., & Cedeño, V. (2023). MALDI mass spectrometry-based identification of antifungal molecules from endophytic Bacillus strains with biocontrol potential of Lasiodiplodia theobromae, a grapevine trunk pathogen in Peru. Current Research in Microbial Sciences, 5. https://doi.org/10.1016/j.crmicr.2023.100201spa
dc.relation.referencesSavi, D. C., Noriler, S. A., Ponomareva, L. V, Thorson, J. S., Rohr, J., Glienke, C., & Shaaban, K. A. (2020). Dihydroisocoumarins produced by Diaporthe cf . heveae LGMF1631 inhibiting citrus pathogens. Folia Microbiologica, 65, 381–392. https://doi.org/10.1007/s12223-019-00746-8spa
dc.relation.referencesSayed, A. M., Sherif, N. H., El-Gendy, A. O., Shamikh, Y. I., Ali, A. T., Attia, E. Z., ElKatatny, M. H., Khalifa, B. A., Hassan, H. M., & Abdelmohsen, U. R. (2022). Metabolomic profiling and antioxidant potential of three fungal endophytes derived from Artemisia annua and Medicago sativa. Natural Product Research, 36(9), 2404– 2408. https://doi.org/10.1080/14786419.2020.1831495spa
dc.relation.referencesSchrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D., & McLean, J. A. (2016). Untargeted Metabolomics Strategies—Challenges and Emerging Directions. Journal of the American Society for Mass Spectrometry, 27(12), 1897–1905. https://doi.org/10.1007/s13361-016-1469-yspa
dc.relation.referencesSchueffler, A., & Anke, T. (2014). Fungal natural products in research and development. Nat. Prod. Rep., 31, 1425–1448. https://doi.org/10.1039/C4NP00060Aspa
dc.relation.referencesSchulz, B., & Boyle, C. (2005). The endophytic continuum. Mycol. Res., 109(6), 661–686. https://doi.org/10.1017/S095375620500273Xspa
dc.relation.referencesSchulz, B., & Boyle, C. (2006). What are Endophytes? In Soil Biology (Vol. 9, pp. 1–14). Springer. https://doi.org/10.1007/3-540-33526-9_1spa
dc.relation.referencesSegaran, G., & Sathiavelu, M. (2019). Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatalysis and Agricultural Biotechnology, 21, 101284. https://doi.org/10.1016/j.bcab.2019.101284spa
dc.relation.referencesSegre, J. A. (2013). What does it take to satisfy Koch’s postulates two centuries later?: Microbial genomics and propionibacteria acnes. Journal of Investigative Dermatology, 133(9), 2141–2142. https://doi.org/10.1038/jid.2013.260spa
dc.relation.referencesShahzad, R., Khan, A. L., Bilal, S., Asaf, S., & Lee, I. (2018). What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth. Frontiers in Plant Science, 9(24), 1–10. https://doi.org/10.3389/fpls.2018.00024spa
dc.relation.referencesShang, Z., Raju, R., Salim, A. A., Khalil, Z. G., & Capon, R. J. (2017). Cytochalasins from an Australian Marine Sediment-Derived Phomopsis sp. (CMB-M0042F): AcidMediated Intramolecular Cycloadditions Enhance Chemical Diversity. The Journal of Organic Chemistry, 82(18), 9704–9709. https://doi.org/10.1021/acs.joc.7b01793spa
dc.relation.referencesSharma, G., Maymon, M., & Freeman, S. (2017). Epidemiology, pathology and identification of Colletotrichum including a novel species associated with avocado (Persea americana) anthracnose in Israel. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-15946-wspa
dc.relation.referencesShetty, K. G., Rivadeneira, D. V, Jayachandran, K., & Walker, D. M. (2016). Isolation and molecular characterization of the fungal endophytic microbiome from conventionally and organically grown avocado trees in South Florida. Mycological Progress, 15, 977–986. https://doi.org/10.1007/s11557-016-1219-3spa
dc.relation.referencesSiebatcheu, E. C., Wetadieu, D., Youassi Youassi, O., Bedine Boat, M. A., Bedane, K. G., Tchameni, N. S., & Sameza, M. L. (2023). Secondary metabolites from an endophytic fungus Trichoderma erinaceum with antimicrobial activity towards Pythium ultimum. Natural Product Research, 37(4), 657–662. https://doi.org/10.1080/14786419.2022.2075360spa
dc.relation.referencesSilva, G., de Oliveira, C., Teles, H., Bolzani, V., Araujo, A., Pfenning, L. H., Young, M. C. M., Costa-neto, C. M., & Haddad, R. (2010). Citocalasinas produzidas por Xylaria sp., um fungo endofítivo de Piper aduncum (PIPERACEAE). Quim. Nova, 33(10), 2038–2041. https://doi.org/10.1590/S0100-40422010001000006spa
dc.relation.referencesSilva, N. I. D. E., Brooks, S., Lumyong, S., & Hyde, K. D. (2018). Use of endophytes as biocontrol agents. Fungal Biology Reviews, 33(2), 133–148. https://doi.org/10.1016/j.fbr.2018.10.001spa
dc.relation.referencesSingh, A., Kumar, J., Sharma, V. K., Singh, D. K., Kumari, P., Nishad, J. H., Gautam, V. S., & Kharwar, R. N. (2021). Phytochemical analysis and antimicrobial activity of an endophytic Fusarium proliferatum (ACQR8), isolated from a folk medicinal plant Cissus quadrangularis L. South African Journal of Botany, 140, 87–94. https://doi.org/10.1016/j.sajb.2021.03.004spa
dc.relation.referencesSingh, K. S., & Singh, A. (2022). Chemical diversities, biological activities and chemical synthesis of marine diphenyl ether and their derivatives. In Journal of Molecular Structure (Vol. 1265). Elsevier B.V. https://doi.org/10.1016/j.molstruc.2022.133302spa
dc.relation.referencesSingh, V. K., & Kumar, A. (2023). Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. In Symbiosis (Vol. 90, Issue 2, pp. 111–125). Springer Science and Business Media B.V. https://doi.org/10.1007/s13199-023-00925-9spa
dc.relation.referencesSkellam, E. (2017). The biosynthesis of cytochalasans. Natural Product Reports, 34(11), 1252–1263. https://doi.org/10.1039/c7np00036gspa
dc.relation.referencesSolhaug, A., Eriksen, G. S., & Holme, J. A. (2016). Mechanisms of Action and Toxicity of the Mycotoxin Alternariol: A Review. Basic & Clinical Pharmacology & Toxicology, 119(6), 533–539. https://doi.org/10.1111/bcpt.12635spa
dc.relation.referencesSong, Q., Nan, Z., Gao, K., Song, H., Tian, P., Xing-Xu, Z., Chunjie, L., Wen-Bo, X., & Xiu-Zhang Li. (2015a). Antifungal, Phytotoxic, and Cytotoxic Activities of Metabolites from Epichloë bromicola, a Fungus Obtained from Elymus tangutorum Grass. J. Agric. Food Chem., 63(40), 8787–8792. https://doi.org/10.1021/acs.jafc.5b04260spa
dc.relation.referencesSong, Z., Sun, Y. J., Xu, S., Li, G., Yuan, C., & Zhou, K. (2023). Secondary metabolites from the Endophytic fungi Fusarium decemcellulare F25 and their antifungal activities. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1127971spa
dc.relation.referencesŠtiblariková, M., Lásiková, A., & Gracza, T. (2023). Benzyl Alcohol/Salicylaldehyde-Type Polyketide Metabolites of Fungi: Sources, Biosynthesis, Biological Activities, and Synthesis. In Marine Drugs (Vol. 21, Issue 1). MDPI. https://doi.org/10.3390/md21010019spa
dc.relation.referencesStrobel, G. A. (2003). Endophytes as sources of bioactive products. Microbes and Infection, 5, 535–544. https://doi.org/10.1016/s1286-4579(03)00073-xspa
dc.relation.referencesStrobel, G., & Daisy, B. (2003). Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiology and Molecular Biology Reviews, 67(4), 491–502. https://doi.org/10.1128/MMBR.67.4.491spa
dc.relation.referencesSun, J., Yang, X. Q., Wan, J. L., Han, H. L., Zhao, Y. D., Cai, L., Yang, Y. Bin, & Ding, Z. T. (2023). The antifungal metabolites isolated from maize endophytic fungus Fusarium sp. induced by OSMAC strategy. Fitoterapia, 171. https://doi.org/10.1016/j.fitote.2023.105710spa
dc.relation.referencesSuryanarayanan, T. S. (2012). Diversity of Fungal Endophytes in Tropical Trees. In Endophytes of forest trees: biology and applications (p. 68). Springer. https://doi.org/10.1007/978-94-007-1599-8spa
dc.relation.referencesSuryanarayanan, T. S., Thirunavukkarasu, N., & Govindarajulu, M. B. (2009). Fungal endophytes and bioprospecting. Fungal Biology Reviews, 23(1–2), 9–19. https://doi.org/10.1016/j.fbr.2009.07.001spa
dc.relation.referencesSuwannarach, N., Kumla, J., Bussaban, B., Nuangmek, W., & Matsui, K. (2013). Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Protection, 45, 63–70. https://doi.org/10.1016/j.cropro.2012.11.015spa
dc.relation.referencesTalontsi, F. M., Dittrich, B., Schüffler, A., Sun, H., & Laatsch, H. (2013). Epicoccolides: Antimicrobial and antifungal polyketides from an endophytic fungus Epicoccum sp associated with Theobroma cacao. European Journal of Organic Chemistry, 15, 3174–3180.https://doi.org/10.1002/ejoc.201300146spa
dc.relation.referencesTamayo, P. J. (2007). Enfermedades del Aguacate. Revista Politécnica, 3(4), 51–70spa
dc.relation.referencesTanney, J. B., Mcmullin, D. R., Green, B. D., Miller, J. D., & Seifert, K. A. (2016). Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biology, 120(11), 1448–1457. https://doi.org/10.1016/j.funbio.2016.05.007spa
dc.relation.referencesTata, A., Perez, C., Campos, M. L., Bayfield, M. A., Eberlin, M. N., & Ifa, D. R. (2015). Imprint Desorption Electrospray Ionization Mass Spectrometry Imaging for Monitoring Secondary Metabolites Production during Antagonistic Interaction of Fungi. Analytical Chemistry, 87(24), 12298–12305. https://doi.org/10.1021/acs.analchem.5b03614spa
dc.relation.referencesTerhonen, E., Sipari, N., & Asiegbu, F. O. (2016). Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biological Control, 99, 53–63. https://doi.org/10.1016/j.biocontrol.2016.04.006spa
dc.relation.referencesThomas, E. J., & Whitehead, J. W. F. (1989). Cytochalasan synthesis: total synthesis of cytochalasin H. Journal of the Chemical Society, Perkin Transactions 1, 1(3), 507. https://doi.org/10.1039/p19890000507spa
dc.relation.referencesTonial, F., Maia, B. H. L. N. S., Sobottka, A. M., Vicente, A., Gomes, R. R., Glienke, C., & Savi, D. C. (2017). Biological activity of Diaporthe terebinthifolii extracts against Phyllosticta citricarpa. FEMS Microbiology Letters, 364, 1–7. https://doi.org/10.1093/femsle/fnx026spa
dc.relation.referencesTör, M., & Woods-Tör, A. (2017). Genetic Modification of Disease Resistance: Fungal and Oomycete Pathogens. Encyclopedia of Applied Plant Sciences, 3, 83–87. https://doi.org/10.1016/B978-0-12-394807-6.00054-Xspa
dc.relation.referencesTriastuti, A., Vansteelandt, M., Barakat, F., Amasifuen, C., Jargeat, P., & Haddad, M. (2023). Untargeted metabolomics to evaluate antifungal mechanism: a study of Cophinforma mamane and Candida albicans interaction. Natural Products and Bioprospecting, 13(1). https://doi.org/10.1007/s13659-022-00365-wspa
dc.relation.referencesTriba, M. N., Le Moyec, L., Amathieu, R., Goossens, C., Bouchemal, N., Nahon, P., Rutledge, D. N., & Savarin, P. (2015). PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. In Molecular BioSystems (Vol. 11, Issue 1, pp. 13–19). Royal Society of Chemistry. https://doi.org/10.1039/c4mb00414kspa
dc.relation.referencesTsantrizos, Y. S. (1995). Bioactive Metabolites of the Genus Phomopsis. Studies in Natural Products Chemistry, 15, 341–359. https://doi.org/10.1016/S1572- 5995(06)80136-5spa
dc.relation.referencesTsivileva, O. M., Koftin, O. V., & Evseeva, N. V. (2022). Coumarins as Fungal Metabolites with Potential Medicinal Properties. In Antibiotics (Vol. 11, Issue 9). MDPI. https://doi.org/10.3390/antibiotics11091156spa
dc.relation.referencesTuiche, M. V., Lopes, A. A., Silva, D. B., Lopes, N. P., & Pupo, M. T. (2014). Direct MALDI-TOF/TOF analyses of unnatural beauvericins produced by the endophytic fungus Fusarium oxysporum SS46. Revista Brasileira de Farmacognosia, 24(4), 433–438. https://doi.org/10.1016/j.bjp.2014.06.002spa
dc.relation.referencesUdayanga, D., & Liu, X. (2012). A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Diversity, 56, 157–171. https://doi.org/10.1007/s13225-012- 0190-9spa
dc.relation.referencesUl-Hassan, R., Strobel, G., Geary, B., & Sears, J. (2013). An Endophytic Nodulisporium sp. from Central America Producing Volatile Organic Compounds with Both Biological and Fuel Potential. J. Microbiol. Biotechnol., 23(1), 29–35. https://doi.org/10.4014/jmb.1208.04062spa
dc.relation.referencesvan den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7. https://doi.org/10.1186/1471-2164-7-142spa
dc.relation.referencesVarughese, T., Rios, N., Higginbotham, S., Elizabeth Arnold, A., Coley, P. D., Kursar, T. A., Gerwick, W. H., & Rios, L. C. (2012a). Antifungal depsidone metabolites from Cordyceps dipterigena, an endophytic fungus antagonistic to the phytopathogen Gibberella fujikuroi. Tetrahedron Letters, 53(13), 1624–1626. https://doi.org/10.1016/j.tetlet.2012.01.076spa
dc.relation.referencesVega, J. (2012). El aguacate en Colombia. Estudio de caso de los Montes de María, en el Caribe Colombiano. Banco de La República de Colombia. Centro de Estudios Económicos Regionales., 171, 1–35. Disponible en: https://www.banrep.gov.co/sites/default/files/publicaciones/archivos/dtser_171.pdfspa
dc.relation.referencesVenkateswarulu, N., Shameer, S., Bramhachari, P. V, Basha, S. K. T., Nagaraju, C., & Vijaya, T. (2018). Isolation and characterization of plumbagin (5-hydroxyl-2- methylnaptalene-1,4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants. Biotechnol Rep (Amst)., 20, 1–10. https://doi.org/10.1016/j.btre.2018.e00282spa
dc.relation.referencesVenugopalan, A., Potunuru, U. R., Dixit, M., & Srivastava, S. (2016). Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresource Technology, 206, 104–111. https://doi.org/10.1016/j.biortech.2016.01.079spa
dc.relation.referencesVerma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y., & Valéro, J. R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1–20. https://doi.org/10.1016/j.bej.2007.05.012spa
dc.relation.referencesVerma, S. K., Kingsley, K. L., Bergen, M. S., Kowalski, K. P., & White, J. F. (2018). Fungal disease prevention in seedlings of rice (Oryza sativa) and other grasses by growth-promoting seed-associated endophytic bacteria from invasive phragmites australis. Microorganisms, 6(1). https://doi.org/10.3390/microorganisms6010021spa
dc.relation.referencesVerma, V., & Gange, A. (2014). Advances in Endophytic Research. Springer. https://doi.org/10.1007/978-81-322-1575-2spa
dc.relation.referencesVerma, V., & Gange, A. (2014). Microbial Endophytes: Their Resilience for Innovative Treatment Solution to Neglected Tropical Diseases. In Advances in Endophytic Research (pp. 161–176). https://doi.org/10.1007/978-81-322-1575-2spa
dc.relation.referencesVinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma – plant – pathogen interactions. Soil Biology and Biochemistry, 40, 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002spa
dc.relation.referencesVolcy, C. (2008). Génesis y evolución de los postulados de Koch y su relación con la fitopatología. Una revisión Genesis and evolution of Koch postulates and their relationship with phytopathology. A review. Genesis, 26(1), 107– 115. https://revistas.unal.edu.co/index.php/agrocol/article/view/13924spa
dc.relation.referencesWagenaar, M. M., & Clardy, J. (2001). Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. Journal of Natural Products, 64(8), 1006–1009. https://doi.org/10.1021/np010020uspa
dc.relation.referencesWaheedam, K., & Shyam, K. (2017). Formulation of Novel Surface Sterilization Method and Culture Media for the Isolation of Endophytic Actinomycetes from Medicinal Plants and its Antibacterial Activity. Journal of Plant Pathology & Microbiology, 8(2), 1–9. https://doi.org/10.4172/2157-7471.1000399spa
dc.relation.referencesWang, C. F., Ma, J., Jing, Q. Q., Cao, X. Z., Chen, L., Chao, R., Zheng, J. Y., Shao, C. L., He, X. X., & Wei, M. Y. (2022). Integrating Activity-Guided Strategy and Fingerprint Analysis to Target Potent Cytotoxic Brefeldin A from a Fungal Library of the Medicinal Mangrove Acanthus ilicifolius. Marine Drugs, 20(7). https://doi.org/10.3390/md20070432spa
dc.relation.referencesWang, D. L., Yang, X. Q., Shi, W. Z., Cen, R. H., Yang, Y. Bin, & Ding, Z. T. (2021). The selective anti-fungal metabolites from Irpex lacteus and applications in the chemical interaction of Gastrodia elata, Armillaria sp., and endophytes. Fitoterapia, 155. https://doi.org/10.1016/j.fitote.2021.105035spa
dc.relation.referencesWang, D., Zhuang, X., Yin, Y., Wu, D., He, W., Zhu, W., Xu, Y., Zuo, M., & Wang, L. (2023). Indole Diterpene Derivatives from the Aspergillus flavus GZWMJZ-288, an Endophytic Fungus from Garcinia multiflora. Molecules, 28(23). https://doi.org/10.3390/molecules28237931spa
dc.relation.referencesWang, H., Fewer, D. P., Holm, L., Rouhiainen, L., & Sivonen, K. (2014). Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9259–9264. https://doi.org/10.1073/pnas.1401734111spa
dc.relation.referencesWang, J. F., Huang, R., Song, Z. Q., Yang, Q. R., Li, X. P., Liu, S. S., & Wu, S. H. (2022). Polyhydroxylated sesquiterpenes and ergostane glycosides produced by the endophytic fungus Xylaria sp. from Azadirachta indicspa
dc.relation.referencesWang, J., Qiu, J., Yang, X., Yang, J., Zhao, S., Zhou, Q., & Chen, L. (2022). Identification of Lipopeptide Iturin A Produced by Bacillus amyloliquefaciens NCPSJ7 and Its Antifungal Activities against Fusarium oxysporum f. sp. niveum. Foods, 11(19). https://doi.org/10.3390/foods11192996spa
dc.relation.referencesWang, J., Wang, G., Zhang, Y., Zheng, B., Zhang, C., & Wang, L. (2014). Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites. World J Microbiol Biotechnol Antifungal, 30(10), 2639–2644. https://doi.org/10.1007/s11274-014-1686-0spa
dc.relation.referencesWang, J., Zhao, Y., Men, L., Zhang, Y., Liu, Z., Sun, T., Geng, Y., & Yu, Z. (2014). Secondary Metabolites of the Marine Fungus Penicillium chrysogenum. Chemistry of Natural Compounds, 50(3), 405–407. https://doi.org/10.1007/s10600-014-0971-3spa
dc.relation.referencesWang, X., Gong, X., Li, P., Lai, D., & Zhou, L. (2018). Structural diversity and biological activities of cyclic depsipeptides from fungi. In Molecules (Vol. 23, Issue 1). MDPI AG. https://doi.org/10.3390/molecules23010169spa
dc.relation.referencesWang, X., Radwan, M. M., Taráwneh, A. H., Gao, J., Wedge, D. E., Rosa, L. H., Cutler, H. G., & Cutler, S. J. (2013). Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. Journal of Agricultural and Food Chemistry, 61(19), 4551–4555. https://doi.org/10.1021/jf400212yspa
dc.relation.referencesWanjiku, E. K., Waceke, J. W., Wanjala, B. W., & Mbaka, J. N. (2020). Identification and Pathogenicity of Fungal Pathogens Associated with Stem End Rots of Avocado Fruits in Kenya. International Journal of Microbiology, 2020. https://doi.org/10.1155/2020/4063697spa
dc.relation.referencesWei, P., Fei, Y. O. U., Xiao-li, L. I., Min, J. I. A., Cheng-jian, Z., & Ting, H. A. N. (2013). A new diphenyl ether from the endophytic fungus Verticillium sp. isolated from Rehmannia glutinosa. Chinese Journal of Natural Medicines, 11(6), 673–675. https://doi.org/10.1016/S1875-5364(13)60078-3spa
dc.relation.referencesWerres, S. (2015). Laboratory Protocols for Phytophthora Species: Preparation of hyphal tip Phytophthora cultures. https://doi.org/10.1094/9780890544969.01.09.1.pdfspa
dc.relation.referencesWezeman, T., Bräse, S., & Masters, K. S. (2015). Xanthone dimers: A compound family which is both common and privileged. In Natural Product Reports (Vol. 32, Issue 1, pp. 6–28). Royal Society of Chemistry. https://doi.org/10.1039/c4np00050aspa
dc.relation.referencesWicklow, D. T., Roth, S., Deyrup, S. T., & Gloer, J. B. (2005). A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol. Res., 109(5), 610–618. https://doi.org/10.1017/S0953756205002820spa
dc.relation.referencesWolfender, J., Marti, G., Thomas, A., & Bertrand, S. (2015). Current approaches and challenges for the metabolite profiling of complex natural extracts. Journal of Chromatography A, 1382, 136–164. https://doi.org/10.1016/j.chroma.2014.10.091spa
dc.relation.referencesWorley, B., & Powers, R. (2013). Multivariate Analysis in Metabolomics. Current Metabolomics, 1(1), 92–107. https://doi.org/10.2174/2213235x11301010092spa
dc.relation.referencesWorley, B., & Powers, R. (2016). PCA as a Practical Indicator of OPLS-DA Model Reliability. Current Metabolomics, 4(2), 97–103. https://doi.org/10.2174/2213235x04666160613122429spa
dc.relation.referencesWu, S., He, J., Li, X., Huang, R., Song, F., Chen, Y., & Miao, C. (2014). Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. Phytochemistry, 105, 197–204. https://doi.org/10.1016/j.phytochem.2014.04.016spa
dc.relation.referencesWu, Z., Chen, J., Zhang, X., Chen, Z., Li, T., She, Z., Ding, W., & Li, C. (2019b). Four New Isocoumarins and a New Natural Tryptamine with Antifungal Activities from a Mangrove Endophytic Fungus Botryosphaeria ramosa L29. Mar. Drugs, 17(88), 1–9. https://doi.org/10.3390/md17020088spa
dc.relation.referencesXiao, J., Zhang, Q., Gao, Y. Q., Shi, X. W., & Gao, J. M. (2014). Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach. Natural Product Research, 28(17), 1388–1392. https://doi.org/10.1080/14786419.2014.904308spa
dc.relation.referencesXiao, J., Zhang, Q., Gao, Y. Q., Tang, J. J., Zhang, A. L., & Gao, J. M. (2014). Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. Journal of Agricultural and Food Chemistry, 62(16), 3584–3590. https://doi.org/10.1021/jf500054fspa
dc.relation.referencesXie, J., Strobel, G. A., Feng, T., Ren, H., Mends, M. T., Zhou, Z., & Geary, B. (2015). An endophytic Coniochaeta velutina producing broad spectrum antimycotics. Journal of Microbiology, 53(6), 390–397. https://doi.org/10.1007/s12275-015-5105-5spa
dc.relation.referencesXu, D., Zhang, B., & Yang, X. (2016). Antifungal monoterpene derivatives from the plant endophytic fungus Pestalotiopsis foedan. Chemistry & Biodiversity, 13(10), 1422– 1425. https://doi.org/10.1002/cbdv.201600114spa
dc.relation.referencesXu, K., Li, X. Q., Zhao, D. L., & Zhang, P. (2021). Antifungal Secondary Metabolites Produced by the Fungal Endophytes: Chemical Diversity and Potential Use in the Development of Biopesticides. In Frontiers in Microbiology (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2021.689527spa
dc.relation.referencesXu, T. C., Lu, Y. H., Wang, J. F., Song, Z. Q., Hou, Y. G., Liu, S. S., Liu, C. S., & Wu, S. H. (2021). Bioactive secondary metabolites of the genus Diaporthe and anamorph Phomopsis from terrestrial and marine habitats and endophytes: 2010–2019. In Microorganisms (Vol. 9, Issue 2, pp. 1–49). MDPI AG. https://doi.org/10.3390/microorganisms9020217spa
dc.relation.referencesYan, L., Zhao, H., Zhao, X., Xu, X., Di, Y., Jiang, C., Shi, J., Shao, D., Huang, Q., Yang, H., & Jin, M. (2018). Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions. In Applied Microbiology and Biotechnology (Vol. 102, Issue 15, pp. 6279–6298). Springer Verlag. https://doi.org/10.1007/s00253-018-9101-7spa
dc.relation.referencesYan, L., Zhu, J., Zhao, X., Shi, J., Jiang, C., & Shao, D. (2019). Beneficial effects of endophytic fungi colonization on plants. In Applied Microbiology and Biotechnology (Vol. 103, Issue 8, pp. 3327–3340). Springer Verlag. https://doi.org/10.1007/s00253- 019-09713-2spa
dc.relation.referencesYan, W., Wei, W., Zhang, Y., Wang, J., Ping, X., & Xu, J. (2018). Nigrosporanenes C and D, two new cyclohexene derivatives from the enphytic fungus Nigrospora oryzae S4. Journal of Asian Natural Products Research, 20(10), 957–961. https://doi.org/10.1080/10286020.2018.1424140spa
dc.relation.referencesYang, X., Wang, N., Kang, Y., & Ma, Y. (2018). A new furan derivative from an endophytic Aspergillus tubingensis of Decaisnea insignis (Griff.) Hook.f. & Thomson. Natural Product Research, 33(19), 2777–2783. https://doi.org/10.1080/14786419.2018.1501687spa
dc.relation.referencesYang, X., Xu, X., Wang, S., Zhang, L., Shen, G., Teng, H., Yang, C., Song, C., Xiang, W., Wang, X., & Zhao, J. (2022). Identification, Pathogenicity, and Genetic Diversity of Fusarium spp. Associated with Maize Sheath Rot in Heilongjiang Province, China. International Journal of Molecular Sciences, 23(18). https://doi.org/10.3390/ijms231810821spa
dc.relation.referencesYin, Q., Liu, X., Zhang, Z., Lei, H., & Wu, B. (2023). Chemistry and bioactivities of alkaloids isolated from marine fungi (covering 2016–2022). In Fitoterapia (Vol. 164). Elsevier B.V. https://doi.org/10.1016/j.fitote.2022.105377spa
dc.relation.referencesYou, F., Han, T., Wu, J., Huang, B., & Qin, L. (2009). Antifungal secondary metabolites from endophytic Verticillium sp. Biochemical Systematics and Ecology, 37(3), 162– 165. https://doi.org/10.1016/j.bse.2009.03.008spa
dc.relation.referencesYu, E., Riyaz-ul-hassan, S., & Geary, B. (2012). An Endophytic Nodulisporium sp. Producing Volatile Organic Compounds Having Bioactivity and Fuel Potential. J. Pet. Environ. Biotechnol, 3(3), 1–7. https://doi.org/10.4172/2157-7463.1000117spa
dc.relation.referencesYu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., Sun, P., & Ã, L. Q. (2010). Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiological Research, 165(6), 437–449. https://doi.org/10.1016/j.micres.2009.11.009spa
dc.relation.referencesZabalgogeazcoa, I. (2008). Fungal endophytes and their interaction with plant pathogens. Spanish Journal of Agricultural Research, 6, 138–146. https://doi.org/10.5424/sjar/200806S1-382spa
dc.relation.referencesZakaria, L. (2023). Fusarium Species Associated with Diseases of Major Tropical Fruit Crops. Horticulturae, 9(3), 322. https://doi.org/10.3390/horticulturae9030322spa
dc.relation.referencesZang, Z., Yang, W., Cui, H., Cai, R., Li, C., Zou, G., Wang, B., & She, Z. (2022). Two Antimicrobial Heterodimeric Tetrahydroxanthones with a 7,7′-Linkage from Mangrove Endophytic Fungus Aspergillus flavus QQYZ. Molecules, 27(9). https://doi.org/10.3390/molecules27092691spa
dc.relation.referencesZhang, D., Sun, W., Xu, W., Ji, C., Zhou, Y., Sun, J., Tian, Y., Li, Y., Zhao, F., & Tian, Y. (2023). Antimicrobial and Cytotoxic Activity of Endophytic Fungi from Lagopsis supina. Journal of Microbiology and Biotechnology, 33(4), 543–551. https://doi.org/10.4014/jmb.2211.11055spa
dc.relation.referencesZhang, G., Zhang, Y., Qin, J., Qu, X., Liu, J., Li, X., & Pan, H. (2013). Antifungal Metabolites Produced by Chaetomium globosum No.04, an Endophytic Fungus Isolated from Ginkgo biloba. Indian J Microbiol, 53(2), 175–180. https://doi.org/10.1007/s12088-013-0362-7spa
dc.relation.referencesZhang, H. W., Song, Y. C., & Tan, R. X. (2006). Biology and chemistry of endophytes. Natural Product Reports, 23(5), 753–771. https://doi.org/10.1039/b609472bspa
dc.relation.referencesZhang, H., Ma, Y., Liu, R., & Zhou, F. (2012). Endophytic fungus Aspergillus tamarii from Ficus carica L ., a new source of indolyl diketopiperazines. Biochemical Systematics and Ecology, 45, 31–33. https://doi.org/10.1016/j.bse.2012.07.020spa
dc.relation.referencesZhang, P., Li, X., Yuan, X., Du, Y., Wang, B., & Zhang, Z. (2018a). Antifungal Prenylated Diphenyl Ethers from Arthrinium arundinis, an Endophytic Fungus Isolated from the Leaves of Tobacco (Nicotiana tabacum L.). Molecules, 23(3179), 1–7. https://doi.org/10.3390/molecules23123179spa
dc.relation.referencesZhang, Q., Huang, Z. pu, Zhao, Y. ying, Zhao, Q., Chen, J. hong, Ma, W. guang, & Zhang, X. mei. (2022). Six 19,20-epoxycytochalasans from endophytic Diaporthe sp. RJ-47. Natural Product Research, 36(13), 3375–3380. https://doi.org/10.1080/14786419.2020.1859504spa
dc.relation.referencesZhang, W., Xu, L., Yang, L., Huang, Y., Li, S., & Shen, Y. (2014). Phomopsidone A, a novel depsidone metabolite from the mangrove endophytic fungus Phomopsis sp. A123. Fitoterapia, 96, 146–151. https://doi.org/10.1016/j.fitote.2014.05.001spa
dc.relation.referencesZhao, M., Guo, D., Liu, G., Fu, X., Gu, Y., Ding, L., & Zhou, Y. (2020). Antifungal Halogenated Cyclopentenones from the Endophytic Fungus Saccharicola bicolor of Bergenia purpurascens by One Strain-Many Compounds Strategy. J. Agric. Food Chem, 68(1), 185–192. https://doi.org/10.1021/acs.jafc.9b06594spa
dc.relation.referencesZhao, S. S., Zhang, Y. Y., Yan, W., Cao, L.-L., Xiao, Y., & Ye, Y.-H. (2017). Chaetomium globosum CDW7, a potential biological control strain and its antifungal metabolites. FEMS Microbiol Lett., 364(3), 1–17. https://doi.org/10.1093/femsle/fnw287spa
dc.relation.referencesZhao, W. Y., Yi, J., Chang, Y. B., Sun, C. P., & Ma, X. C. (2022). Recent studies on terpenoids in Aspergillus fungi: Chemical diversity, biosynthesis, and bioactivity. In Phytochemistry (Vol. 193). Elsevier Ltd. https://doi.org/10.1016/j.phytochem.2021.113011spa
dc.relation.referencesZheng, C.-J., Xu, L. L., Li, Y. Y., Han, T., Zhang, Q. Y., Ming, Q. L., Rahman, K., & Qin, L. P. (2013). Cytotoxic metabolites from the cultures of endophytic fungi from Panax ginseng. Applied Microbiology and Biotechnology, 97(17), 7617–7625. https://doi.org/10.1007/s00253-013-5015-6spa
dc.relation.referencesZhibo, H., Yiwen, T., Xingyu, T., Qinhua, S., Jiachun, C., Weijia, D., & Chunyuan, L. (2019). Sesquiterpenes with Phytopathogenic Fungi Inhibitory Activities from Fungus Trichoderma virens from Litchi chinensis Sonn. J. Agric. Food Chem., 67(38), 10646–10652. https://doi.org/10.1021/acs.jafc.9b04053spa
dc.relation.referencesZhou, P., Li, Q., Chen, C., Zhu, H., & Zhang, Y. (2022). Macrocyclic polyketides from microorganisms: structural diversities and bioactivities. Journal of Holistic Integrative Pharmacy, 3(3), 268–299. https://doi.org/10.1016/S2707-3688(23)00049-3spa
dc.relation.referencesZhu, H., Chen, C., Tong, Q., Zhou, Y., Ye, Y., Gu, L., & Zhang, Y. (2021). Progress in the Chemistry of Cytochalasans. Progress in the Chemistry of Organic Natural Products, 114, 1–134. https://doi.org/10.1007/978-3-030-59444-2_1spa
dc.relation.referencesZhu, J. J., HUANG, Q. Sen, LIU, S. Q., DING, W. J., XIONG, Y. H., & LI, C. Y. (2022). Four new diphenyl ether derivatives from a mangrove endophytic fungus Epicoccum sorghinum. Chinese Journal of Natural Medicines, 20(7), 537–540. https://doi.org/10.1016/S1875-5364(22)60171-7spa
dc.relation.referencesZhu, J., Song, L., Shen, S., Fu, W., Zhu, Y., & Liu, L. (2023). Bioactive Alkaloids as Secondary Metabolites from Plant Endophytic Aspergillus Genus. In Molecules (Vol. 28, Issue 23). Multidisciplinary Digital Publishing Institute (MDPI).https://doi.org/10.3390/molecules28237789spa
dc.relation.referencesZhu, X., Zhong, Y., Xie, Z., Wu, M., Hu, Z., Ding, W., & Li, C. (2018). Fusarihexins A and B: Novel Cyclic Hexadepsipeptides from the Mangrove Endophytic Fungus Fusarium sp. R5 with Antifungal Activities. Planta Med, 84(18), 1355–1362. https://doi.org/10.1055/a-0647-7048spa
dc.relation.referencesZhu, X., Zhou, D., Liang, F., Wu, Z., She, Z., & Li, C. (2017). Penochalasin K, a new unusual chaetoglobosin from the mangrove endophytic fungus Penicillium chrysogenum V11 and its effective semi- synthesis. Fitoterapia, 123, 23–28. https://doi.org/10.1016/j.fitote.2017.09.016spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocEndofitaspa
dc.subject.agrovocendophyteseng
dc.subject.agrovocEnfermedad de las plantasspa
dc.subject.agrovocplant diseaseseng
dc.subject.agrovocAguacatespa
dc.subject.agrovocavocadoseng
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::635 - Cultivos hortícolas (Horticultura)spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.proposalPersea americanalat
dc.subject.proposalDiaporthe sp.lat
dc.subject.proposalFusarium solanilat
dc.subject.proposalFusarium equisetilat
dc.subject.proposalMetabolómicaspa
dc.subject.proposalMetabolomicseng
dc.subject.proposalAnálisis estadístico multivariadospa
dc.subject.proposalMultivariate Data Analysiseng
dc.subject.proposalDescubrimiento de biomarcadoresspa
dc.subject.proposalBiomarker discoveryeng
dc.titleBúsqueda de agentes fitosanitarios para el control de enfermedades fúngicas del cultivo del aguacate a partir de hongos endófitos asociados al mismospa
dc.title.translatedPhytosanitary agents for the control of fungal diseases in avocado crops from associated endophytic fungieng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032431758.2025.pdf
Tamaño:
8.32 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: