Modeling social-ecological systems : influence of governance structure on land cover and land use trajectories

dc.contributor.advisorVillegas Palacio, Clara Inés
dc.contributor.advisorArango Aramburo, Santiago
dc.contributor.authorDíez Echavarría, Luisa Fernanda
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000010115spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=PD0aaXEAAAAJ&hl=esspa
dc.contributor.orcidDíez Echavarría, Luisa Fernanda [0000-0001-6022-6595]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Luisa-Diez-Echavarriaspa
dc.contributor.researchgroupCiencias de la Decisionspa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=56495602600spa
dc.coverage.regionAntioquia, Colombia
dc.date.accessioned2024-04-10T19:34:18Z
dc.date.available2024-04-10T19:34:18Z
dc.date.issued2024-03-20
dc.descriptionilustraciones, mapasspa
dc.description.abstractEn esta tesis se muestra una ruta metodológica para analizar el efecto de la gobernanza multinivel en la trayectoria espacio-temporal de los usos y coberturas del suelo (LUC). Para esto se utilizó un caso de estudio en una zona de una cuenca hidrográfica estratégica en los Andes Colombianos: cuenca de los ríos Grande y Chico. El primer estudio subraya la importancia de considerar diversas extensiones espaciales y características de gobernanza a la hora de analizar los patrones de cambio LUC en la cuenca. Allí se desafía el enfoque convencional de utilizar unidades de análisis genéricas como una cuenca, destacando el atractivo de la ganadería lechera en una zona que se convierte en el centro de la tesis. A partir de este punto, el análisis se basa en la estructura del modelo de causas de cambio de LUC: fuerza subyacente, agente mediador y causa inmediata. La fuerza subyacente de los cambios de LUC se describe en el segundo estudio, donde se definen la estructura de gobernanza según tres funciones, y se analiza su coherencia para lograr objetivos. Mediante el análisis de redes sociales geo-localizadas, se revelan ciclos de realimentación inconexos con objetivos de producción y conservación, y aboga por una gobernanza impulsada por la comunidad para fomentar la participación activa y mitigar los conflictos. El agente mediador de los cambios de LUC es el centro del tercer estudio, que explora el impacto de la estructura de gobernanza en las decisiones de los campesinos sobre el LUC. Se definen las variables de cada función de gobernanza y se evalúa su efecto en la decisión mediante la estimación de un modelo de Regresión Aparentemente No Relacionada. En el estudio se encuentra que los actores que promueven proyectos de producción los que ejercen un mayor impacto en el campesino, y se propone explorar diversas configuraciones de gobernanza para comprender sus implicaciones en las trayectorias de LUC. El cuarto estudio se enfoca en la causa inmediata de los cambios de LUC, introduciendo un modelo de simulación del sistema socio-ecológico (SSE) a nivel de finca con el lenguaje y ambiente de simulación Ocelet, y haciendo hincapié en la necesidad de una medición robusta y la integración de variables sociales. Los resultados revelan el reto que supone romper la dinámica de equilibrio en el SES en términos de los LUC y el control de la erosión hídrica, haciendo énfasis en la importancia de adaptar las políticas en función de los tipos de campesinos y sus fincas para abordar la sensibilidad a los cambios en la gobernanza. Esta tesis, mediante la aplicación de diversas metodologías, disminuye brechas de conceptualización y operacionalización del SES. Las contribuciones desde el punto de vista académico y de planeación territorial, mejoran la comprensión de estos sistemas altamente complejos y aportan en el diseño de políticas más efectivas para un territorio sostenible. (Tomado de la fuente)spa
dc.description.abstractThis thesis shows a methodological route to analyze the effect of multilevel governance on the spatio-temporal trajectory of land use and land cover (LUC). For this purpose, a case study was used in a strategic basin area in the Colombian Andes: the Grande and Chico River basin. The first study highlights the importance of considering diverse spatial extents and governance characteristics when analyzing LUC change patterns. There, the conventional approach of using generic units of analysis such as a basin is challenged, highlighting the attractiveness of dairy farming in an area that becomes the focus of the thesis. From this point, the analysis is based on the structure of the LUC model of causes of change: underlying driver, mediating agent, and proximate cause. The underlying driver of LUC change is described in the second study, which defines the governance structure according to three functions, and analyzes their coherence to achieve objectives. Geo-located social network analysis reveals disconnected feedback loops with production and conservation objectives and argues for community-driven governance to foster active participation and mitigate conflict. The mediating agent of LUC change is the focus of the third study, which explores the impact of governance structure on farmers' LUC decisions. The variables of each governance function are defined and their effect on the decision is evaluated by estimating a Seemingly Unrelated Regression model. The study finds that actors promoting production projects have the greatest impact on the farmer and proposes to explore various governance configurations to understand their implications on LUC trajectories. The fourth study focuses on the proximate cause of LUC change, introducing a simulation model of the social-ecological system (SES) at the farm level with the Ocelet simulation language and environment, and emphasizing the need for robust measurement and integration of social variables. The results reveal the challenge of breaking the equilibrium dynamics in the SES in terms of LUCs and water erosion control, emphasizing the importance of tailoring policies according to the types of farmers and their farms to address sensitivity to changes in governance. Through the application of diverse methodologies, this thesis reduces gaps in the conceptualization and operationalization of the SES. The contributions from the academic and territorial planning perspectives improve the understanding of these highly complex systems and contribute to the design of more effective policies for a sustainable territory.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.format.extent115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85895
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbel, O. B., Gor, C. O., Okuro, S. O., Omanga, P. A., & Bokelmann, W. (2019). The African Indigenous Vegetables Value Chain Governance in Kenya. Studies in Agricultural Economics, 121(1), 41–52. https://doi.org/10.7896/j.1818spa
dc.relation.referencesAdán, A.F., Castillo, A., Cárdenas-Tapia, M., Moreno-Casasola, P., Marín, A., 2020. Scientific research and information flow in the small-scale fisheries of the central Mexican Pacific coast. Ocean Coast. Manag. 198. https://doi.org/10.1016/j.ocecoaman.2020.105324spa
dc.relation.referencesAdu-Baffour, F., Daum, T., Birner, R., 2021. Governance challenges of small-scale gold mining in Ghana: Insights from a process net-map study. Land use policy 102, 1–16. https://doi.org/10.1016/j.landusepol.2020.105271spa
dc.relation.referencesAgrawal, A., 2002. Common resources and institutional sustainability, in: Ostrom, E., Dietz, T., Ak, N.D., Stern, P.C., Stonich, S., Weber, E.U. (Eds.), The Drama of the Commons. The National Academies Press, Washington, DC, pp. 41–85. https://doi.org/10.17226/10287spa
dc.relation.referencesAgarwal, C., Green, G. M., Grove, J. M., Evans, T. P., & Schweik, C. M. (2002). A Review and Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice. Department of Agriculture, Forest Service, Northeastern Research Station. https://doi.org/10.2737/NE-GTR-297spa
dc.relation.referencesAguilar, E. C., & Carbonell, A. (2019). Trayectorias de cambios en coberturas terrestres en una cuenca de los Andes colombianos: río Grande, 1986-2012. 4(2), 146–157.spa
dc.relation.referencesAldwaik, S.Z., Pontius, R.G., 2013. Map errors that could account for deviations from a uniform intensity of land change. Int. J. Geogr. Inf. Sci. 27, 1717–1739. https://doi.org/10.1080/13658816.2013.787618spa
dc.relation.referencesAldwaik, S.Z., Pontius, R.G., 2012. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 106, 103–114. https://doi.org/10.1016/j.landurbplan.2012.02.010spa
dc.relation.referencesAllan, A., Barbour, E., Nicholls, R. J., Hutton, C., Lim, M., Salehin, M., & Rahman, M. M. (2022). Developing socio-ecological scenarios: A participatory process for engaging stakeholders. Science of the Total Environment, 807. https://doi.org/10.1016/j.scitotenv.2021.150512spa
dc.relation.referencesAn, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25–36. https://doi.org/10.1016/j.ecolmodel.2011.07.010spa
dc.relation.referencesAndersson, K., Benavides, J.P., León, R., 2014. Institutional diversity and local forest governance. Environ. Sci. Policy 36, 61–72. https://doi.org/10.1016/j.envsci.2013.07.009spa
dc.relation.referencesAndris, C., 2016. Integrating social network data into GISystems. Int. J. Geogr. Inf. Sci. 30, 2009–2031. https://doi.org/10.1080/13658816.2016.1153103spa
dc.relation.referencesAndris, C., 2012. Metrics and methods for social distance. Diss. Abstr. Int. Sect. A Humanit. Soc. Sci. Massachusetts Institute of Technology.spa
dc.relation.referencesAntle, J. M., Capalbo, S. M., Elliott, E. T., Hunt, H. W., Mooney, S., & Paustian, K. H. (2001). Research needs for understanding and predicting the behavior of managed ecosystems: Lessons from the study of agroecosystems. Ecosystems, 4(8), 723–735. https://doi.org/10.1007/s10021-001-0041-0spa
dc.relation.referencesAriti, A.T., van Vliet, J., Verburg, P.H., 2019. The role of institutional actors and their interactions in the land use policy making process in Ethiopia. J. Environ. Manage. 237, 235–246. https://doi.org/10.1016/j.jenvman.2019.02.059spa
dc.relation.referencesArmitage, D., Berkes, F., & Doubleday, N. (2007). Adaptive Co-Management: Collaboration, Learning, and Multi-Level Governance. In D. Armitage, F. Berkes, & N. Doubleday (Eds.), Sustainability and the environment. UBC Press, Vancouver.spa
dc.relation.referencesAumann, C. A. (2007). A methodology for developing simulation models of complex systems. Ecological Modelling, 202(3–4), 385–396. https://doi.org/10.1016/j.ecolmodel.2006.11.005spa
dc.relation.referencesÁvila, V. S., & Perevochtchikova, M. (2018). Sistemas socio-ecológicos: Marcos analíticos y estudios de caso en Oaxaca, México (Primera ed). Instituti de Investigaciones Económicas.spa
dc.relation.referencesBaldwin, E., McCord, P., Dell’Angelo, J., Evans, T., 2018. Collective action in a polycentric water governance system. Environ. Policy Gov. 28, 212–222. https://doi.org/10.1002/eet.1810spa
dc.relation.referencesBarnes, M., Kalberg, K., Pan, M., Leung, P.S., 2016. When is brokerage negatively associated with economic benefits? Ethnic diversity, competition, and common-pool resources. Soc. Networks 45, 55–65. https://doi.org/10.1016/j.socnet.2015.11.004spa
dc.relation.referencesBartkowski, B., & Bartke, S. (2018). Leverage points for governing agricultural soils: A review of empirical studies of European farmers’ decision-making. Sustainability (Switzerland), 10(9). https://doi.org/10.3390/su10093179spa
dc.relation.referencesBattiston, F., Nicosia, V., Latora, V., 2014. Metrics for the analysis of multiplex networks. Phys. Rev. E 89, 16. https://doi.org/10.1103/PhysRevE.89.032804spa
dc.relation.referencesBaur, I., & Binder, C. R. (2013). Adapting to socioeconomic developments by changing rules in the governance of common property pastures in the swiss alps. Ecology and Society, 18(4). https://doi.org/10.5751/ES-05689-180460spa
dc.relation.referencesBaur, I., & Nax, H. H. (2018). Adapting governance incentives to avoid common pool resource underuse: The case of swiss summer pastures. Sustainability (Switzerland), 10(11). https://doi.org/10.3390/su10113988spa
dc.relation.referencesBerardo, R., Fischer, M., Hamilton, M., 2020. Collaborative Governance and the Challenges of Network-Based Research. Am. Rev. Public Adm. 50, 898–913. https://doi.org/10.1177/0275074020927792spa
dc.relation.referencesBerbés-Blázquez, M., González, J. A., & Pascual, U. (2016). Towards an ecosystem services approach that addresses social power relations. Current Opinion in Environmental Sustainability, 19, 134–143. https://doi.org/10.1016/j.cosust.2016.02.003spa
dc.relation.referencesBerrio-Giraldo, L., Villegas-Palacio, C., Arango-Aramburo, S., 2020. Dinámica de sistemas socio-ecológicos en cuencas hidrográficas de media montaña.spa
dc.relation.referencesBerrio-Giraldo, L., Villegas-Palacio, C., Arango-Aramburo, S., 2021. Understating complex interactions in socio-ecological systems using system dynamics: A case in the tropical Andes. J. Environ. Manage. 291, 112675. https://doi.org/10.1016/j.jenvman.2021.112675spa
dc.relation.referencesBerrouet, L., 2018. Vulnerabilidad de sistemas sociales frente a la modificación de servicios ecosistémicos en cuencas hidrográficas de media montaña. Universidad Nacional de Colombia.spa
dc.relation.referencesBert, F. E., Rovere, S. L., Macal, C. M., North, M. J., & Podestá, G. P. (2014). Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems. Ecological Modelling, 273, 284–298. https://doi.org/10.1016/j.ecolmodel.2013.11.024spa
dc.relation.referencesBharathy, G. K., & Silverman, B. (2013). Holistically evaluating agent-based social systems models: A case study. In Simulation (Vol. 89, Issue 1). https://doi.org/10.1177/0037549712446854spa
dc.relation.referencesBiermann, F., Pattberg, P., 2008. Global environmental governance: Taking stock, moving forward. Annu. Rev. Environ. Resour. 33, 277–294. https://doi.org/10.1146/annurev.environ.33.050707.085733spa
dc.relation.referencesBiggs, R., Schlüter, M., Biggs, D., Bohensky, E. L., Burnsilver, S., Cundill, G., Dakos, V., Daw, T. M., Evans, L. S., Kotschy, K., Leitch, A. M., Meek, C., Quinlan, A., Raudsepp-Hearne, C., Robards, M. D., Schoon, M. L., Schultz, L., & West, P. C. (2012). Toward principles for enhancing the resilience of ecosystem services. Annual Review of Environment and Resources, 37, 421–448. https://doi.org/10.1146/annurev-environ-051211-123836spa
dc.relation.referencesBinder, C. R., García-Santos, G., Andreoli, R., Diaz, J., Feola, G., Wittensoeldner, M., & Yang, J. (2016). Simulating Human and Environmental Exposure from Hand-Held Knapsack Pesticide Application: Be-WetSpa-Pest, an Integrative, Spatially Explicit Modeling Approach. Journal of Agricultural and Food Chemistry, 64(20), 3999–4008. https://doi.org/10.1021/acs.jafc.5b05304spa
dc.relation.referencesBodin, Ö., 2017. Collaborative environmental governance: Achieving collective action in social-ecological systems. Science (80-. ). 357, 1–8. https://doi.org/10.1126/science.aan1114spa
dc.relation.referencesBodin, Ö., Crona, B., Ernstson, H., 2006. Social networks in natural resource management: What is there to learn from a structural perspective? Ecol. Soc. 11. https://doi.org/10.5751/ES-01808-1102r02spa
dc.relation.referencesBopp, C., Engler, A., Poortvliet, P. M., & Jara-Rojas, R. (2019). The role of farmers’ intrinsic motivation in the effectiveness of policy incentives to promote sustainable agricultural practices. Journal of Environmental Management, 244(May), 320–327. https://doi.org/10.1016/j.jenvman.2019.04.107spa
dc.relation.referencesBorgatti, S., Foster, P., 2003. The Network Paradigm in Organizational Research: A Review and Typology. J. Manage. 29, 991–1013. https://doi.org/10.1016/s0149-2063_03_00087-4spa
dc.relation.referencesBorgatti, S.P., 2005. Centrality and network flow. Soc. Networks 27, 55–71. https://doi.org/10.1016/j.socnet.2004.11.spa
dc.relation.referencesBourceret, A., Amblard, L., & Mathias, J. (2021). Governance in social-ecological agent-based models : a review. Ecology and Society, 26(2), 38. https://doi.org/10.5751/ES-12440-260238spa
dc.relation.referencesBrandes, U., 2010. A faster algorithm for betweenness centrality. J. Math. Sociol. 37–41. https://doi.org/10.1080/0022250X.2001.9990249spa
dc.relation.referencesBrucks, W.M., Reips, U.D., Ryf, B., 2007. Group norms, physical distance, and ecological efficiency in common pool resource management. Soc. Influ. 2, 112–135. https://doi.org/10.1080/15534510701193436spa
dc.relation.referencesBurt, R.S., 2004. Structural Holes and Good Ideas. Am. J. Sociol. 110, 349–399. https://doi.org/10.1086/421787spa
dc.relation.referencesCardona, H., Peña, E., 2018. Análisis de redes sociales para la gobernanza del agua: caso cuenca Río Grande, Norte de Antioquia 1–43.spa
dc.relation.referencesCarlsson, L., Sandström, A., 2008. Network governance of the commons. Int. J. Commons 2, 33–54.spa
dc.relation.referencesChapin, S., Kofinas, G., Folke, C., 2009. Principles of Ecosystem Stewardship. Resilience-Based Natural Resource Management in a Changing World. Springer, New York, U.S.A. https://doi.org/10.1007/978-0-387-73033-2spa
dc.relation.referencesChoi, J., Contractor, F., 2016. Choosing an appropriate alliance governance mode: The role of institutional, cultural and geographical distance in international research & development (R&D) collaborations. J. Int. Bus. Stud. 47, 210–232. https://doi.org/10.7282/T3QR503Fspa
dc.relation.referencesCohen, P.J., Evans, L.S., Mills, M., 2012. Social networks supporting governance of coastal ecosystems in Solomon Islands. Conserv. Lett. 5, 376–386. https://doi.org/10.1111/j.1755-263X.2012.00255.xspa
dc.relation.referencesCohen, P.J., Evans, L.S., Mills, M., 2012. Social networks supporting governance of coastal ecosystems in Solomon Islands. Conserv. Lett. 5, 376–386. https://doi.org/10.1111/j.1755-263X.2012.00255.xspa
dc.relation.referencesColeman, J., 1998. Foundations of Social Theory. Harvard University Press.spa
dc.relation.referencesCollins, S. L., Carpenter, S. R., Swinton, S. M., Orenstein, D. E., Childers, D. L., Gragson, T. L., Grimm, N. B., Morgan, G. J., Harlan, S. L., Kaye, J. P., Knapp, A. K., Kofinas, G. P., Magnuson, J. J., McDowell, W. H., Melack, J. M., Ogden, L. A., Philip, R. G., Smith, M. D., & Whitmer, A. C. (2011). An integrated conceptual framework for long-term social-ecological research. Frontiers in Ecology and the Environment, 9(6), 351–357. https://doi.org/10.1890/100068spa
dc.relation.referencesCorantioquia, 2020. Plan de acción 2020-2023. + sostenibilidad + vida.spa
dc.relation.referencesCorantioquia, 2020b. Actualización del plan de manejo del Distrito de Manejo Integrado Sistema de Páramos y Bosques Altoandinos del noroccidente medio antioqueño (DMI SPBANMA), Alianza para el desarrollo sostenible e incluyente, la reconciliación y el buen gobierno en municipios de Antioquia.spa
dc.relation.referencesCorantioquia, 2015. Plan de Ordenación y Manejo de la Cuenca Hidrográfica de los Ríos Grande y Chico.spa
dc.relation.referencesCorantioquia, 2010. Acuerdo 358. Colombia.spa
dc.relation.referencesCorantioquia, Alcadía de Santa Rosa de Osos, 2015. Consolidación de iniciativas de conservación en el municipio de Santa Rosa de Osos - Antioquia.spa
dc.relation.referencesCox, M., Villamayor-Tomas, S., Hartberg, Y., 2014. The Role of Religion in Community-based Natural Resource Management. World Dev. 54, 46–55. https://doi.org/10.1016/j.worlddev.2013.07.010spa
dc.relation.referencesDamgaard, M., Kjeldsen, C., Sahrbacher, A., Happe, K., & Dalgaard, T. (2009). Validation of an Agent-Based, Spatio-Temporal Model for Farming in the River Gudenå Landscape. Results from the MEA-Scope Case Study in Denmark. In A. Piorr & K. Müller (Eds.), Rural Landscapes and Agricultural Policies in Europe (pp. 239–254). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79470-7spa
dc.relation.referencesDávila Betancurth, J.C., 2016. Variables Explicativas de la Vulnerabilidad Biofísica y Socio Económica al Cambio Climático en Agroecosistemas de la Cuenca del Rio Grande – Antioquia.spa
dc.relation.referencesDe Koning, G.H.J., Veldkamp, A., Fresco, L.O., 1998. Land use in Ecuador: a statistical analysis at different aggregation levels. Agric. Ecosyst. Environ. 70, 231–247. https://doi.org/10.1016/S0167-8809(98)00151-0spa
dc.relation.referencesDegenne, P., & Lo Seen, D. (2016). Ocelet: Simulating processes of landscape changes using interaction graphs. SoftwareX, 5, 89–95. https://doi.org/10.1016/j.softx.2016.05.002spa
dc.relation.referencesDegenne, P., Lo Seen, D., Parigot, D., Forax, R., Tran, A., Ait Lahcen, A., Curé, O., & Jeansoulin, R. (2009). Design of a Domain Specific Language for modelling processes in landscapes. Ecological Modelling, 220(24), 3527–3535. https://doi.org/10.1016/j.ecolmodel.2009.06.018spa
dc.relation.referencesDesta, H., 2021. Local perceptions of ecosystem services and human-induced degradation of lake Ziway in the Rift Valley region of Ethiopia. Ecol. Indic. 127, 107786. https://doi.org/10.1016/J.ECOLIND.2021.107786spa
dc.relation.referencesDietz, T., Ostrom, E., Stern, P.C., 2003. The Struggle to Govern the Commons. Science (80-. ). 302, 1907–1912. https://doi.org/10.1126/science.1091015spa
dc.relation.referencesDíez-Echavarría, L., Villegas-Palacio, C., Arango-Aramburo, S., & Ezzine-de-Blas, D. (2023). Decoupling in governance: the land governance network in a region of the Colombian Andes. Land Use Policy, 133(October), 1–15. https://doi.org/10.1016/j.landusepol.2023.106880spa
dc.relation.referencesDíez-Echavarría, L., 2022. NETWORK_DATA_Decoupling in governance: the land governance network in a region of the Colombian Andes [WWW Document]. Mendeley Data. https://doi.org/10.17632/gfv3kghxcj.1spa
dc.relation.referencesDíez-Echavarría, L., Villegas-Palacio, C., Arango-Aramburo, S., 2021. Intensity of land use change in a strategic basin in the Colombian Andes.spa
dc.relation.referencesDíez-Echavarría, L., Villegas-Palacio, C., & Arango-Aramburo, S. (2023a). Governance as a determinant of land use decisions in strategic basins of the Colombian Andes.spa
dc.relation.referencesDjenontin, I. N. S., Zulu, L. C., & Ligmann-Zielinska, A. (2020). Improving representation of decision rules in LUCC-ABM: An example with an elicitation of farmers’ decision making for landscape restoration in Central Malawi. Sustainability, 12(13), 1–33. https://doi.org/10.3390/su12135380spa
dc.relation.referencesDrechsler, M. (2020). Model-based integration of ecology and socio-economics for the management of biodiversity and ecosystem services: State of the art, diversity and current trends. Environmental Modelling and Software, 134(October), 104892. https://doi.org/10.1016/j.envsoft.2020.104892spa
dc.relation.referencesDuit, A., Galaz, V., 2008. Governance and complexity - Emerging issues for governance theory. Governance 21, 311–335. https://doi.org/10.1111/j.1468-0491.2008.00402.xspa
dc.relation.referencesDuyen, T. N. L., Tien, N. D., Ngoc, N. N. K., Thuy, P. T., & Tich, V. Van. (2022). Determinants of swidden communities’ land-use decision-making for different crops in Son La and Nghe An provinces, Vietnam. Land Use Policy, 119(March), 106190. https://doi.org/10.1016/j.landusepol.2022.106190spa
dc.relation.referencesDziubanski, D., Franz, K. J., & Gutowski, W. (2020). Linking economic and social factors to peak flows in an agricultural watershed using socio-hydrologic modeling. Hydrology and Earth System Sciences, 24(6), 2873–2894. https://doi.org/10.5194/hess-24-2873-2020spa
dc.relation.referencesEgger, C., Plutzar, C., Mayer, A., Dullinger, I., Dullinger, S., Essl, F., Gattringer, A., Bohner, A., Haberl, H., & Gaube, V. (2022). Using the SECLAND model to project future land-use until 2050 under climate and socioeconomic change in the LTSER region Eisenwurzen (Austria). Ecological Economics, 201(October 2021), 107559. https://doi.org/10.1016/j.ecolecon.2022.107559spa
dc.relation.referencesEllis, E.A., Navarro Martínez, A., García Ortega, M., Hernández Gómez, I.U., Chacón Castillo, D., 2020. Forest cover dynamics in the Selva Maya of Central and Southern Quintana Roo, Mexico: deforestation or degradation? J. Land Use Sci. 15, 25–51. https://doi.org/10.1080/1747423X.2020.1732489spa
dc.relation.referencesEmbaye, W. T., Bergtold, J. S., Archer, D., Flora, C., Andrango, G. C., Odening, M., & Buysse, J. (2018). Examining farmers’ willingness to grow and allocate land for oilseed crops for biofuel production. Energy Economics, 71, 311–320. https://doi.org/10.1016/J.ENECO.2018.03.005spa
dc.relation.referencesEspaña, L., 2020. Trayectorias de cobertura vegetal y usos del suelo en la Cuenca de los Ríos Grande-Chico ¿Un problema de la política pública y gobernanza? Universidad Nacional de Colombia.spa
dc.relation.referencesEzzine-de-Blas, D., Perevochtchikova, M., & Ávila Foucat, S. (2017). Trajectories of Social-Ecological Systems in Latin American Watersheds: Facing Complexity and Vulnerability in the context of Climate Change.spa
dc.relation.referencesFarfán Gutiérrez, M., Rodríguez-Tapia, G., Mas, J.F., 2016. Análisis jerárquico de la intensidad de cambio de cobertura/uso de suelo y deforestación (2000-2008) en la Reserva de la Biosfera Sierra de Manantlán, México. Investig. Geogr. 2016, 89–104. https://doi.org/10.14350/rig.48600spa
dc.relation.referencesFeng, Y., Lei, Z., Tong, X., Gao, C., Chen, S., Wang, J., Wang, S., 2020. Spatially-explicit modeling and intensity analysis of China’s land use change 2000–2050. J. Environ. Manage. 263.spa
dc.relation.referencesFeola, G., & Binder, C. R. (2010). Towards an improved understanding of farmers’ behaviour: The integrative agent-centred (IAC) framework. Ecological Economics, 69(12), 2323–2333. https://doi.org/10.1016/j.ecolecon.2010.07.023spa
dc.relation.referencesFilatova, T., Verburg, P. H., Parker, D. C., & Stannard, C. A. (2013). Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environmental Modelling and Software, 45, 1–7. https://doi.org/10.1016/j.envsoft.2013.03.017spa
dc.relation.referencesFolke, C., Hahn, T., Olsson, P., Norberg, J., 2005. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 30, 441–473. https://doi.org/10.1146/annurev.energy.30.050504.144511spa
dc.relation.referencesFreeman, L.C., 1979. Centrality in social networks. Conceptual clarification. Soc. Networks 1, 215–239. https://doi.org/10.1016/0378-8733(78)90021-7spa
dc.relation.referencesGadgil, M., Rao, P. R. S., Utkarsh, G., Pramod, P., Chhatre, A., Applications, S. E., & Oct, N. (2000). New Meanings for Old Knowledge: The People ’ s Biodiversity Registers Program. Ecological Applications, 10(5), 1307–1317. https://www.jstor.org/stable/2641286spa
dc.relation.referencesGeorge, A. L., & Bennett, A. (2005). Case Studies and Theory Development in the Social Sciences. The MIT Press. https://mitpress.mit.edu/9780262572224/case-studies-and-theory-development-in-the-social-sciences/spa
dc.relation.referencesGibson, C.C., Ostrom, E., Ahn, T.K., 2000. The concept of scale and the human dimensions of global change: a survey. Ecol. Econ. 32, 217–239.spa
dc.relation.referencesGómez-Aristizábal, A., & Rivera-Posada, H. (1993). La conservación de los suelos y la sostenibilidad de la productividad en la zona cafetera. https://www.cenicafe.org/es/publications/avt0190.pdfspa
dc.relation.referencesGosling, E., Reith, E., Knoke, T., & Paul, C. (2020). A goal programming approach to evaluate agroforestry systems in Eastern Panama. Journal of Environmental Management, 261(June 2019), 110248. https://doi.org/10.1016/j.jenvman.2020.110248spa
dc.relation.referencesGranco, G., Heier Stamm, J. L., Bergtold, J. S., Daniels, M. D., Sanderson, M. R., Sheshukov, A. Y., Mather, M. E., Caldas, M. M., Ramsey, S. M., Lehrter, R. J., Haukos, D. A., Gao, J., Chatterjee, S., Nifong, J. C., & Aistrup, J. A. (2019). Evaluating environmental change and behavioral decision-making for sustainability policy using an agent-based model: A case study for the Smoky Hill River Watershed, Kansas. Science of the Total Environment, 695, 133769. https://doi.org/10.1016/j.scitotenv.2019.133769spa
dc.relation.referencesGroeneveld, J., Müller, B., Buchmann, C. M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F., Klassert, C., Lauf, T., Liebelt, V., Nolzen, H., Pannicke, N., Schulze, J., Weise, H., & Schwarz, N. (2017). Theoretical foundations of human decision-making in agent-based land use models – A review. Environmental Modelling and Software, 87, 39–48. https://doi.org/10.1016/j.envsoft.2016.10.008spa
dc.relation.referencesHenry, A.D., Vollan, B., 2014. Networks and the challenge of sustainable development. Annu. Rev. Environ. Resour. 39, 583–610. https://doi.org/10.1146/annurev-environ-101813-013246spa
dc.relation.referencesHouet, T., Aguejdad, R., Doukari, O., Battaia, G., & Clarke, K. (2016). Description and validation of a “non path-dependent” model for projecting contrasting urban growth futures. Cybergeospa
dc.relation.referencesHuang, C., Chen, W., Yi, H., 2020. Collaborative networks and environmental governance performance: a social influence model. Public Manag. Rev. 00, 1–22. https://doi.org/10.1080/14719037.2020.1795229spa
dc.relation.referencesIDEAM. (2023). Información Hidrometeorológica. Hidrometeorología. http://www.ideam.gov.co/hidrometeorologiaspa
dc.relation.referencesJager, W., & Mosler, H. J. (2007). Simulating Human Behavior for Understanding and Managing Environmental Resource Use. Journal of Social Issues, 63(1), 97–116.spa
dc.relation.referencesJahel, C., Augusseau, X., & Lo Seen, D. (2018). Modelling cropping plan strategies: What decision margin for farmers in Burkina Faso? Agricultural Systems, 167(August), 17–33. https://doi.org/10.1016/j.agsy.2018.08.004spa
dc.relation.referencesJahel, Camille, Baron, C., Vall, E., Karambiri, M., Castets, M., Coulibaly, K., Bégué, A., & Lo Seen, D. (2016). Spatial modelling of agro-ecosystem dynamics across scales: A case in the cotton region of West-Burkina Faso. Agricultural Systems, 157, 303–315. https://doi.org/10.1016/j.agsy.2016.05.016spa
dc.relation.referencesJanssen, M.A., Bodin, Ö., Anderies, J.M., Elmqvist, T., Ernstson, H., McAllister, R.R.J., Olsson, P., Ryan, P., 2006. Toward a network perspective of the study of resilience in social-ecological systems. Ecol. Soc. 11. https://doi.org/10.5751/ES-01462-110115spa
dc.relation.referencesJantz, C.A., Goetz, S.J., 2007. Analysis of scale dependencies in an urban land-use-change model. Int. J. Geogr. Inf. Sci. 19, 217–241. https://doi.org/10.1080/13658810410001713425spa
dc.relation.referencesJarrett, R. . (1993). Flood elevation limits in the Rocky Mountains. In C. . Kuo (Ed.), Proceedings of the Symposium Sponsored by the Hydraulics Division of the American Society of Civil Engineers (pp. 180–185). American Society of Civil Engineersspa
dc.relation.referencesJianchu, X., Fox, J., Vogler, J., Peifang, Z., Yongshou, F., Jie, Q., & Leisz, S. (2005). Land use and land cover changes and farmer vulnerability in Xishuangbanna prefecture in southwestern China. Envoronmental Management, 36(3), 404–413. https://doi.org/10.1007/s00267-003-0289-6spa
dc.relation.referencesJiménez, A., Saikia, P., Giné, R., Avello, P., Leten, J., Lymer, B.L., Schneider, K., Ward, R., 2020. Unpacking Water Governance : A Framework for Practitioners. Water 12, 1–21. https://doi.org/10.3390/w12030827spa
dc.relation.referencesJones, T., 2002. Policy Coherence, Global Environmental Governance, and Poverty Reduction. Int. Environ. Agreements - Polit. Law Econ. 2, 389–401. https://doi.org/10.1023/A:1021319804455spa
dc.relation.referencesJuniyanti, L., Purnomo, H., Kartodihardjo, H., Prasetyo, L.B., Suryadi, Pambudi, E., 2021. Powerful actors and their networks in land use contestation for oil palm and industrial tree plantations in Riau. For. Policy Econ. 129, 102512. https://doi.org/10.1016/j.forpol.2021.102512spa
dc.relation.referencesKardos, M., 2012. The Reflection of Good Governance in Sustainable Development Strategies. Procedia - Soc. Behav. Sci. 58, 1166–1173. https://doi.org/10.1016/j.sbspro.2012.09.1098spa
dc.relation.referencesKelly (Letcher), R. a., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S. H., Henriksen, H. J., Kuikka, S., Maier, H. R., Rizzoli, A. E., van Delden, H., & Voinov, A. a. (2013). Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software, 47, 159–181. https://doi.org/10.1016/j.envsoft.2013.05.005spa
dc.relation.referencesKern, F., Rogge, K.S., Howlett, M., 2019. Policy mixes for sustainability transitions: New approaches and insights through bridging innovation and policy studies. Res. Policy 48, 103832. https://doi.org/10.1016/J.RESPOL.2019.103832spa
dc.relation.referencesKetchen, D., & Shook, C. (1996). The application of cluster analysis in strategic management research: an analysis and critique. Strategic Management Journal, 17(6), 441–458. https://doi.org/doi: 10.1002/(sici)1097-0266(199606)17:6<441::aid-smj819>3.0.co;2-gspa
dc.relation.referencesKim, I., Lee, J.-H., & Kwon, H. (2021). Participatory ecosystem service assessment to enhance environmental decision-making in a border city of South Korea. Ecosystem Services, 51, 101337. https://doi.org/10.1016/j.ecoser.2021.101337spa
dc.relation.referencesKivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A., 2014. Multilayer networks. J. Complex Networks 2, 203–271. https://doi.org/10.1093/comnet/cnu016spa
dc.relation.referencesKok, K., Veldkamp, A., 2001. Evaluating impact of spatial scales on land use pattern analysis in Central America. Agric. Ecosyst. Environ. 85, 205–221. https://doi.org/10.1016/S0167-8809(01)00185-2spa
dc.relation.referencesKokoye, S. E. H., Tovignan, S. D., Yabi, J. A., & Yegbemey, R. N. (2013). Econometric modeling of farm household land allocation in the municipality of Banikoara in Northern Benin. Land Use Policy, 34, 72–79. https://doi.org/10.1016/j.landusepol.2013.02.004spa
dc.relation.referencesKramer, D.B., Hartter, J., Boag, A.E., Jain, M., Stevens, K., Nicholas, K.A., McConnell, W.J., Liu, J., 2017. Top 40 questions in coupled human and natural systems (CHANS) research. Ecol. Soc. 22. https://doi.org/10.5751/ES-09429-220244spa
dc.relation.referencesLambin, E., & Geist, H. (2008). Land-Use and Land-Cover: Local Processes and Global Impact. In Global Change – The IGBP Series. Spr. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesLambin, E.F., Geist, H.J., Lepers, E., 2003. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 28, 205–241. https://doi.org/10.1146/annurev.energy.28.050302.105459spa
dc.relation.referencesLangle-Flores, A., Ocelík, P., Pérez-Maqueo, O., 2017. The Role of Social Networks in the Sustainability Transformation of Cabo Pulmo: A Multiplex Perspective. J. Coast. Res. 2017-Sprin, 134–142. https://doi.org/10.2112/SI77-014.1spa
dc.relation.referencesLaniak, G. F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., Whelan, G., Geller, G., Quinn, N., Blind, M., Peckham, S., Reaney, S., Gaber, N., Kennedy, R., & Hughes, A. (2013). Integrated environmental modeling: A vision and roadmap for the future. Environmental Modelling and Software, 39, 3–23. https://doi.org/10.1016/j.envsoft.2012.09.006spa
dc.relation.referencesLäpple, D., & Kelley, H. (2013). Understanding the uptake of organic farming: Accounting for heterogeneities among Irish farmers. Ecological Economics, 88, 11–19. https://doi.org/10.1016/j.ecolecon.2012.12.025spa
dc.relation.referencesLarson, A. M., & Petkova, E. (2011). An introduction to forest governance, people and REDD+ in latin america: Obstacles and opportunities. Forests, 2(1), 86–111. https://doi.org/10.3390/f2010086spa
dc.relation.referencesLazurko, A., Schweizer, V., & Armitage, D. (2023). Exploring “big picture” scenarios for resilience in social–ecological systems: transdisciplinary cross-impact balances modeling in the Red River Basin. Sustainability Science, 18(4), 1773–1794. https://doi.org/10.1007/s11625-023-01308-1spa
dc.relation.referencesLiu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., Pell, A. N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C. L., Schneider, S. H., & Taylor, W. W. (2007). Complexity of Coupled Human and Natural Systems. Science, 317(September), 1513–1516. https://doi.org/10.1126/science.1144004spa
dc.relation.referencesLocatelli, B., Pramova, E., Di Gregorio, M., Brockhaus, M., Chávez, D.A., Tubbeh, R., Sotés, J., Perla, J., 2020. Climate change policy networks: connecting adaptation and mitigation in multiplex networks in Peru. Clim. Policy 20, 354–372. https://doi.org/10.1080/14693062.2020.1730153spa
dc.relation.referencesLuke, D. A., & Stamatakis, K. A. (2012). Systems Science Methods in Public Health : Dynamics , Networks , and Agents. Annual Review of Public Health, 33, 357–377. https://doi.org/10.1146/annurev-publhealth-031210-101222spa
dc.relation.referencesLuo, W., MacEachre, A.M., 2014. Geo-social visual analytics. J. Spat. Inf. Sci. 8, 27–66. https://doi.org/10.5311/JOSIS.2014.8.139spa
dc.relation.referencesMachado, J., 2018. Impacto Potencial de pérdida del servicio ecosistémico intermedio de control de erosión por cambios en el capital natural del suelo. Caso de estudio: Cuenca de Riogrande, Departamento de Antioquia.spa
dc.relation.referencesManandhar, R., Odeh, I.O.A., Pontius, R.G., 2010. Analysis of twenty years of categorical land transitions in the Lower Hunter of New South Wales, Australia. Agric. Ecosyst. Environ. 135, 336–346. https://doi.org/10.1016/j.agee.2009.10.016spa
dc.relation.referencesManson, S. M. (2001). Simplifying complexity: a review of complexity theory. Geoforum, 32(3), 405–414. https://doi.org/10.1016/S0016-7185(00)00035-Xspa
dc.relation.referencesMarsiglia Rivera, S., 2017. Capacidad adaptativa de los sistemas sociales ante la pérdida o deterioro de los servicios ecosistémicos.spa
dc.relation.referencesMcGinnis, M.D., 2011. An Introduction to IAD and the Language of the Ostrom Workshop: A Simple Guide to a Complex Framework. Policy Stud. J. 39, 169–183. https://doi.org/10.1111/j.1541-0072.2010.00401.xspa
dc.relation.referencesMengist, W., Soromessa, T., & Legese, G. (2020). Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Science of the Total Environment, 702. https://doi.org/10.1016/j.scitotenv.2019.134581spa
dc.relation.referencesMeyfroidt, P. (2013). Environmental cognitions, land change, and social-ecological feedbacks: an overview. Journal of Land Use Science, 8(3), 341–367.spa
dc.relation.referencesMogomotsi, P. K., Sekelemani, A., & Mogomotsi, G. E. J. (2020). Climate change adaptation strategies of small-scale farmers in Ngamiland East, Botswana. Climatic Change. https://doi.org/10.1007/s10584-019-02645-wspa
dc.relation.referencesMontgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13268–13272. https://doi.org/10.1073/pnas.0611508104spa
dc.relation.referencesMooney, H. A., Duraiappah, A., & Larigauderie, A. (2013). Evolution of natural and social science interactions in global change research programs. Proceedings of the National Academy of Sciences of the United States of America, 110(SUPPL. 1), 3665–3672. https://doi.org/10.1073/pnas.1107484110spa
dc.relation.referencesMukul, S. A., & Byg, A. (2020). What determines indigenous Chepang farmers’ Swidden land-use decisions in the central hill districts of Nepal? Sustainability (Switzerland), 12(13), 12–14. https://doi.org/10.3390/su12135326spa
dc.relation.referencesMüller-Hansen, F., Schlüter, M., Mäs, M., Donges, J. F., Kolb, J. J., Thonicke, K., & Heitzig, J. (2017). Towards representing human behavior and decision making in Earth system models - An overview of techniques and approaches. Earth System Dynamics, 8(4), 977–1007. https://doi.org/10.5194/esd-8-977-2017spa
dc.relation.referencesMurti, D. M. P., Pujianto, U., Wibawa, A. P., & Akbar, M. I. (2019). K-Nearest Neighbor (K-NN) based Missing Data Imputation. Proceeding - 2019 5th International Conference on Science in Information Technology: Embracing Industry 4.0: Towards Innovation in Cyber Physical System, ICSITech 2019, 83–88. https://doi.org/10.1109/ICSITech46713.2019.8987530spa
dc.relation.referencesNath, B., Niu, Z., & Singh, R. (2018). Land Use and Land Cover changes, and environment and risk evaluation of Dujiangyan city (SW China) using remote sensing and GIS techniques. Sustainability, 10(12), 1–32. https://doi.org/10.3390/su10124631spa
dc.relation.referencesNearing, M. ., Pruski, F. ., & O’Neal, M. . (2004). Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation, 59(1), 43–50. https://www.jswconline.org/content/59/1/43spa
dc.relation.referencesNewig, J., Günther, D., Pahl-Wostl, C., 2010. Social Network Analysis in Natural Resource Governance Synapses in the Network: Learning in Governance Networks in the Context of Environmental Management. Ecol. Soc. 15, 24.spa
dc.relation.referencesNguyen, T. T., Nguyen, L. D., Lippe, R. S., & Grote, U. (2017). Determinants of Farmers’ Land Use Decision-Making: Comparative Evidence From Thailand and Vietnam. World Development, 89, 199–213. https://doi.org/10.1016/j.worlddev.2016.08.010spa
dc.relation.referencesNilsson, M., Zamparutti, T., Petersen, J.E., Nykvist, B., Rudberg, P., Mcguinn, J., 2012. Understanding Policy Coherence: Analytical Framework and Examples of Sector-Environment Policy Interactions in the EU. Environ. Policy Gov. 22, 395–423. https://doi.org/10.1002/eet.1589spa
dc.relation.referencesNunan, F. (2018). Navigating multi-level natural resource governance: an analytical guide. Natural Resources Forum, 42(3), 159–171. https://doi.org/10.1111/1477-8947.12149spa
dc.relation.referencesOlsson, P., Folke, C., & Hahn, T. (2004). Social-ecological transformation for ecosystem management: The development of adaptive co-management of a wetland landscape in southern Sweden. Ecology and Society, 9(4). https://doi.org/10.5751/ES-00683-090402spa
dc.relation.referencesÖsterblom, H., Merrie, A., Metian, M., Boonstra, W. J., Blenckner, T., Watson, J. R., Rykaczewski, R. R., Ota, Y., Sarmiento, J. L., Christensen, V., Schlüter, M., Birnbaum, S., Gustafsson, B. G., Humborg, C., Mörth, C. M., Müller-Karulis, B., Tomczak, M. T., Troell, M., & Folke, C. (2013). Modeling social-ecological scenarios in marine systems. BioScience, 63(9), 735–744. https://doi.org/10.1525/bio.2013.63.9.9spa
dc.relation.referencesOstrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(July), 419–423. https://doi.org/10.1126/science.1172133 ARTICLEspa
dc.relation.referencesOstrom, E., 2010. Beyond Markets and States: Polycentric Governance of Complex Economic Systems. Am. Econ. Rev. 100, 641–672. https://doi.org/10.1257/aer.100.3.641spa
dc.relation.referencesOstrom, E., 1990. Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge Univ. Press, Cambridge, UK.spa
dc.relation.referencesPaavola, J., 2007. Institutions and environmental governance: A reconceptualization. Ecol. Econ. 63, 93–103. https://doi.org/10.1016/j.ecolecon.2006.09.026spa
dc.relation.referencesParker, D. C., Berger, T., & Manson, S. M. (2001). Agent-Based Models of Land-Use and Land-Cover Change (Issue 6). http://www.geo.ucl.ac.be/LUCCspa
dc.relation.referencesParrott, L. (2013). Complexity and the Limits of Ecological Engineering. Transactions of the ASAE, 45(5), 1–6. https://doi.org/10.13031/2013.11032spa
dc.relation.referencesPérez, J. D., & Mesa, O. J. (2002). Estimacion del factor de erosividad de la lluvia en Colombia. XV Seminario Nacional de Hidráulica e Hidrologiía, 12. http://www.bdigital.unal.edu.co/4281/1/DA3468.pdfspa
dc.relation.referencesPNUD, Corantioquia, 2020. Actualización del plan de manejo del Distrito de Manejo Integrado Sistema de Páramos y Bosques Altoandinos del noroccidente medio antioqueño (DMI SPBANMA).spa
dc.relation.referencesPontius, R.G., Shusas, E., McEachern, M., 2004. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 101, 251–268. https://doi.org/10.1016/j.agee.2003.09.008spa
dc.relation.referencesPorgo, M., Kuwornu, J. K. M., Zahonogo, P., Jatoe, J. B. D., & Egyir, I. S. (2018). Credit constraints and cropland allocation decisions in rural Burkina Faso. Land Use Policy, 70(September 2016), 666–674. https://doi.org/10.1016/j.landusepol.2017.10.053spa
dc.relation.referencesPoveda, G., Jaramillo, L., & Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resources Research, 50(1), 98–118. https://doi.org/10.1002/2013WR014087spa
dc.relation.referencesQasim, M., Hubacek, K., & Termansen, M. (2013). Underlying and proximate driving causes of land use change in district Swat, Pakistan. Land Use Policy, 34, 146–157. https://doi.org/10.1016/j.landusepol.2013.02.008spa
dc.relation.referencesR Documentation. (2015). Step function. Estimating and Mapping Disaggregated Indicators. https://search.r-project.org/CRAN/refmans/emdi/html/step.htmlspa
dc.relation.referencesRathwell, K.J., Peterson, G.D., 2012. Connecting social networks with ecosystem services for watershed governance: A social-ecological network perspective highlights the critical role of bridging organizations. Ecol. Soc. 17. https://doi.org/10.5751/ES-04810-170224spa
dc.relation.referencesRepública de Colombia, 2017. CONPES 3886 - Lineamientos de política y programa nacional de pago por servicios ambientales para la construcción de paz. Colombia.spa
dc.relation.referencesRindfuss, R. R., Walsh, S. J., Ii, B. L. T., Fox, J., & Mishra, V. (2004). Developing a science of land change: Challenges and methodological issues. PNAS, 101(39), 13976–13981. https://doi.org/10.1073/pnas.0401545101spa
dc.relation.referencesRogge, K.S., Reichardt, K., 2016. Policy mixes for sustainability transitions: An extended concept and framework for analysis. Res. Policy 45, 1620–1635. https://doi.org/10.1016/j.respol.2016.04.004spa
dc.relation.referencesRuiz Rivera, N., Galicia, L., 2016. La escala geográfica como concepto integrador en la comprensión de problemas socio-ambientales. Investig. Geográficas 89, 137–153. https://doi.org/10.14350/rig.47515spa
dc.relation.referencesSanches, R.A., Futemma, C.R.T., Alves, H.Q., 2021. Indigenous territories and governance of forest restoration in the Xingu River (Brazil). Land use policy 104, 104755. https://doi.org/10.1016/j.landusepol.2020.104755spa
dc.relation.referencesSargent, R. G. (2010). Verification and validation of simulation models. Winter Simulation Conference, 166–183. http://www.informs-sim.org/wsc11papers/016.pdfspa
dc.relation.referencesSarkar, D., Andris, C., Chapman, C.A., Sengupta, R., 2019. Metrics for characterizing network structure and node importance in Spatial Social Networks. Int. J. Geogr. Inf. Sci. 33, 1017–1039. https://doi.org/10.1080/13658816.2019.1567736spa
dc.relation.referencesSayles, J.S., Baggio, J.A., 2017. Who collaborates and why: Assessment and diagnostic of governance network integration for salmon restoration in Puget Sound, USA. J. Environ. Manage. 186, 64–78. https://doi.org/10.1016/j.jenvman.2016.09.085spa
dc.relation.referencesSchnegg, M., 2018. Institutional multiplexity: social networks and community-based natural resource management. Sustain. Sci. 13, 1017–1030. https://doi.org/10.1007/s11625-018-0549-2spa
dc.relation.referencesSchlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M. A., McAllister, R. R. J., Müller, B., Orach, K., Schwarz, N., & Wijermans, N. (2017). A framework for mapping and comparing behavioural theories in models of social-ecological systems. Ecological Economics, 131, 21–35. https://doi.org/10.1016/j.ecolecon.2016.08.008spa
dc.relation.referencesScholz, R. W. (2011). Environmental Literacy in Scienceand Society From Knowledge to Decisions (R. W. Scholz (ed.)). Cambridge University Press. https://doi.org/10.1007/s00248-006-9013-4spa
dc.relation.referencesSepúlveda López, L. P. (2013). Modelo para la definición de áreas estratégicas para la conservación de suelos a partie de la determinación de susceptibilidad a la erosión hídrica. Universidad de Antioquia.spa
dc.relation.referencesSingh, N., & Gupta, K. (2013). Environmental attitude and ecological behaviour of Indian consumers. Social Responsibility Journal, 9(1), 4–18. https://doi.org/10.1108/17471111311307787spa
dc.relation.referencesStéphenne, N., & Lambin, E. F. (2001). A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). Agriculture, Ecosystems and Environment, 85(1–3), 145–161. https://doi.org/10.1016/S0167-8809(01)00181-5spa
dc.relation.referencesSuchato, R., Patoomnakul, A., & Photchanaprasert, N. (2021). Alternative cropping adoption in Thailand: A case study of rice and sugarcane production. Heliyon, 7(12), e08629. https://doi.org/10.1016/j.heliyon.2021.e08629spa
dc.relation.referencesSuescún, D., Villegas, J. C., León, J. D., Flórez, C. P., García-Leoz, V., & Correa-Londoño, G. A. (2017). Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes. Regional Environmental Change, 17(3), 827–839. https://doi.org/10.1007/s10113-016-1071-7spa
dc.relation.referencesThe Nature Conservancy, Empresas Públicas de Medellín, 2012. Mapa de acores de las cuencas abastecedoras de los embalses de La Fe y Riogrande II como insumo para la creación de un mecanismo financiero para su manejo y conservación, Consultoría.spa
dc.relation.referencesTucker, C. M., Hribar, M. Š., Urbanc, M., Bogataj, N., Gunya, A., Rodela, R., Sigura, M., & Piani, L. (2023). Governance of interdependent ecosystem services and common-pool resources. Land Use Policy, 127(June 2022). https://doi.org/10.1016/j.landusepol.2023.106575spa
dc.relation.referencesTuda, A.O., Kark, S., Newton, A., 2021. Polycentricity and adaptive governance of transboundary marine socio-ecological systems. Ocean Coast. Manag. 200. https://doi.org/10.1016/j.ocecoaman.2020.105412spa
dc.relation.referencesTurner, M.G., O’Neill, R. V., Gardner, R.H., Milne, B.T., 1989. Effects of changing spatial scale on the analysis of landscape pattern. Landsc. Ecol. 3, 153–162. https://doi.org/10.1007/BF00131534spa
dc.relation.referencesUnited Nations. (2023). Times of crisis, times of change. Science for accelerating transformations to sustainable development. https://sdgs.un.org/sites/default/files/2023-09/FINAL GSDR 2023-Digital -110923_1.pdfspa
dc.relation.referencesvan Vliet, J., Bregt, A. K., Brown, D. G., van Delden, H., Heckbert, S., & Verburg, P. H. (2016). A review of current calibration and validation practices in land-change modeling. Environmental Modelling and Software, 82, 174–182. https://doi.org/10.1016/j.envsoft.2016.04.017spa
dc.relation.referencesvan Vliet, J., Magliocca, N. R., Büchner, B., Cook, E., Rey Benayas, J. M., Ellis, E. C., Heinimann, A., Keys, E., Lee, T. M., Liu, J., Mertz, O., Meyfroidt, P., Moritz, M., Poeplau, C., Robinson, B. E., Seppelt, R., Seto, K. C., & Verburg, P. H. (2016). Meta-studies in land use science: Current coverage and prospects. Ambio, 45(1), 15–28. https://doi.org/10.1007/s13280-015-0699-8spa
dc.relation.referencesVargas, C., 2020. Dinámica de los agroecosistemas bajo el enfoque de sistemas socioecológicos. Caso de estudio: cuenca hidrográfica del río Grande y del río Chico. Universidad Nacional de Colombia.spa
dc.relation.referencesVerburg, P.H., Crossman, N., Ellis, E.C., Heinimann, A., Hostert, P., Mertz, O., Nagendra, H., Sikor, T., Erb, K.H., Golubiewski, N., Grau, R., Grove, M., Konaté, S., Meyfroidt, P., Parker, D.C., Chowdhury, R.R., Shibata, H., Thomson, A., Zhen, L., 2015. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 12, 29–41. https://doi.org/10.1016/j.ancene.2015.09.004spa
dc.relation.referencesVerburg, P. H., Ellis, E. C., & Letourneau, A. (2011). A global assessment of market accessibility and market influence for global environmental change studiesspa
dc.relation.referencesVerburg, P. H., Tabeau, A., & Hatna, E. (2013). Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity analysis: A study for land use in Europe. Journal of Environmental Management, 127, S132–S144. https://doi.org/10.1016/j.jenvman.2012.08.038spa
dc.relation.referencesVignola, R., McDaniels, T.L., Scholz, R.W., 2013. Governance structures for ecosystem-based adaptation: Using policy-network analysis to identify key organizations for bridging information across scales and policy areas. Environ. Sci. Policy 31, 71–84. https://doi.org/10.1016/j.envsci.2013.03.004spa
dc.relation.referencesvon Essen, M., & Lambin, E. F. (2023). Agent-Based Simulation of Land Use Governance (ABSOLUG) in Tropical Commodity Frontiers. Jasss, 26(1). https://doi.org/10.18564/jasss.4951spa
dc.relation.referencesVortkamp, I., Barraquand, F., & Hilker, F. M. (2020). Ecological Allee effects modulate optimal strategies for conservation in agricultural landscapes. Ecological Modelling, 435(February), 109208. https://doi.org/10.1016/j.ecolmodel.2020.109208spa
dc.relation.referencesWadduwage, S. (2021). Drivers of peri-urban farmers’ land-use decisions: an analysis of factors and characteristics. Journal of Land Use Science, 16(3), 273–290. https://doi.org/10.1080/1747423X.2021.1922525spa
dc.relation.referencesWang, X., Biewald, A., Dietrich, J. P., Schmitz, C., Lotze-Campen, H., Humpenöder, F., Bodirsky, B. L., & Popp, A. (2016). Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns. Ecological Economics, 122, 12–24. https://doi.org/10.1016/j.ecolecon.2015.11.018spa
dc.relation.referencesWischmeier, W., & Smith, D. (1978). Predicting rainfall erosion losses — A guide to conservation planning. In Agriculture Handbook (Vol. 2). US Department of Agriculture Science and Education Administration. https://books.googleusercontent.com/books/content?req=AKW5Qac6EtgiwYYDqhpvMznuDQFV5lsr_K8GQwJiPzEBMFwBB-gEXPHc2yolfEjDW4_865K1mE2JhVVvnezlImd5kPaj3D3aOaI_eHC94bmBCii62zSVKDv_8c_U9XW4Cv1OAiZBup3ioMuf6FpMkL-3IkWV5ObRDuPUfihSlMtwNgzCvIX9NeMOz2QPcvqpZLVlizh2Lspa
dc.relation.referencesWittstock, F., Paulus, A., Beckmann, M., Hagemann, N., & Baaken, M. C. (2022). Understanding farmers’ decision-making on agri-environmental schemes: A case study from Saxony, Germany. Land Use Policy, 122(January), 106371. https://doi.org/10.1016/j.landusepol.2022.106371spa
dc.relation.referencesWu, J., 2004. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 19, 125–138. https://doi.org/10.1023/B:LAND.0000021711.40074.aespa
dc.relation.referencesXiang, X., Dame, N., & Cabaniss, S. (2005). Verification and Validation of Agent-based Scientific Simulation Models. ADS, 47–55. http://www3.nd.edu/~nom/Papers/ADS019_Xiang.pdfspa
dc.relation.referencesYaghoubi Farani, A., Mohammadi, Y., & Ghahremani, F. (2019). Modeling farmers’ responsible environmental attitude and behaviour: a case from Iran. Environmental Science and Pollution Research, 26(27), 28146–28161. https://doi.org/10.1007/s11356-019-06040-xspa
dc.relation.referencesZellner, A. (1962). An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias. Journal of the American Statistical Association, 57(298), 348–368. https://doi.org/10.2307/2281644spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocGobernanza de la tierra
dc.subject.agrovocAgricultores - Toma de decisiones
dc.subject.agrovocCobertura de suelos - Toma de decisiones
dc.subject.agrovocDistribución espacial - Simulación
dc.subject.agrovocUtilización de la tierra
dc.subject.armarcUso de la tierra - Métodos de simulación
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembUso de la tierra
dc.subject.lembCuencas hidrográficas
dc.subject.lembDesarrollo sostenible
dc.subject.lembEcosistemas terrestres
dc.subject.lembSimulación por computadores
dc.subject.proposalGovernanceeng
dc.subject.proposalSocial-ecological systemseng
dc.subject.proposalLand cover and useeng
dc.subject.proposalIndividual decisioneng
dc.subject.proposalModeling and simulationeng
dc.subject.proposalGobernanzaspa
dc.subject.proposalSistemas socio-ecológicosspa
dc.subject.proposalCobertura y uso del suelospa
dc.subject.proposalModelado y simulaciónspa
dc.subject.proposalDecisión individualspa
dc.titleModeling social-ecological systems : influence of governance structure on land cover and land use trajectorieseng
dc.title.translatedModelación de sistemas socio-ecológicos : influencia de la estructura de gobernanza en las trayectorias de cobertura y uso del suelospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036625006.2024.pdf
Tamaño:
11 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Sistemas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: