Desarrollo tecnológico de una mezcla en polvo de lima Tahití por secado por aspersión
| dc.contributor.advisor | Cortés Rodríguez, Misael | |
| dc.contributor.author | Martínez Suarez, Hernán Darío | |
| dc.contributor.educationalvalidator | Arango Bedoya, Oscar | |
| dc.contributor.orcid | Martinez Suarez, Hernan [0000000157394969] | |
| dc.contributor.orcid | Arango, Oscar [0000000246932212] | |
| dc.contributor.researchgroup | Gaf (Grupo de Alimentos Funcionales) | |
| dc.date.accessioned | 2026-01-30T16:32:41Z | |
| dc.date.available | 2026-01-30T16:32:41Z | |
| dc.date.issued | 2025-12-04 | |
| dc.description | Ilustraciones | |
| dc.description.abstract | La lima Tahití (LT) (Citrus latifolina Tanaka) es un fruto cítrico de alto valor nutricional se caracteriza por la ausencia de semillas, un sabor ácido y aroma característico muy apreciados por los consumidores. El departamento de Nariño ha experimentado un constante crecimiento en su producción impulsado por el aumento en las exportaciones y el respaldo institucional a asociaciones de pequeños productores, en temas de buenas prácticas agrícolas, certificaciones de calidad y fortalecimiento comercial. No obstante, a pesar de los esfuerzos persisten limitaciones que afectan la competitividad del sector. Las pérdidas por mal manejo postcosecha alcanzan aproximadamente el 20 % del volumen total de producción. Asimismo, cuando la fruta no cumple con los estándares de exportación, es descartada directamente en campo, ya que las deficiencias en la infraestructura vial y los bajos precios del mercado interno no justifican los costos de transporte y comercialización. Por otra parte, existe la necesidad urgente de buscar alternativas que utilicen componentes estructurales de la lima Tahití como cáscaras y fibras, que son considerados como residuos sin valor, los cuales terminan siendo descartados sin ningún tipo de aprovechamiento ocasionado un impacto ambiental significativo, a pesar de ser una fuente de compuestos bioactivos. Toda esta problemática va en contra de los principios de economía circular que busca reducir al mínimo el desperdicio y hacer un uso más eficiente y sostenible de los recursos. En este contexto, se hace necesario explorar nuevas estrategias que permitan el aprovechamiento de la fruta y la valorización de los residuos cítricos, contribuyendo así al desarrollo de procesos más sostenibles y con mayor valor agregado. El objetivo de la investigación fue desarrollar un modelo tecnológico a nivel piloto para la obtención de una mezcla en polvo de lima Tahití mediante secado por aspersión. La investigación se realizó en dos etapas. La 1ª etapa consistió en estabilizar fisicoquímicamente un sistema coloidal (CS) obtenido del procesamiento integral de la LT (endocarpio, mesocarpio y epicarpio), con fines de secado por aspersión. Para ello, se implementó la metodología de superficie de respuesta a través de un diseño central compuesto (α = 1), considerando las variables independientes: 1) sólidos totales de la lima Tahití (TSL) (6 – 7 %), 2) balance hidrofílico lipofílico (HLB) (8 – 12) y 3) mezcla surfactantes (S) (0,2 – 0,6 %); como variables dependientes se determinaron: sólidos totales del sistema coloidal (TSCS), potencial zeta (ζ), viscosidad (µ), tamaño de partícula (D[3:2]), fenoles totales (TP) y actividad antioxidante (DPPH y ABTS). La optimización experimental de múltiples repuestas presentó una deseabilidad del 71%, definiendo las variables dependientes a la condición óptima en: TSL (7 %), HLB (8) y S (0,25 %). La 2ª etapa de la investigación consistió en optimizar la formulación y el proceso de secado por aspersión para la obtención de una mezcla en polvo de Lima Tahití. Nuevamente, se utilizó la metodología de superficie de respuesta a través de un diseño central compuesto (α = 1), considerando las variables independientes: 1) maltodextrina (MD) (5 – 7,5 %), 2) temperatura de entrada (IAT) (160 - 180 °C), 3) temperatura de salida de aire (OAT) (80 – 90 °C) y 4) velocidad del disco de atomización (ADS) (21000 – 23000 rpm). Como variables dependientes se evaluaron: humedad (Xw), actividad de agua (aw), solubilidad (S), higroscopicidad (H), tamaño de partícula (D[4:3]), ángulo de reposo (AR), fenoles totales (TP), flavonoides totales (TF), actividad antioxidante (ABTS y DPPH) y rendimiento (P). La optimización experimental de múltiples repuestas presentó una deseabilidad del 66,5%, correspondiente a los valores de las variables independientes que permiten optimizar el proceso de SD de la mezcla en polvo de LT (MPLT): MD = 7,3%, IAT = 162,0 °C, OAT = 89,8 °C y ADS = 23000 rpm. Con esta investigación se logró desarrollar MPLT mediante secado por aspersión, aprovechando integralmente la fruta y valorizando componentes estructurales usualmente considerados como residuos. Estos resultados demuestran el potencial del secado por aspersión como una alternativa para reducir el desperdicio, agregar valor a subproductos agrícolas y contribuir al desarrollo de nuevos ingredientes naturales funcionales con aplicaciones en la industria alimentaria, cosmética y farmacéutica. (Texto tomado de la fuente) | spa |
| dc.description.abstract | Tahiti lime (TL) (Citrus latifolia Tanaka) is a citrus fruit of high nutritional value, characterized by the absence of seeds, an acidic taste, and a distinctive aroma highly appreciated by consumers. In the department of Nariño (Colombia), its production has steadily increased due to the growth of exports and institutional support for small producers’ associations in areas such as good agricultural practices, quality certifications, and commercial strengthening. However, despite these efforts, several limitations persist that hinder the competitiveness of the sector. Postharvest mishandling leads to losses of approximately 20% of total production volume. Furthermore, fruits that do not meet export standards are often discarded in the field, since poor road infrastructure and low domestic market prices do not justify the cost of transport and commercialization. In addition, there is an urgent need to find alternatives to utilize structural components of TL—such as peels and fibers—currently regarded as valueless waste and discarded without use, despite being sources of bioactive compounds. This situation contradicts circular economy principles, which seek to minimize waste and promote more efficient and sustainable resource use. In this context, it becomes essential to explore new strategies for fruit valorization and citrus residue utilization, thus contributing to more sustainable and value-added processes. The objective of this research was the technological development of a spray-dried powder blend derived from whole TL. The study was conducted in two stages. In the first stage, a colloidal system (CS) was physicochemically stabilized from the integral processing of TL (endocarp, mesocarp, and epicarp), with the goal of making it suitable for spray drying. A response surface methodology based on a central composite design (α = 1) was used, with the following independent variables: (1) total solids from TL (TSTL) (6–7%), (2) hydrophilic-lipophilic balance (HLB) (8–12), and (3) surfactant mix (S) (0.2–0.6%). The dependent variables were: total solids in the CS (TSCS), zeta potential (ζ), viscosity (μ), particle size (D[3:2]), total phenolic content (TP), and antioxidant activity (DPPH and ABTS). The multi-response optimization yielded a desirability of 71%, with the optimal condition defined as: TSTL = 7%, HLB = 8, and S = 0.25%. The second stage focused on optimizing the formulation and spray-drying process to obtain the TL powder blend (TLPB). Once again, response surface methodology with a central composite design (α = 1) was employed, considering: (1) maltodextrin (MD) (5–7.5%), (2) inlet air temperature (IAT) (160–180 °C), (3) outlet air temperature (OAT) (80–90 °C), and (4) atomizer disk speed (ADS) (21,000–23,000 rpm). Dependent variables included: moisture content (Xw), water activity (aw), solubility (S), hygroscopicity (H), particle size (D[4:3]), angle of repose (AR), total phenolic content (TP), total flavonoids (TF), antioxidant activity (ABTS and DPPH), and yield (Y). Multi-response optimization yielded a desirability of 66.5%, identifying the optimal spray drying conditions for TLPB production as: MD = 7.3%, IAT = 162.0 °C, OAT = 89.8 °C, and ADS = 23,000 rpm. This research successfully developed a spray-dried TL powder blend through the integral use of the fruit, valorizing structural components typically considered as waste. The results demonstrate the potential of spray drying as an effective strategy for waste reduction, agro-industrial byproduct valorization, and the development of functional natural ingredients for the food, cosmetic, and pharmaceutical industries. | eng |
| dc.description.curriculararea | Agro Ingeniería Y Alimentos.Sede Medellín | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ciencia y Tecnología de Alimentos | |
| dc.format.extent | 1 recurso en líne (98 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89357 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Ciencias Agrarias | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | |
| dc.relation.references | Agronet. (2022). Productores de Nariño obtuvieron certificación de calidad para exportar limón tahití. Recuperado de https://www.agronet.gov.co/Noticias/Paginas/Productores-deNari%C3%B1o-obtuvieron-certificaci%C3%B3n-de-calidad-para-exportarlim%C3%B3n-tahit%C3%AD.aspx | |
| dc.relation.references | Agronet. (2025). Agronet - Estadísticas. Recuperado de https://agronet.gov.co/estadisticas | |
| dc.relation.references | Agrosavia. (2020). Modelo productivo de lima ácida Tahití (Citrus × latifolia Tanaka ex Q. Jiménez) para Colombia (AGROSAVIA). Recuperado de https://doi.org/10.21930/agrosavia.model.7403435 | |
| dc.relation.references | Agrosavia. (2021). PECTIA: Plan Estratégico de Ciencia, Tecnología e Innovación del sector Agropecuario colombiano (2017-2027). Recuperado de https://repository.agrosavia.co/handle/20.500.12324/12759 | |
| dc.relation.references | Agmo Hernández, V. (2023). An overview of surface forces and the DLVO theory. ChemTexts, 9(4), 1–16. https://doi.org/10.1007/S40828-023-00182-9/FIGURES/17 | |
| dc.relation.references | Al-Sakkaf, M. K., & Onaizi, S. A. (2024). Effects of emulsification factors on the characteristics of crude oil emulsions stabilized by chemical and Biosurfactants: A review. Fuel, 361, 130604. https://doi.org/10.1016/J.FUEL.2023.130604 | |
| dc.relation.references | Ambaye, T. G., Djellabi, R., Vaccari, M., Prasad, S., M Aminabhavi, T., & Rtimi, S. (2023). Emerging technologies and sustainable strategies for municipal solid waste valorization: Challenges of circular economy implementation. Journal of Cleaner Production, 423, 138708. https://doi.org/10.1016/J.JCLEPRO.2023.138708 | |
| dc.relation.references | Araujo Galvão, G. D., De Nadae, J., Clemente, D. H., Chinen, G., & De Carvalho, M. M. (2018). Circular Economy: Overview of Barriers. Procedia CIRP, 73, 79–85. https://doi.org/10.1016/J.PROCIR.2018.04.011 | |
| dc.relation.references | Arebo, M. A., Feyisa, J. D., Tafa, K. D., & Satheesh, N. (2023). Optimization of spray-drying parameter for production of better quality orange fleshed sweet potato (Ipomoea batatas L.) powder: Selected physiochemical, morphological, and structural properties. Heliyon, 9(1), e13078. https://doi.org/10.1016/J.HELIYON.2023.E13078 | |
| dc.relation.references | Arévalo, P., Parra, A., & Orduz, Javier. (2014). Características climáticas y balance hídrico de la lima ácida Tahití (Citrus latifolia Tanaka) en cinco localidades productoras de Colombia. Revista Colombiana de Ciencias Hortícolas, 8(2), 217–229. https://doi.org/10.17584/RCCH.2014V8I2.3215 | |
| dc.relation.references | Arumugham, T., Krishnamoorthy, R., AlYammahi, J., Hasan, S. W., & Banat, F. (2023). Spray dried date fruit extract with a maltodextrin/gum arabic binary blend carrier agent system: Process optimization and product quality. International Journal of Biological Macromolecules, 238, 124340. https://doi.org/10.1016/J.IJBIOMAC.2023.124340 | |
| dc.relation.references | ASOHOFRUCOL (2024). Aumento de la demanda y producción de lima Tahití en Colombia y Europa: una oportunidad para la exportación. Recuperado de https://asohofrucol.com.co/img/pdfrevistas/10105Revista_94_FNFH.pdf | |
| dc.relation.references | Bellavite, P., & Donzelli, A. (2020). Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits. Antioxidants, 9(8), 742. https://doi.org/10.3390/ANTIOX9080742 | |
| dc.relation.references | Bishop, K. J. M., Biswal, S. L., & Bharti, B. (2023). Active Colloids as Models, Materials, and Machines. Annual Review of Chemical and Biomolecular Engineering, 14(Volume 14, 2023), 1–30. https://doi.org/https://doi.org/10.1146/annurev-chembioeng-101121- 084939 | |
| dc.relation.references | Busetta, G., Ponte, M., Barbera, M., Alfonzo, A., Ioppolo, A., Maniaci, G., Guarcello, R., Francesca, N., Palazzolo, E., Bonanno, A., Moschetti, G., Settanni, L., & Gaglio, R. (2022). Influence of Citrus Essential Oils on the Microbiological, Physicochemical and Antioxidant Properties of Primosale Cheese. Antioxidants, 11(10). https://doi.org/10.3390/antiox11102004 | |
| dc.relation.references | Carrera Sánchez, C., & Rodríguez Patino, J. M. (2021). Contribution of the engineering of tailored interfaces to the formulation of novel food colloids. Food Hydrocolloids, 119, 106838. https://doi.org/10.1016/J.FOODHYD.2021.106838 | |
| dc.relation.references | Chen, Y., Yu, D., Zhu, D., Muthusamy, S., Deshpande, M., Kiruthiga, N., Theivendren, P., Rajalakshmi, K., Wu, S., & Zhu, C. (2025). Exploring Alkaloids and Flavonoids from Natural Sources: Emerging Natural Agents for Inhibiting Cervical cancer Progression through Apoptosis Induction, Anti-Inflammatory Effects, and Oxidative Stress Reduction. Pathology - Research and Practice, 156092. https://doi.org/10.1016/J.PRP.2025.156092 | |
| dc.relation.references | Derjaguin, B., & Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci, 43(1–4), 30–59. https://doi.org/10.1016/0079-6816(93)90013-l | |
| dc.relation.references | dos Reis Gasparetto, B., Chelala Moreira, R., Priscilla França de Melo, R., de Souza Lopes, A., de Oliveira Rocha, L., Maria Pastore, G., Lemos Bicas, J., Martinez, J., & Joy Steel, C. (2022). Effect of supercritical CO2 fractionation of Tahiti lemon (Citrus latifolia Tanaka) essential oil on its antifungal activity against predominant molds from pan bread. Food Research International, 162, 111900. https://doi.org/https://doi.org/10.1016/j.foodres.2022.111900 | |
| dc.relation.references | Etzbach, L., Meinert, M., Faber, T., Klein, C., Schieber, A., & Weber, F. (2020). Effects of carrier agents on powder properties, stability of carotenoids, and encapsulation efficiency of goldenberry (Physalis peruviana L.) powder produced by co-current spray drying. Current Research in Food Science, 3, 73–81. https://doi.org/10.1016/J.CRFS.2020.03.002 | |
| dc.relation.references | FAOSTAT. (2025). Crops and livestock products. Recuperado de https://www.fao.org/faostat/es/#data/QCL | |
| dc.relation.references | FAO (2020). El proyecto Sembrando Capacidades fortalece conocimientos sobre el sistema de producción y comercialización de lima ácida Tahití en Policarpa, Nariño. Recuperado de: https://www.fao.org/colombia/noticias/detail-events/es/c/1331582/ | |
| dc.relation.references | Fathollahy, I., Farmani, J., Kasaai, M. R., & Hamishehkar, H. (2021). Characteristics and functional properties of Persian lime (Citrus latifolia) seed protein isolate and enzymatic hydrolysates. LWT, 140, 110765. https://doi.org/10.1016/J.LWT.2020.110765 | |
| dc.relation.references | Fondo Europeo para la Paz. (2020). Lima ácida Tahití nariñense, hacia el Caribe. Recuperado de https://www.Fondoeuropeoparalapaz.Eu/En/Lima-Acida-Tahiti-Narinense-Hacia-El-Caribe-2/ | |
| dc.relation.references | Gambinossi, F., Mylon, S. E., & Ferri, J. K. (2015). Aggregation kinetics and colloidal stability of functionalized nanoparticles. Advances in Colloid and Interface Science, 222, 332– 349. https://doi.org/10.1016/J.CIS.2014.07.015 | |
| dc.relation.references | Gobernación de Nariño. (2024). Plan Departamental de Extensión Agropecuaria - PDEA Nariño 2024-2027. Recuperado de https://www.minagricultura.gov.co/ministerio/direcciones/Documents/PDEA/2024/Narino/01_PDEANARINO_2024.pdf | |
| dc.relation.references | Gobernación de Nariño. (2022). El Limón Tahití: Una alternativa real para transformar la economía y construir la paz en Nariño. Recuperado de https://2020-2023.narino.gov.co/noticias/1218-2/ | |
| dc.relation.references | Gołębiowski, A., & Buszewski, B. (2023). Characterization of colloidal particles of a biological and metallic nature. Microchemical Journal, 191, 108864. https://doi.org/10.1016/J.MICROC.2023.108864 | |
| dc.relation.references | Goshtasbi, H., Hashemzadeh, N., Fathi, M., Movafeghi, A., Barar, J., & Omidi, Y. (2025). Mitigating oxidative stress toxicities of environmental pollutants by antioxidant nanoformulations. Nano TransMed, 4, 100087. https://doi.org/10.1016/J.NTM.2025.100087 | |
| dc.relation.references | Hernández-Flores, E. J., Blancas-Benitez, F. J., Montaño-Leyva, B., & González-Estrada, R. R. (2023). Antifungal potential of aqueous extracts of coconut (Cocos nucifera L.) by-products against blue mold disease on Persian lime during storage. Food Control, 148, 109632. https://doi.org/10.1016/J.FOODCONT.2023.109632 | |
| dc.relation.references | Hernández, D., Mateus, D., & Orduz, J. (2014). Climatic characteristics and water balance of the Tahiti acid lime (Citrus latifolia Tanaka) in five production locations of Colombia. Revista Colombiana de Ciencias Hortícolas, 8, 217–229. http://www.scielo.org.co/pdf/rcch/v8n2/v8n2a05.pdf | |
| dc.relation.references | Hong, I. K., Kim, S. I., & Lee, S. B. (2018). Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry, 67, 123–131. https://doi.org/10.1016/J.JIEC.2018.06.022 | |
| dc.relation.references | Jafari, S., Jafari, S. M., Ebrahimi, M., Kijpatanasilp, I., & Assatarakul, K. (2023). A decade overview and prospect of spray drying encapsulation of bioactives from fruit products: Characterization, food application and in vitro gastrointestinal digestion. Food Hydrocolloids, 134, 108068. https://doi.org/10.1016/J.FOODHYD.2022.108068 | |
| dc.relation.references | Jeong, D., Park, H., Jang, B. K., Ju, Y. Bin, Shin, M. H., Oh, E. J., Lee, E. J., & Kim, S. R. (2021). Recent advances in the biological valorization of citrus peel waste into fuels and chemicals. Bioresource Technology, 323, 124603. https://doi.org/10.1016/J.BIORTECH.2020.124603 | |
| dc.relation.references | Jiménez Nempeque, L. V., Gómez Cabrera, Á. P., & Colina Moncayo, J. Y. (2021). Evaluation of Tahiti lemon shell flour (Citrus latifolia Tanaka) as a fat mimetic. Journal of Food Science and Technology, 58(2), 720–730. https://doi.org/10.1007/S13197- 020-04588-Y/METRICS | |
| dc.relation.references | Jomova, K., Alomar, S. Y., Valko, R., Liska, J., Nepovimova, E., Kuca, K., & Valko, M. (2025). Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chemico-Biological Interactions, 413, 111489. https://doi.org/10.1016/J.CBI.2025.111489 | |
| dc.relation.references | Kamatyanatti, M., & Ramteke, V. (2016). Evaluation of acid lime (citrus aurantifolia swingle) genotypes during hasth bahar for growth, yield and quality attributes. Recuperado de https://www.researchgate.net/publication/341113946 | |
| dc.relation.references | Kumar, V., Kaur, R., Aggarwal, P., & Singh, G. (2022). Underutilized citrus species: An insight of their nutraceutical potential and importance for the development of functional food. Scientia Horticulturae, 296, 110909. https://doi.org/10.1016/J.SCIENTA.2022.110909 | |
| dc.relation.references | Kumar, H., Guleria, S., Kimta, N., Nepovimova, E., Dhanjal, D. S., Sethi, N., Suthar, T., Shaikh, A. M., Bela, B. K., & Harsányi, E. (2025). Applications of citrus peels valorisation in circular bioeconomy. Journal of Agriculture and Food Research, 20, 101780. https://doi.org/10.1016/J.JAFR.2025.101780 | |
| dc.relation.references | Liu, S., Li, S., & Ho, C. T. (2022). Dietary bioactives and essential oils of lemon and lime fruits. Food Science and Human Wellness, 11(4), 753–764. https://doi.org/10.1016/J.FSHW.2022.03.001 | |
| dc.relation.references | Mahmud, J., Muranyi, P., Shankar, S., Sarmast, E., Salmieri, S., & Lacroix, M. (2024). Physiological and antimicrobial properties of a novel nanoemulsion formulation containing mixed surfactant and essential oils: Optimization modeling by response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 686, 133405. https://doi.org/10.1016/J.COLSURFA.2024.133405 | |
| dc.relation.references | Margarita, D., Romero, P., Rolymags, L., Arrieta, S., Granadillo Moran, V., Luis, J., & Santana, P. (2016). Determinación de minerales y caracterización físico-química de la pulpa de lima Tahití (Citrus x latifolia (Yu.Tanaka) Yu.Tanaka). 33, 482–506. | |
| dc.relation.references | Martínez-Ardila, H., Corredor-Clavijo, A., Rojas-Castellanos, V. del P., Contreras, O., & Lesmes, J. C. (2022). The technology life cycle of Persian lime. A patent based analysis. Heliyon, 8(11), e11781. https://doi.org/10.1016/J.HELIYON.2022.E11781 | |
| dc.relation.references | Mapa Regional de Oportunidades – MARO, (2025). Sectores productivos. Recuperado de https://www.maro.com.co/ | |
| dc.relation.references | McClements, D. J., Bai, L., & Chung, C. (2017). Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. Annual Review of Food Science and Technology, 8, 205–236. https://doi.org/10.1146/ANNUREV-FOOD-030216-030154 | |
| dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2019). Plan Integral de Desarrollo Agropecuario y Rural con enfoque territorial, tomo I, Departamento de Nariño. Recuperado de https://www.fao.org.co/PublicacionesFAOCO/UTF-COL-084-COL/PIDARET_Narino_Tomo_1.pdf | |
| dc.relation.references | Moreno, J., & Peinado, R. (2012). The Colloidal State. In J. Moreno & R. Peinado (Eds.), Enological Chemistry (pp. 303–321). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-388438-1.00018-2 | |
| dc.relation.references | Mostaghel, R., Oghazi, P., & Lisboa, A. (2023). The transformative impact of the circular economy on marketing theory. Technological Forecasting and Social Change, 195, 122780. https://doi.org/10.1016/J.TECHFORE.2023.122780 | |
| dc.relation.references | Mousavi Kalajahi, S. E., & Ghandiha, S. (2022). Optimization of spray drying parameters for encapsulation of Nettle (Urtica dioica L.) extract. LWT, 158, 113149. https://doi.org/10.1016/J.LWT.2022.113149 | |
| dc.relation.references | Murugaiah, D. K., & Shahgaldi, S. (2024). Recent progress in understanding the dispersion stability of catalyst ink for proton exchange membrane fuel cell and water electrolyzer. International Journal of Hydrogen Energy, 66, 156–169. https://doi.org/10.1016/J.IJHYDENE.2024.04.036 | |
| dc.relation.references | NTC 4087. (2021). NTC 4087:2021 - LIMA TAHITI. Recuperado de https://tienda.icontec.org/gp-frutas-frescas-lima-acida-tahiti-especificaciones-ntc4087-2021.html | |
| dc.relation.references | Ogemdi, I. K. (2019). Properties and Uses of Colloids: A Review. Colloid and Surface Science, 4(2), 24–28. https://doi.org/10.11648/j.css.20190402.12 | |
| dc.relation.references | Olabinjo, O. O., & Olabinjo, O. O. (2025). Citrus Peels an Effective Sources of Bioactive Compounds. Waste Management for a Sustainable Future - Technologies, Strategies and Global Perspectives. https://doi.org/10.5772/INTECHOPEN.1004330 | |
| dc.relation.references | Oliveira, I., Moreira De Carvalho, A., Sales De Oliveira, V., William Hidalgo Chávez, D., Domingues Gamallo, O., Castro, N., Christine, A., Sawaya, H. F., Rodrigues Sampaio, G., Ferraz, E. A., Torres, S., & Saldanha, T. (2021). The use of lemon juice and its role on polyunsaturated fatty acids and cholesterol oxides formation in thermally prepared sardines. Journal of Food Composition and Analysis, 104, 104087. https://doi.org/10.1016/j.jfca.2021.104087 | |
| dc.relation.references | ONU. (2024). Del limón al liderazgo: la revolución silenciosa de las mujeres rurales en Nariño. Recuperado de https://colombia.unwomen.org/es/stories/noticia/2024/10/del-limon-al-liderazgo-la-revolucion-silenciosa-de-las-mujeres-rurales-en-narino | |
| dc.relation.references | Pham, V. H. T., Pham, T. D., & Duong, T. H. (2020). Yields and Composition of Persian Lime Essential Oils (Citrus latifolia) from Hau Giang province, Vietnam extracted by Three Different Extraction Methods You may also like Exploring relations between land use changes and agricultural policy implementation in the Mekong Delta of Vietnam: A case of An Giang province. https://doi.org/10.1088/1757-899X/991/1/012130 | |
| dc.relation.references | Rangel, C. N., de Carvalho, L. M. J., Fonseca, R. B. F., Soares, A. G., & de Jesus, E. O. (2011). Nutritional value of organic acid lime juice (Citrus latifolia T.), cv. Tahiti. Food Science and Technology, 31(4), 918–922. https://doi.org/10.1590/S0101-20612011000400014 | |
| dc.relation.references | Rybak, K., Samborska, K., Jedlinska, A., Parniakov, O., Nowacka, M., Witrowa-Rajchert, D., & Wiktor, A. (2020). The impact of pulsed electric field pretreatment of bell pepper on the selected properties of spray dried juice. Innovative Food Science & Emerging Technologies, 65, 102446. https://doi.org/10.1016/J.IFSET.2020.102446 | |
| dc.relation.references | Sistema General de Regalías. (2022). ACUERDO No. 15 DEL 23/02/2022. Recuperado de https://minciencias.gov.co/sites/default/files/upload/reportes/acuerdo_no._15_de_2022.pdf | |
| dc.relation.references | Santander-Ortega, M. J., Plaza-Oliver, M., Rodríguez-Robledo, V., Castro-Vázquez, L., VillasecaGonzález, N., González-Fuentes, J., Marcos, P., Arroyo-Jiménez, M. M., & Lozano, M. V. (2017). Colloids for drug delivery to the brain. Journal of Drug Delivery Science and Technology, 42, 193–206. https://doi.org/10.1016/J.JDDST.2017.07.012 | |
| dc.relation.references | Sanli, I., Ozkan, G., & Şahin-Yeşilçubuk, N. (2025). Green extractions of bioactive compounds from citrus peels and their applications in the food industry. Food Research International, 212, 116352. https://doi.org/10.1016/J.FOODRES.2025.116352 | |
| dc.relation.references | Sedaghat Doost, A., Nikbakht Nasrabadi, M., Kassozi, V., Nakisozi, H., & Van der Meeren, P. (2020). Recent advances in food colloidal delivery systems for essential oils and their main components. Trends in Food Science & Technology, 99, 474–486. https://doi.org/10.1016/J.TIFS.2020.03.037 | |
| dc.relation.references | Selvaraj, Y., Prasad, M. B. N. V., & Venkateshwarlu, G. (2002). Profiles of essential oils of peel and leaf of a new citrus hybrid, citrus latifolia tanaka x citrus aurantifolia swingle. Journal of Essential Oil Research, 14(5), 369–371. https://doi.org/10.1080/10412905.2002.9699887 | |
| dc.relation.references | Semenova, M. G. (2019). Equilibrium in Colloidal Systems. Thermodynamics of Phase Equilibria in Food Engineering, 507–528. https://doi.org/10.1016/B978-0-12-811556-5.00012-0 | |
| dc.relation.references | Sharma, P., Ruchika, Dhiman, P., Kumar, R., Saneja, A., & Singh, D. (2023). A solid dispersion of Citrus reticulata peel biowaste as an effective antiepileptic: Sustainable approach toward value addition and agro-industrial waste valorisation. Journal of Drug Delivery Science and Technology, 81, 104238. https://doi.org/10.1016/J.JDDST.2023.104238 | |
| dc.relation.references | Shaw, D., Tripathi, A. D., Paul, V., Agarwal, A., Mishra, P. K., & Kumar, M. (2023a). Valorization of essential oils from citrus peel powder using hydro-distillation. Sustainable Chemistry and Pharmacy, 32, 101036. https://doi.org/10.1016/J.SCP.2023.101036 | |
| dc.relation.references | Shishir, M. R. I., & Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology, 65, 49–67. https://doi.org/10.1016/J.TIFS.2017.05.006 | |
| dc.relation.references | Shi, Y., Yan, F., Jia, Q., & Wang, Q. (2019). Norm descriptors for predicting the hydrophile-lipophile balance (HLB) and critical micelle concentration (CMC) of anionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 123967. https://doi.org/10.1016/J.COLSURFA.2019.123967 | |
| dc.relation.references | Shojaee AliAbadi, M. H., Karami-Osboo, R., Kobarfard, F., Jahani, R., Nabi, M., Yazdanpanah, H., Mahboubi, A., Nasiri, A., & Faizi, M. (2022). Detection of lime juice adulteration by simultaneous determination of main organic acids using liquid chromatography-tandem mass spectrometry. Journal of Food Composition and Analysis, 105, 104223. https://doi.org/10.1016/J.JFCA.2021.104223 | |
| dc.relation.references | Singh, B., Singh, J. P., Kaur, A., & Yadav, M. P. (2021). Insights into the chemical composition and bioactivities of citrus peel essential oils. Food Research International, 143, 110231. https://doi.org/10.1016/J.FOODRES.2021.110231 | |
| dc.relation.references | Talekar, S., Ekanayake, K., Holland, B., & Barrow, C. (2023). Food waste biorefinery towards circular economy in Australia. Bioresource Technology, 388, 129761. https://doi.org/10.1016/J.BIORTECH.2023.129761 | |
| dc.relation.references | Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91–102. https://doi.org/10.1016/J.TIFS.2017.03.009 | |
| dc.relation.references | Unidad de Planificación Rural Agropecuaria (UPRA). (2025). Actividad agropecuaria nacional 2023-2024. Recuperado de https://upra.gov.co/sites/default/files/2025-06/Evaluaci%C3%B3n%20Final%2C%20Eva%202024.pdf | |
| dc.relation.references | Unión Temporal Proyecto DAL (2022). Identificación y priorización del limón tahití, serie programa de prosperidad del reino unido en Colombia. Fortalecimiento de la Competitividad Departamental. junto con su cadena de valor para el Distrito Agro-logístico del Atlántico. Recuperado de https://scioteca.caf.com/bitstream/handle/123456789/2118/DALA%20Modelo%20productivo%20de%20lim%C3%B3n.pdf?sequence=1&isAllowed=yB | |
| dc.relation.references | Verma, C., Goni, L. K. M. O., Yaagoob, I. Y., Vashisht, H., Mazumder, M. A. J., & Alfantazi, A. (2023). Polymeric surfactants as ideal substitutes for sustainable corrosion protection: A perspective on colloidal and interface properties. Advances in Colloid and Interface Science, 318, 102966. https://doi.org/10.1016/J.CIS.2023.102966 | |
| dc.relation.references | Verwey, E. J. W. (1947). Theory of the stability of lyophobic colloids. J Phys Colloid Chem, 51(3), 631–636. https://doi.org/10.1021/j150453a001 | |
| dc.relation.references | Voukkali, I., Papamichael, I., Economou, F., Loizia, P., Klontza, E., Lekkas, D. F., Naddeo, V., & Zorpas, A. A. (2023). Factors affecting social attitude and behavior for the transition towards a circular economy. Sustainable Chemistry and Pharmacy, 36, 101276. https://doi.org/10.1016/J.SCP.2023.101276 | |
| dc.relation.references | Wedamulla, N. E., Fan, M., Choi, Y. J., & Kim, E. K. (2022). Citrus peel as a renewable bioresource: Transforming waste to food additives. Journal of Functional Foods, 95, 105163. https://doi.org/10.1016/J.JFF.2022.105163 | |
| dc.relation.references | Wu, Q., Yin, L., Yang, Q., Yuan, Y., Zhang, C., Xu, M., & Yao, J. (2023). Real-time tracking of colloidal stability based on collision behaviors probed by surface-enhanced Raman spectroscopy. Journal of Colloid and Interface Science, 629, 864–872. https://doi.org/10.1016/J.JCIS.2022.08.161 | |
| dc.relation.references | Yan, G., Li, Y., Wang, H., He, L., Li, Y., Li, Y., Zhang, L., & Yan, J. (2023). Effect of composition of emulsifier blends on aerated emulsions: Stability, thermodynamic, interfacial behavior and aeration properties. LWT, 188, 115395. https://doi.org/10.1016/J.LWT.2023.115395 | |
| dc.relation.references | Zhu, C., Pascall, A. J., Dudukovic, N., Worsley, M. A., Kuntz, J. D., Duoss, E. B., & Spadaccini, C. M. (2019). Colloidal Materials for 3D Printing. Annual Review of Chemical and Biomolecular Engineering, 10(Volume 10, 2019), 17–42. https://doi.org/https://doi.org/10.1146/annurevchembioeng-060718-030133 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Reconocimiento 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.agrovoc | Citrus latifolia Tanaka | |
| dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | |
| dc.subject.lemb | Cultivos extensivos - Secamiento | |
| dc.subject.lemb | Tahití - Propiedades fisicoquimicas | |
| dc.subject.lemb | Citricos - Secado | |
| dc.subject.lemb | Innovaciones tecnológicas | |
| dc.subject.proposal | Citrus latifolia Tanaka | spa |
| dc.subject.proposal | Cáscara de cítricos | spa |
| dc.subject.proposal | Residuos agroindustriales | spa |
| dc.subject.proposal | Alimentos funcionales | spa |
| dc.subject.proposal | Economía circular | spa |
| dc.subject.proposal | Citrus latifolia Tanaka | eng |
| dc.subject.proposal | Citrus peel | eng |
| dc.subject.proposal | Agro-industrial waste | eng |
| dc.subject.proposal | Functional foods | eng |
| dc.subject.proposal | Circular economy | eng |
| dc.title | Desarrollo tecnológico de una mezcla en polvo de lima Tahití por secado por aspersión | spa |
| dc.title.translated | Technological development of a Tahiti lime powder blend by spray drying | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Estudiantes | |
| dcterms.audience.professionaldevelopment | Investigadores | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
| oaire.fundername | Esta investigación fue financiada por el Ministerio de Ciencia, Tecnología e Innovación de Colombia (MinCiencias), a través del Sistema General de Regalías (SGR), en el marco de la Convocatoria No. 15 para la Formación de Capital Humano de Alto Nivel. |

