Fabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo

dc.contributor.advisorLandinez Téllez, David Arsenio
dc.contributor.advisorCabrera Báez, Michael
dc.contributor.authorDelgado Saavedra, Juan Camilo
dc.contributor.researchgroupGrupo de Física de Nuevos Materialesspa
dc.date.accessioned2023-05-31T20:04:58Z
dc.date.available2023-05-31T20:04:58Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractAl abordar un trabajo experimental en física de la materia condensada o en ciencia de materiales, resulta primordial contar con muestras confiables, cuidadosamente diseñadas y fabricadas, de modo que exhiban los diferentes fenómenos físicos que se desean estudiar, tales como: magnetismo, superconductividad, termoelectricidad, fermiones pesados, criticalidad cuántica, entre otros. Este trabajo de grado, se enfoca en la adaptación e implementación de un espacio en el laboratorio del GFNM, para la fabricación y caracterización estructural de monocristales de la familia RT2Al10(R: tierra rara, T: metal de transición) utilizando una técnica experimental denominada técnica de flujo, con el propósito de lograr muestras de una alta calidad, para luego medir sus características estructurales y composicionales, dando paso a una nueva linea de investigación en ciencia de materiales en la Universidad Nacional de Colombia - Sede Bogotá, en la que a futuro se podrán estudiar propiedades electrónicas, magnéticas y térmicas derivadas de los grados de correlación electrónica y otro tipo de fenómenos físicos que se producen en esta familia de compuestos; y que se encuentran a la vanguardia de la investigación en nuevos materiales, específicamente en la línea de materiales cuánticos. (Texto tomado de la fuente)spa
dc.description.abstractWhen starting an experimental work in condensed matter physics or materials science, it is essential to have reliable samples, carefully designed and manufactured, so that they exhibit the different physical phenomena that we want to be studied, such as: magnetism, superconductivity, thermoelectricity , heavy fermions, quantum criticality, among others. This degree work focuses on the adaptation and implementation of a place into the GFNM-Laboratory, for the fabrication and structural characterization of single crystals of the RT2Al10 family (R: rare earth, T: transition metal) using an experimental technique called flux technique, with the purpose of to obtain high quality samples, to later measure their structural and compositional characteristics, giving way to a new line of research in materials science at the National University of Colombia - Bogotá Campus, in which electronic, magnetic and thermal properties derived from the degrees of electronic correlation and other types of physical phenomena that occur in this family of compounds that can be studied in the future; and that, are at the forefront of research into new materials, specifically in the line of quantum materials.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaFíısica experimental de nuevos materialesspa
dc.format.extentx, 62 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83934
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesPiers Coleman. Introduction to Many Body Physics. Cambridge University Press, University. Printing House, Cambridge CB2 8BS, United Kingdom, 2016.spa
dc.relation.referencesErnst Bauer. Strongly correlated electron systems, https://www.ifp.tuwien.ac.at/mitarbeiterinnen/persoenliche-homepages/ernst-bauer/research/strongly-correlatedelectron-systems/ (accessed June 10, 2020).spa
dc.relation.referencesV.W. Burnett, D. Yazici, B.D. White, N.R. Dilley, A.J Friedman, B. Brandom, and M.B Maple. Structure and physical properties of RT2Cd20 (R = rare earth, T = Ni, Pd) compounds with the CeCr2Al20 - type structure. Journal of Solid State Chemistry, page 215, (2014).spa
dc.relation.referencesS. Jia, N. Ni, S.L Budko, and P.C Canfield. Magnetic properties of RFe2Zn20 and RCo2Zn20 (R = Y,Nd, Sm, Gd–Lu). Physical Review B 80, 104403, (2009).spa
dc.relation.referencesM.A. Avila, K. Suekini, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Tabatake. Ba8Ga16Sn30 with type-I Clathrate structure: Drastic suppression of heat conduction. Applied Physics Letters, 92, 041901, (2008).spa
dc.relation.referencesK. Wei, J.N. Neu, Y. Lai, K-W. Chen, D. Hobbis, G. Nolas, D. Graf, T. Siegrist, and R. Baumbach. Enhanced thermoelectric performance of heavy-fermion compounds Y bTM2Zn20 (TM = Co, Rh, Ir) at low temperatures. SCIENCE ADVANCES, eaaw6183:1–8, (2019).spa
dc.relation.referencesM. Cabrera-Baez, V.C. Denis, L. Mendoca-Ferreira, M. Carlone, P.A. Venegas, M.A Avila, and C. Rettori. Unusual evolution from a superconducting to an antiferromagnetic ground state in Y1−xGdxPb3 (0 ≤ x ≤ 1). PHYSICAL REVIEW, B 97, 224425:1–8 (2018).spa
dc.relation.referencesM. Cabrera-Baez, A. Naranjo-Uribe, J.M. Osorio-Guillén, C. Rettori, and Avila. Conduction electrons mediating the evolution from antiferromagnetic to ferromagnetic ordering in Gd(Co1−yFey)2Zn20 (0 ≤ y ≤ 1). PHYSICAL REVIEW, B 95, 104407:1–7, (2017).spa
dc.relation.referencesM. Cabrera-Baez, A. Naranjo-Uribe, J.M. Osorio-Guillén, C. Rettori, and Avila. Multiband electronic characterization of the complex intermetallic cage system Y1−xGdxCo2Zn20. PHYSICAL REVIEW, B 92, 214414:1–7, (2015).spa
dc.relation.referencesC. Guo, C. Cao, M. Smidman, F. Wu, Y. Zhang, F. Steglich, F. Zhang, and H. Yuan. Possible Weyl fermions in the magnetic Kondo system CeSb. Quantum Materials, doi:10.1038/s41535-017-0038-3, (2017).spa
dc.relation.referencesL. Wu, M. Kim, K. Park, A.M. Tsvelik, and M. Aronson. Quantum critical fluctuations in layered Y Fe2Al10. PNAS, 111 No.39, (2014).spa
dc.relation.referencesW.J. Gannon, L.S. Wu, I.A. Zaliznyak, and et.al. Local quantum phase transition inY Fe2Al10. PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1721493115, (2017).spa
dc.relation.referencesJ.L. Lv, R. Chen, H. Wang, J.L. Luo, and N. Wang. Single-crystal growth and physical property characterization of the intermediate-valence compound Y bF e2Al10. PHYSICAL REVIEW, B 95, 235132:1–6, (2017).spa
dc.relation.referencesT. Kubo, M. Sakoda, E. Matsuoka, T. Terashima, N. Kikugawa, S. Uji, and H. Sugawara. Magnetoresistance, hall effect, and shubnikov–de haas effect in antiferromagnetic kondo semimetal CeRu2Al10. Journal of the Physical Society of Japan, 89, 114704:338–341, (2020).spa
dc.relation.referencesTomoaki Takesaka, Kenta Oe, Riki Kobayashi, Yukihiro Kawamura, Takashi Nishioka, Harukazu Kato, Masahiro Matsumura, and Kazuto Kodama. Semiconducting behavior in CeF e2Al10 and CeRu2Al10 single crystals. Journal of Physics: Conference Series, 200(1):012201, jan 2010.spa
dc.relation.referencesKazunori Umeo, Takashi Ohsuka, Yuji Muro, Junpei Kajino, and Toshiro Takabatake. Pressure effect on the anomalous phase transition in CeOs2Al10. Journal of The Physical Society of Japan - J PHYS SOC JPN, 80, 06 2011.spa
dc.relation.referencesP.C. Canfield and Z. Fisk. Growth of single crystals from metallic fluxes. Philosophical Magazine Part B, 65:6, 1117-1123, DOI:10.1080/13642819208215073, (1992).spa
dc.relation.referencesZ. Fisk and J.P. Remeika. Growth of single crystals from molten metal fluxes. Handbook on the Physics and Chemistry of Rare Earths, 12:53–70, (1989).spa
dc.relation.referencesRaquel A. Ribeiro and Marcos A. Avila. Single crystal flux growths of thermoelectric materials. Philosophical Magazine, 92,(2012).spa
dc.relation.referencesCarlos M. Giles de Mayolo. Estudio de compuestos intermetálicos por difracción de rayos X en cristales individuales, https://sites.ifi.unicamp.br/giles/pesquisa/ (accessed June 15, 2020).spa
dc.relation.referencesElizabeth Chavira Martínez. Superconductividad en materiales cerámicos e intermetálicos, https://www.iim.unam.mx/investigadores/chavira/investigacion.html (accessed June 15, 2020).spa
dc.relation.referencesPaula Giraldo. Grupo de Materiales Cuánticos (Quantum Materials), https://quantummaterials.uniandes.edu.co/index.php/research/single-crystal-growth/ (accessed October 6, 2022).spa
dc.relation.referencesL. Fuentes. Introducción al método de Rietveld. Sociedad Mexicana de Cristalografía, A.C, Centro de Investigación en Materiales Avanzados, S.C, Instituto de Investigaciones en Materiales UNAM, 2004.spa
dc.relation.referencesG. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley. Handbook of crystal growth. Springer-Verlag Berlin Heidelberg, 2010.spa
dc.relation.referencesS. Galli, M. Moret, and P. Roversi. Cristalografía: la visión de rayos X- 2014: Año internacional de la cristalografía. Asociación Italiana de Cristalografía, 2014.spa
dc.relation.referencesW. Callister. Introducción a la Ciencia e Ingeniería de los materiales. Editorial Reverte S.A, 1995.spa
dc.relation.referencesK. Sangwal. Nucleation and crystal growth: metastability of solutions and melts. John Wiley & Sons, Inc., John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA, 2018.spa
dc.relation.referencesAndrew F. May, Jiaqiang Yan, and Michael A. McGuire. A practical guide for crystal growth of van der waals layered materials. Journal of Applied Physics, 128(5):051101, 2020.spa
dc.relation.referencesW. K. Burton, N. Cabrera, and F.C. Frank. The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. R. Soc. Lond., 243:299–358, (1951).spa
dc.relation.referencesJ. Hulliger. Chemistry and crystal growth. Angew. Chem. Int. Ed. Engl, 33:143–162, (1994).spa
dc.relation.referencesM. Sera, H. Nohara, M. Nakamura, H. Tanida, T. Nishioka, and M. Matsumura. Unusual temperature-dependent exchange interaction in GdFe2Al10 in comparison with GdRu2Al10. PHYSICAL REVIEW, B 88, 100404(R), (2013).spa
dc.relation.referencesT. Nishioka, Y. Kawamura, and T. et.al. Takesaka. Novel phase transition and the pressure effect in Y Fe2Al10 - type CeT2Al10 (T = Fe,Ru,Os). J. Phys. Soc. Jpn., https://arxiv.org/abs/0909.2911v1, 2009.spa
dc.relation.referencesR. White. MAGNETISM AND PROPERTIES OF THREE RARE EARTH INTERMETALLIC SERIES). UNSW Canberra, PhD Thesis, (accessed July 29, 2022), 2017.spa
dc.relation.referencesV. Thiede, T. Ebel, and W. Jeitschko. Ternary aluminidesLnT2Al10 (Ln = Y, La–Nd, Sm, Gd–Lu and T = Fe,Ru,Os) with Y bF e2Al10 type structure and magnetic properties of the iron-containing series. J. Mater. Chem., 8(1):125–130, (1998).spa
dc.relation.referencesB.D. Cullity and S.R. Stock. Elements of X-Ray Diffraction. PEARSON., Pearson Education Limited, 2014.spa
dc.relation.referencesG.A. Pérez and H. Colorado. Difracción de Rayos X y el Método Rietveld. Teoría y software de refinamiento. Universidad del Valle - Cali, Colombia. Edición Notas de Clase, Ciudad Universitaria, Meléndez - Cali, Colombia., 2015.spa
dc.relation.referencesB. H. Toby and R. B. Von Dreele. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2), 544-549, (2013).spa
dc.relation.referencesK. Momma and F. Izumi. VESTA:a three-dimensional visualization system for electronic and structural analysis. J. Appl. Phys. Crystallogr, 41, 653, (2008).spa
dc.relation.referencesA. Kerkau, L. Wu, and et.al. Crystal structure of yttrium iron aluminium (1/2/10), Y Fe2Al10. Z. Kristallogr, NCS 227:289–290, (2012).spa
dc.relation.referencesS. Niemann and W. Jeitschko. The crystal structure of Y bF e2Al10, a combined substitution and stacking variant of the ThMn12 and CeMn4Al8 type structures. Zeitschrift fur Kristallographie, 210:338–341, (1995).spa
dc.relation.referencesGdFe2Al10 (T = 300K) Crystal Structure: Datasheet from “PAULING FILE multinaries edition – 2012” in springermaterials (https://materials.springer.com/isp/crystallographic/docs/sd 1232746). Copyright 2016 Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan, Part of SpringerMaterials, accessed 2022-09-28.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::548 - Cristalografíaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.lembMONOCRISTALESspa
dc.subject.lembSingle crystalseng
dc.subject.proposalSistemas intermetálicosspa
dc.subject.proposalIntermetallic systemseng
dc.subject.proposalTécnica de flujo metálicospa
dc.subject.proposalMetallic flux techniqueeng
dc.subject.proposalMateriales cuánticosspa
dc.subject.proposalQuantum materialseng
dc.titleFabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujospa
dc.title.translatedFabrication and characterization of intermetallic systems of the RT2AI10 family based on rare earths using flux techniqueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1031154215.2022.pdf
Tamaño:
15.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: