Simulación de la influencia de la generación de energía eólica en la estabilidad transitoria

dc.contributor.advisorRuiz-Mendoza, Belizza J.
dc.contributor.authorSosapanta Salas, Joseph Camilo
dc.contributor.cvlacSosapanta Salas, Joseph Camilo [0001538062]spa
dc.contributor.orcidSosapanta Salas, Joseph Camilo [0000-0002-2035-9323]spa
dc.contributor.researchgroupGipem ­ Grupo de Investigación en Potencia, Energía y Mercadosspa
dc.date.accessioned2023-01-23T15:09:22Z
dc.date.available2023-01-23T15:09:22Z
dc.date.issued2023
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa transición energética está transformando el funcionamiento y operación de los sistemas eléctricos de potencia, provocando así que se diversifique la matriz energética a través de la inclusión de diferentes fuentes de generación de energía eléctrica. Este documento describe los impactos de la energía eólica sobre la estabilidad transitoria del sistema de potencia, empleando un sistema de prueba de nueve barras y analizando diferentes localizaciones de las fallas. A partir de los resultados se encontró que, en general, las oscilaciones de las posiciones angulares del rotor crecen en la medida que se incrementa el nivel de participación de energía eólica. También, teniendo en cuenta que los indicadores de estabilidad bajos representan buenos márgenes de estabilidad, se encontró que para los diferentes escenarios de participación de energía eólica, la estabilidad transitoria es susceptible a la localización de las fallas. (Texto tomado de la fuente)spa
dc.description.abstractThe energy transition is transforming the functioning and operation of the electric power system, thus causing the energy mix to diversify through the inclusion of different electricity generation sources. This document describes the impacts of wind power on the power system transient stability, using a nine-bus test system and analyzing different fault locations. From the results it was found that, in general, the oscillations of the rotor angular positions grow as the level of participation of wind power increases. Also, considering that low stability indicators represent good stability margins, it was found that for the different wind power participation scenarios, transient stability is susceptible to fault location.eng
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicacionesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaSistemas Eléctricos de Potenciaspa
dc.format.extentvii, 67 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83058
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesV. Akhmatov, Analysis of Dynamic Behaviour of Electric Power Systems with Large Amount of Wind Power. Doctoral thesis, Universidad T´ecnica de Dinamarca, Lyngby, 2003.spa
dc.relation.referencesJ. G. Slootweg, Wind Power: Modelling and Impact on Power System Dynamics. Doctoral thesis, Delft University of Technology, Delft, 2003.spa
dc.relation.referencesY. Coughlan, “Wind turbine modelling for power system stability analysis – a system operator perspective,” IEEE Transactions on Power Systems, vol. 22, pp. 929–936, 2007.spa
dc.relation.referencesM. Vittal, E. O’Malley and A. Keane, “Rotor angle stability with high penetrations of wind generation,” IEEE Transactions on Power Systems, vol. 27, pp. 353–362, 2012.spa
dc.relation.referencesA. Agarala and et al., “Transient stability analysis of a multi-machine power system integrated with renewables,” Energies, vol. 15, no. 13, 2022.spa
dc.relation.referencesD. Trudnowski, “Fixed-speed wind-generator and wind- park modeling for transient stability studies,” IEEE Transactions on Power Systems, vol. 19, pp. 1911–1917, 2004.spa
dc.relation.referencesM. Rahimi and M. Parniani, “Dynamic behavior and transient stability analysis of fixed speed wind turbines,” Renewable Energy, vol. 34, pp. 2613–2624, 2009.spa
dc.relation.referencesM. Reza, Stability Analysis of Transmission System with High Penetration of Distributed Generation. Doctoral thesis, Delft University of Technology, Delft, 2006.spa
dc.relation.referencesM. Zapata Ceballos, “Estabilidad de peque˜na se˜nal en sistemas de energ´ıa el´ectrica con alta penetraci´on de generaci´on renovable,” Master’s thesis, UNAL Medell´ın, 2020.spa
dc.relation.referencesJ. Chow and K. Cheung, “A toolbox for power system dynamics and control engineering education and research,” IEEE Transactions on Power Systems, vol. 7, no. 4, pp. 1559– 1564, 1992.spa
dc.relation.referencesF. Milano, “An open source power system analysis toolbox,” IEEE Transactions on Power Systems, vol. 20, no. 3, pp. 1199–1206, 2005.spa
dc.relation.referencesS. Cole and R. Belmans, “Matdyn, a new matlab-based toolbox for power system dynamic simulation,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1129–1136, 2011.spa
dc.relation.referencesI. Abdulrahman, “Matlab-based programs for power system dynamic analysis,” IEEE Open Access Journal of Power and Energy, vol. 7, pp. 59–69, 2020.spa
dc.relation.referencesC. Gear, “Simultaneous numerical solution of differential-algebraic equations,” IEEE Transactions on Circuit Theory, vol. 18, no. 1, pp. 89–95, 1971.spa
dc.relation.referencesP. Aristidou, D. Fabozzi, and T. Van Cutsem, “Dynamic simulation of large-scale power systems using a parallel schur-complement-based decomposition method,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 10, pp. 2561–2570, 2014.spa
dc.relation.referencesF. Milano, “Semi-implicit formulation of differential-algebraic equations for transient stability analysis,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4534–4543, 2016.spa
dc.relation.referencesC. Wang, K. Yuan, P. Li, B. Jiao, and G. Song, “A projective integration method for transient stability assessment of power systems with a high penetration of distributed generation,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 386–395, 2018.spa
dc.relation.referencesJ. Sosapanta Salas, “Energ´ıa e´olica en colombia: panorama y perspectivas bajo la triple cuenta de resultados,” Master’s thesis, UNAD, 2020.spa
dc.relation.referencesK. R. Rao, Wind Energy for Power Generation: Meeting the Challenge of Practical Implementation. Brandon: Springer, 1st ed., 2019.spa
dc.relation.referencesM. R. Patel and O. Beik, Wind and Solar Power Systems: Design, Analysis, and Operation. Florida: CRC Press, 3rd ed., 2021.spa
dc.relation.referencesJ. Pitteloud, “Wind energy international. obtenido de global wind installations,” 2020.spa
dc.relation.referencesUPME, “Plan de expansi´on de referencia generaci´on transmisi´on 2020-2034,” 2020.spa
dc.relation.referencesC. Gonz´alez and J. Barney, El viento del este llega con revoluciones: Multinacionales y transici´on con energ´ıa e´olica en territorio Way´uu. Bogot´a: Indepaz, 1st ed., 2019.spa
dc.relation.referencesF. Milano, Power System Modelling and Scripting. La Mancha: Springer, 1st ed., 2010.spa
dc.relation.referencesM. Eremia and M. Shahidehpour, Handbook of Electrical Power System Dynamics. New Jersey: John Wiley & Sons Ltda., 1st ed., 2013.spa
dc.relation.referencesJ. G. Slootweg and W. L. Kling, “The impact of large scale wind power generation on power system oscillations,” Electric Power Systems Research, vol. 67, pp. 9–20, 2003.spa
dc.relation.referencesIEC61400-27-1, “Wind energy generation systems - part 27-1: Electrical simulation models - generic models,” 2020.spa
dc.relation.referencesJ. Fortmann, Modeling of Wind Turbines with Doubly Fed Generator System. Duisburg: Springer Vieweg, 1st ed., 2015.spa
dc.relation.referencesA. D. Hansen, “Dynamic wind turbine models in power system simulation tool digsilent,” tech. rep., Technical University of Denmark, Riso National Laboratory, 2007.spa
dc.relation.referencesM. Pavella and P. G. Murthy, Transient Stability of Power Systems. Liege: John Wiley & Sons Ltda., 1st ed., 1994.spa
dc.relation.referencesP. Kundur, Power System Stability and Control. Palo Alto, California: McGraw-Hill, Inc., 1st ed., 1994.spa
dc.relation.referencesK. R. Padiyar, Power System Dynamics: Stability and Control. Hyderabad: BS Publicaciones, 1st ed., 2008.spa
dc.relation.referencesJ. Machowski, J. Bialek and J. Bumby, Power System Dynamics: Stability and Control. Great Britain: John Wiley & Sons, Ltd., 2nd ed., 2008.spa
dc.relation.referencesS. Cole, “Matdyn user’s manual version 1.2,” tech. rep., Universidad Cat´olica Leuven, ESAT-ELECTRA, 2010.spa
dc.relation.referencesM. A. Pai and D. Chatterjee, Computer Techniques in Power System Analysis. Illinois: McGraw Hill Education, 3rd ed., 2014.spa
dc.relation.referencesJ. Grainger and W. Stevenson, An´alisis de Sistemas de Potencia. Carolina del Norte: McGraw-Hill Interamericana, 2nd ed., 1996.spa
dc.relation.referencesN. Hatziargyriou and et al., “Definition and classification of power system stability – revisited & extended,” IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3271– 3281, 2021.spa
dc.relation.referencesM. J. Basler and R. C. Schaefer, “Understanding power system stability,” IEEE Transactions on Industry Applications, vol. 44, pp. 463–474, 2008.spa
dc.relation.referencesM. Secanell and F. Corcoles, “Daes implementation of dynamic power systems,” in 10th International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.02EX630), vol. 2, pp. 663–669 vol.2, 2002.spa
dc.relation.referencesE. A. Celaya, J. J. A. Aguirrezabala, and P. Chatzipantelidis, “Implementation of an adaptive bdf2 formula and comparison with the matlab ode15s,” Procedia Computer Science, vol. 29, pp. 1014–1026, 2014.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembTransmisión de potenciaspa
dc.subject.lembControl de sistemas de energía eléctricaspa
dc.subject.proposalDinámica del sistema de potenciaspa
dc.subject.proposalEcuaciones diferenciales algebraicasspa
dc.subject.proposalEstabilidad del sistema de potenciaspa
dc.subject.proposalFuentes de energía renovablespa
dc.subject.proposalIntegración a la red de energía eólicaspa
dc.subject.proposalPower system dynamicseng
dc.subject.proposalDifferential algebraic equationseng
dc.subject.proposalPower system stabilityeng
dc.subject.proposalRenewable energy sourceseng
dc.subject.proposalWind power grid integrationeng
dc.titleSimulación de la influencia de la generación de energía eólica en la estabilidad transitoriaspa
dc.title.translatedSimulation of the influence of wind power generation on transient stabilityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152438956_2023.pdf
Tamaño:
1.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: