Energías de dispersión y surfactantes en una solución de nanotubos de carbono en agua: aplicaciones en pastas de cemento portland

dc.contributor.advisorRestrepo Parra, Elisabethspa
dc.contributor.authorEcheverry Cardona, Laura Maríaspa
dc.contributor.researchgroupLaboratorio de Fisica del Plasmaspa
dc.date.accessioned2020-08-27T23:00:18Zspa
dc.date.available2020-08-27T23:00:18Zspa
dc.date.issued2020spa
dc.description.abstractEl presente trabajo se centra en estudiar la optimización de las variables: energía y molaridad del dispersante, en el proceso de dispersión impulsado por sonicación de nanotubos de carbono de pared múltiple en una solución acuosa de surfactante y agua. Para establecer estas variables se tomó un rango de energías de 90 J/g a 590 J/g con una molaridad constante de 10 mM, simultáneamente se estableció un rango de molaridad de 10 mM a 100 mM, con una energía constante de 390 J/g. Así mismo se monitorearon las muestras durante 13 semanas mediante espectroscopia de UV-vis y Potencial Zeta con el fin de conocer la evolución de la dispersión a medida que transcurre el tiempo, concluyendo que para energías mayores a 440 J/g se da ruptura y fragmentación de los MWNCTs y que con energías mayores a 190 J/g se empieza a dar dispersión en las soluciones, en cuestión de la molaridad se observa que a 10 mM se da un equilibrio de dispersión y estabilidad. Con los datos de mayor relevancia obtenidos, se determinaron las siguientes energías de sonicado 190 J/g, 390 J/g y 490 J/g a 10 mM de tensioactivo, en la semana 1 y 4 de almacenamiento, para ser empleadas en la producción de pastas de cemento portland. La energía de 190 J/g fue elegida puesto que, en esta energía inicia un proceso de dispersión, la de 390 J/g por ser la energía más reportada en investigaciones y la de 490 J/g por encontrarse en la zona de daños estructurales de los MWCNTs, esto con el fin de evaluar cada uno de estos comportamientos en los ensayos cuasi – estáticos. Adicionalmente se evidenció tres tipos de comportamientos (aglomeración MWCNTs alrededor de los poros hidratados, efecto puente y MWCNTs dispersos alrededor de los poros de las muestras) en la morfología interna de las probetas, apreciables mediante microscopia electrónica de barrido (MEB), después de la fractura de la probeta. (Texto tomado de la fuente)spa
dc.description.abstractThe present work focuses on studying the optimization of the variables: energy and molarity of the dispersant, in the dispersion process driven by sonication of multiple-walled carbon nanotubes in an aqueous solution of surfactant and water. To establish these variables, an energy range of 90 J / g to 590 J / g was taken with a constant molarity of 10 mM, simultaneously a molarity range of 10 mM to 100 mM was established, with a constant energy of 390 J / g . Subsequently, the samples were monitored for 13 weeks by means of UV-vis and Zeta Potential spectroscopy in order to know the evolution of the dispersion as time passes, concluding that for energies greater than 440 J / g, breakage and fragmentation of the MWNCTs and that with energies greater than 190 J / g dispersion begins to occur in the solutions, in terms of molarity it is observed that at 10 mM there is a balance of dispersion and stability. With the most relevant data obtained, the following sonication energies were determined: 190 J / g, 390 J / g and 490 J / g at 10 mM of surfactant, at week 1 and 4 of storage, to be used in the production of pastes Portland cement. The energy of 190 J / g was chosen since, in this energy, a dispersion process begins, that of 390 J / g for being the most reported energy in investigations and that of 490 J / g for being in the area of structural damage of the MWCNTs, this in order to evaluate each of these behaviors in the quasi - static tests. Additionally, three types of behaviors (agglomeration MWCNTs around the hydrated pores, bridging effect and MWCNTs scattered around the pores of the samples) were evidenced in the internal morphology of the specimens, appreciable by scanning electron microscopy (SEM), after the test tube fracture.eng
dc.description.additionalMemoria de Tesis de Maestría presentada como requisito parcial para optar al título de Magíster en Ciencias-Física.spa
dc.description.degreelevelMaestríaspa
dc.format.extent108spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78303
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.references[1] Mendoza, O. (2013). “Efecto híbrido de los Nanotubos de Carbono y la Nanosílice sobre las propiedades mineralógicas y mecánicas de morteros de Cemento Pórtland, (Tesis de maestría)” Universidad Nacional de Colombia, Medellín.spa
dc.relation.references[2] Sharma, S. y Kothiyal, N. C. (2016). “Facile growth of carbon nanotubes coated with carbon nanoparticles: A potential low-cost hybrid nanoadditive for improved mechanical, electrical, microstructural and crystalline properties of cement mortar matrix,” Constr. Build. Mater., vol. 123, pp. 829–846.spa
dc.relation.references[3] Bartos, P. (2004). Nanotechnology in construction. Royal Society of Chemistry.spa
dc.relation.references[4] Achenbach, H. y Wittmann, G. (2010). “A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement,” Tetrahedron Lett., vol. 41, no. 37, pp. 543–549.spa
dc.relation.references[5] Sanchez, F. y Sobolev, K. (2010). “Nanotechnology in concrete – A review,” Constr. Build. Mater., vol. 24, no. 11, pp. 2060–2071.spa
dc.relation.references[6] Gómez Zamorano, L. Y. y Castillo Linton, C. E. (2016). “Modificación de las propiedades de matrices cementantes mediante la adición de partículas de nanosílice,” Alconpat, vol. 6, no. 2007–6835, pp. 101–115.spa
dc.relation.references[7] Morsy, M. S.; Alsayed, S. H. y Aqel, M. (2011). “Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar,” Constr. Build. Mater., vol. 25, no. 1, pp. 145–149.spa
dc.relation.references[8] Lothenbach, B.; Scrivener, K. y Hooton, R. D. (2011). “Supplementary cementitious materials,” Cem. Concr. Res., vol. 41, no. 12, pp. 1244–1256.spa
dc.relation.references[9] Bortz, D. R.; Merino, C. y Martin Gullon, I. (2011). “Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system,” Compos. Sci. Technol., vol. 71, no. 1, pp. 31–38.spa
dc.relation.references[10] Xie, N. (2016). Mechanical and Environmental Resistance of Nanoparticle-Reinforced Pavement Materials, Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering, pp. 217–246.spa
dc.relation.references[11] Senff L. et al. (2015). “The influence of TiO2nanoparticles and poliacrilonitrile fibers on the rheological behavior and hardened properties of mortars,” Constr. Build. Mater., vol. 75, pp. 315–330spa
dc.relation.references[12] Ashraf, M. A.; Peng, W. Zare, Y. y Rhee, K. Y. (2018). “Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites,” Nanoscale Res. Lett., vol. 13.spa
dc.relation.references[13] Chen, J.; Yu, Y.; Chen, J.; Li, H. Ji, J. y Liu, D. (2015). “Chemical modification of palygorskite with maleic anhydride modified polypropylene: Mechanical properties, morphology, and crystal structure of palygorskite/polypropylene nanocomposites,” Appl. Clay Sci., vol. 115, pp. 230–237.spa
dc.relation.references[14] Shi, Y.; Ren, L.; Li, D.; Gao, H. y Yang, B. (2013). “Optimization Conditions for Single-Walled Carbon Nanotubes Dispersion,” J. Surf. Eng. Mater. Adv. Technol., vol. 03, no. 01, pp. 6–12.spa
dc.relation.references[15] Duan, W. H.; Wang, Q. y Collins, F. (2011). “Dispersion of carbon nanotubes with SDS surfactants: A study from a binding energy perspective,” Chem. Sci., vol. 2, no. 7, pp. 1407–1413.spa
dc.relation.references[16] Naqi, A.; Abbas, N.; Zahra, N.; Hussain, A. y Shabbir, S. Q. (2019). “Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials,” J. Mater. Res. Technol., vol. 8, no. 1, pp. 1203–1211.spa
dc.relation.references[17] Esfarjani, K.; Farajian, A. A. y Hashi, Y. (2000). “Electronic , transport and mechanical properties of carbon nanotubes,” Clusters and Nanomaterials., pp. 297–320.spa
dc.relation.references[18] Richardson, I. G. (2008). “The calcium silicate hydrates,” Cem. Concr. Res., vol. 38, no. 2, pp. 137–158.spa
dc.relation.references[19] Aristizabal, A. Katzensteiner, A. Bachmaier, F. Mücklich, and S. Suárez. (2018). “On the reinforcement homogenization in CNT/metal matrix composites during severe plastic deformation,” Mater. Charact., vol. 136, no. November 2017, pp. 375–381.spa
dc.relation.references[20] Peigney, C. Laurent, E. Flahaut, and A. Rousset. (200) “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceram. Int., vol. 26, no. 6, pp. 677–683.spa
dc.relation.references[21] Peigney, E. Flahaut, C. Laurent, F. Chastel, and A. Rousset. (2002). “Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion,” Chem. Phys. Lett., vol. 352, no. 1–2, pp. 20–25.spa
dc.relation.references[22] Ariza and J. Casas. (2013). “Estado del Arte Uso de Nanotubos de Carbono para la Mejora de las Propiedades en los Concretos (Tesis de pregrado),” Universidad Católica de Colombia. Bogotá.spa
dc.relation.references[23] Wang, Y. Han, and S. Liu (2013). “Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites,” Constr. Build. Mater., vol. 46, pp. 8–12spa
dc.relation.references[24] Li, P. Ming, and X. Zhao. (2005). “Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes,” Carbon., vol. 43, pp. 1239–1245.spa
dc.relation.references[25] Abu Al-Rub, A. I. Ashour, and B. M. Tyson. (2012). “On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites,” Constr. Build. Mater., vol. 35, pp. 647–655.spa
dc.relation.references[26] Nadiv, G. Vasilyev, M. Shtein, A. Peled, E. Zussman, and O. Regev (2016). “The multiple roles of a dispersant in nanocomposite systems,” Compos. Sci. Technol., vol. 133, pp. 192–199.spa
dc.relation.references[27] Konsta-Gdoutos, Z. S. Metaxa, and S. P. Shah (2010). “Highly dispersed carbon nanotube reinforced cement based materials,” Cem. Concr. Res., vol. 40, no. 7, pp. 1052–1059.spa
dc.relation.references[28] Shanh, J. . Kim, N. Tregger, and Z. Metaxa. (2010) “Proceedings of the Indian Concrete Institute Asian Conference on Ecstasy in Concrete,” in Proceedings of the Indian Concrete Institute Asian Conference on Ecstasy in Concrete, pp. 1–8.spa
dc.relation.references[29] Rodriguez, J. H. Quintero, Y. P. Arias, O. A. Mendoza-Reales, J. C. Ochoa-Botero, and R. D. Toledo-Filho (2017). “Influence of MWCNT / surfactant dispersions on the mechanical properties of Portland cement pastes Influence of MWCNT / surfactant dispersions mechanical properties of Portland cement pastes on the,” J. Phys. Conf. Ser. Pap., 2017.spa
dc.relation.references[30] Mendoza et al. (2018). “Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes,” Cem. Concr. Res., vol. 107, no. February, pp. 101–109.spa
dc.relation.references[31] Hodne and A. Saasen. (2003). “Rheological Properties of the Silica phases in Clinker slurries,” Annu. Trans. Nord. Rheol. Soc., vol. 11, no. 4068.spa
dc.relation.references[32] Mendoza and R. Toledo. (2016). “Carbon Nanomaterials,” in Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Structures, and Nanocomposites, 1st ed., vol. II, K. (New Y. P. Sattler, Ed. p. 573.spa
dc.relation.references[33] Zhang, S. Shang, F. Yin, A. Aishah, A. Salmiah, and T. L. Ooi. (2001). “Adsorptive behavior of surfactants on surface of Portland cement,” Cem. Concr. Res., vol. 31, no. 7, pp. 1009–1015.spa
dc.relation.references[34] Zhang and P. Somasundaran. (2016). “Advances in adsorption of surfactants and their mixtures at solid/solution interfaces,” Adv. Colloid Interface Sci., vol. 123–126, no. SPEC. ISS., pp. 213–229.spa
dc.relation.references[35] Bermudez Canchila. (2017). “Evaluación de la factibilidad de la síntesis de nanotubos de carbono a partir de los productos de la gasificación de un carbón de bajo rango (Tesis de maestría),” Universidad Nacional de Colombia, Medellín.spa
dc.relation.references[36] Quispe, F. A. (2005). “Estructura y síntesis de nanotubos de carbono, (Tesis de pregrado)” Universidad Mayor San Marcos, Lima, Perú, pp. 46.spa
dc.relation.references[37] Ocampo Ruiz, E. (2010). “Nanotecnología aplicada a la Arquitectura La investigación arquitectónica de nuevos materiales y sistemas constructivos como detonante en la creación de nuevos nichos laborales para el arquitecto,” Nov. Sci., vol. 3, no. 5, pp. 179–19.spa
dc.relation.references[38] BIRÓ and P. LAMBIN. (2006). “SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY OF CARBON NANOTUBES,” Carbon Nanotub., pp. 19–42.spa
dc.relation.references[39] Maubert, L. Soto, A. M. León. (2009). “Nanotubos de carbono: La era de la nanotecnología,” Razón y palabra, vol. 44, no. 9, pp. 2838–2844.spa
dc.relation.references[40] González Velázquez. (2015). “Nanomateriales de Carbono, Síntesis, Funcionalización y Aplicaciones, (Tesis doctoral)” Universidad Carlos III de Madrid, Madrid, p. 352spa
dc.relation.references[41] Novoa and P. E. Rivero. (2011). “Nanotubo de carbono-chitosan en células,” Rev. Unid. Ind. Santander. Salud, vol.43, n.1, pp. 21–26.spa
dc.relation.references[42] Castaños, E. (2019). “Nanotubos de carbono – Lidia con la Química,” 2016. [Online]. Available: https://lidiaconlaquimica.wordpress.com/tag/nanotubos-de-carbono/. [Accessed: 19-Dec.spa
dc.relation.references[43] Ordoñez Casanova, E. G. (2013). “Estudio experimental y teórico de nanotubos de carbono de pocas paredes, (Tesis doctoral)” Centro de investigación en materiales avanzados, México.spa
dc.relation.references[44] Poole and F. J. Owens. (2007). Introducción a la nanotecnología. Editorial Reverté.spa
dc.relation.references[45] Rivas Martínez, J. Román Ganzer, and M. L. Cosme Huertas. (2010). Aplicaciones actuales y futuras de los nanotubos de carbono, Madrid España, Editorial Fundación Madrid para el conocimiento.spa
dc.relation.references[46] Ferrari and D. M. Basko, (2013). “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol., vol. 8, no. 4, pp. 235–246.spa
dc.relation.references[47] Domingo and G. Santoro. (2007). “Espectroscopía Raman de nanotubos de carbono,” Opt. Pura y Apl., vol. 40, no. 2, pp. 175–186.spa
dc.relation.references[48] Dresselhaus, A. Jorio, A. G. Souza Filho, G. Dresselhaus, and R. Saito. (2002). “Raman spectroscopy on one isolated carbon nanotube,” Phys. B Condens. Matter, vol. 323, no. 1–4, pp. 15–20.spa
dc.relation.references[49] Casaos Ansón, A. (2005). “Nanotubos de carbono: estructura porosa y sus implicaciones en el campo de la energía, (Tesis doctoral)” Universidad de Zaragoza.spa
dc.relation.references[50] Fólico and F. M. O. (2014). “Calentamiento por Fotoactivación de NanoTubos de Carbono de pared simple Funcionalizados con Ácido Fólico ( NTC-AF ),” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol 38, pp. 152.spa
dc.relation.references[51] Z.-M. Inc. (2019). “Potencial Zeta,” Zeta-Meter Inc., 2008. [Online]. Available: https://www.malvernpanalytical.com/es/products/measurement-type/zeta-potential. [Accessed: 06-May-2019].spa
dc.relation.references[52] Lenntech, “Potencial Zeta - Lenntech.” [Online]. Available: https://www.lenntech.es/potential-zeta.htm. [Accessed: 06-May-2019].spa
dc.relation.references[53] ASTM International, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, no. C39/C39M − 17b. 2015, pp. 1–7.spa
dc.relation.references[54] ASTM International, Compressive Strength of Cylindrical Concrete Specimens. 2015, pp. 1–7.spa
dc.relation.references[55] Smith and J. Hashemi. (2006). Fundamentos de la ciencia e ingeniería de materiales, cuarta edición, México, McGraw-Hill Educationspa
dc.relation.references[56] Askeland. D. R. (1984). Ciencia e ingeniería de materiales, Sexta Edición, México, Editorial Cengage learning.spa
dc.relation.references[57] De la Torre Ibarra and M. F. González Rodríguez. (2017). “Análisis de fractura en ensayos de compresión para materiales compuestos utilizando pruebas ópticas no destructivas, (Tesis de maestría)” Centro de investigaciones en óptica, A.C, México.spa
dc.relation.references[58] Vanegas-Useche, L. (2018). Diseño de elementos de máquinas, primera edición, Colombia, Editorial Universidad Tecnológica de Pereira.spa
dc.relation.references[59] Pino-Minguez, J. (2008). “Estudio nanométrico de biocompatibilidad y adhesividad celular a biomateriales utilizados en cirugía ortopédica, (Tesis doctoral)” Universidad de Santiago de Compostela, España.spa
dc.relation.references[60] Zaton-Orcasitas, L. Fernández Carrasco, and D. Torrenas Martin. (2015). “Empleo de aditivos en la fabricación de materiales, (Tesis de maestría)” Escola Técnica Superior d’Enginyeria de Camins, Canals i Ports, Barcelona.spa
dc.relation.references[61] R. Herman and Bogue. (1997) “The Chemistry of Portland Cement,” in Cement chemistry, Second., H. Taylor, Ed., pp. 55–87.spa
dc.relation.references[62] Reales et al., O. A. M. (2018). “Reinforcing Effect of Carbon Nanotubes / Surfactant Dispersions in Portland Cement Pastes,” Advences in civil engineering., vol. 2018.spa
dc.relation.references[63] ASTM International, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars ( Using 2-in . or [ 50-mm ] Cube Specimens ), no. C109/C109M – 11b. 2010, pp. 1–9.spa
dc.relation.references[64] ASTM International, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, no. C192/C192M − 16a Standard. 2007, pp. 1–8.spa
dc.relation.references[65] Prasankumar, R. P. and Taylor, A. J. (2011). Optical techniques for solid-state materials characterization, 1 st, CRC Press.spa
dc.relation.references[66] Hodkiewicz, J. (2010). “Characterizing Carbon Materials with Raman Spectroscopy -application note,” Thermo Fish. Sci.spa
dc.relation.references[67] Frmyr, F. K. Hansen, and T. Olsen. (2012). “The optimum dispersion of carbon nanotubes for epoxy nanocomposites: Evolution of the particle size distribution by ultrasonic treatment,” J. Nanotechnol., vol. 2012.spa
dc.relation.references[68] Duan, Q. Wang, and F. Collins. (2011). “Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective,” Chem. Sci., vol. 2, no. 7, p. 1407.spa
dc.relation.references[69] Abu Al-Rub, A. I. Ashour, and B. M. Tyson. (2012). “On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites,” Constr. Build. Mater., vol. 35, pp. 647–655.spa
dc.relation.references[70] Ryabenko, T. V Dorofeeva, and G. I. Zvereva. (2004). “UV – VIS – NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT / SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy,” Carbon., vol. 42, pp. 1523–1535.spa
dc.relation.references[71] Grossiord, P. Van Der Schoot, J. Meuldijk, C. E. Koning, P. O. Box, and A. X. E. V. (2007). “Determination of the Surface Coverage of Exfoliated Carbon Nanotubes by Surfactant Molecules in Aqueous Solution,” Langmuir., no. 23, pp. 3646–3653.spa
dc.relation.references[72] Castillo-León, J. J. (2012). “Diseño y preparación de nanocompuestos funcionalizados con ácido fólico y sus aplicaciones biomédicas (Tesis de maestría),” Universidad Industrial de Santander, Bucaramanga.spa
dc.relation.references[73] Saito, R. et al. (1992). “Electronic structure of chiral graphene tubules structure of chiral graphene tubules,” Appl. Phys. Lett., vol. 2204, pp. 67–70.spa
dc.relation.references[74] Kumazawaa, Y. et al. (1999). “Optical Properties of Single-Wall Carbon Nanotubes,” Synthetic Metals, vol. 103, pp. 2555–2558.spa
dc.relation.references[75] Alafogianni, K. Dassios, S. Farmaki, S. K. Antiohos, T. E. Matikas, and N. M. Barkoula. (2016). “On the efficiency of UV-vis spectroscopy in assessing the dispersion quality in sonicated aqueous suspensions of carbon nanotubes,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 495, pp. 118–124.spa
dc.relation.references[76] Li H. and Y. Qiu. (2019). “Dispersion, sedimentation and aggregation of multiwalled carbon nanotubes as affected by single and binary mixed surfactants,” R. Soc. Open Sci., vol. 6, no. 7,spa
dc.relation.references[77] Di Crescenzo, P. Di Profio, G. Siani, R. Zappacosta, and A. Fontana. (2016). “Optimizing the Interactions of Surfactants with Graphitic Surfaces and Clathrate Hydrates,” Langmuir, vol. 32, no. 26, pp. 6559–6570.spa
dc.relation.references[78] Blanch, C. E. Lenehan, and J. S. Quinton. (2010). “Optimizing Surfactant Concentrations for Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solution,” Phys. Chem. A, no. Cmc, pp. 9805–9811.spa
dc.relation.references[79] Lédo, R. F. S. Lima, J. B. A. Paulo, and M. A. C. Duarte. (2009). “Estudio comparativo de sulfato de aluminio y semillas de moringa oleifera para la depuración de aguas con baja turbiedad,” Inf. Tecnol., vol. 20, no. 5, pp. 3–12.spa
dc.relation.references[80] Hang Zhao. (2015). “Preparation and characterization of carbon micro/nano hybrids and their functional composites, (Tesis de doctoral)” L’Universite Paris-Saclay, Paris.spa
dc.relation.references[81] Sanchez and K. Sobolev. (2010). “Nanotechnology in concrete – A review,” Constr. Build. Mater., vol. 24, no. 11, pp. 2060–2071.spa
dc.relation.references[82] Gowripalan, N. (2020). “Autogenous Shrinkage of Concrete at Early Ages,” Lect. Notes Civ. Eng., vol. 37, no. December, pp. 269–276spa
dc.relation.references[83] DeAndrade Viera, S. (2017). “Análisis teórico experimental de morteros de base cemento con adición de nano partículas, (Tesis de maestría)” Universidad Politecnica de Madrid.spa
dc.relation.references[84] Y. Gao, H. Jing, M. Du, and W. Chents. (2018). “Dispersion of multi-walled carbon nanotubes stabilized by humic acid in sustainable cement composites,” Nanomaterials, vol. 8, no. 10.spa
dc.relation.references[85] Han, X. Yu, and J. Ou. (2011). “Multifunctional and Smart Carbon Nanotube Reinforced Cement-Based Materials,” Nanotechnol. Civ. Infrastruct., pp. 1–47.spa
dc.relation.references[86] Mamlouk, M. S. y Zaniewski, J. P. (2000). Materiales para Ingeniería Civil. Editorial PEARSON Prentice Hall. Segunda Edición. Madrid. Recuperado de: https://www.academia.edu/32903208/Materiales_Para_Ingenier%C3%ADa_Civil_-_Michael_S._Mamlouk_and_John_P._Zaniewski_2da_Edici%C3%B3n_spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalMulti-walled carbon nanotubeseng
dc.subject.proposalNanotubos de carbono de paredes multiplesspa
dc.subject.proposalTensioactivospa
dc.subject.proposalSurfactanteng
dc.subject.proposalDispersiónspa
dc.subject.proposalDispersioneng
dc.subject.proposalAgglomerationeng
dc.subject.proposalReaglomeraciónspa
dc.subject.proposalPropiedades mecánicasspa
dc.subject.proposalMechanical propertieseng
dc.subject.proposalEnergíaspa
dc.subject.proposalEnergyeng
dc.subject.proposalMateriales compuestosspa
dc.subject.proposalComposite materialseng
dc.titleEnergías de dispersión y surfactantes en una solución de nanotubos de carbono en agua: aplicaciones en pastas de cemento portlandspa
dc.title.alternativeDispersion energies and surfactants in a carbon nanotube in water solution: applications in portland cement pastesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053838628.2020.pdf
Tamaño:
3.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: