Energías de dispersión y surfactantes en una solución de nanotubos de carbono en agua: aplicaciones en pastas de cemento portland
dc.contributor.advisor | Restrepo Parra, Elisabeth | spa |
dc.contributor.author | Echeverry Cardona, Laura María | spa |
dc.contributor.researchgroup | Laboratorio de Fisica del Plasma | spa |
dc.date.accessioned | 2020-08-27T23:00:18Z | spa |
dc.date.available | 2020-08-27T23:00:18Z | spa |
dc.date.issued | 2020 | spa |
dc.description.abstract | El presente trabajo se centra en estudiar la optimización de las variables: energía y molaridad del dispersante, en el proceso de dispersión impulsado por sonicación de nanotubos de carbono de pared múltiple en una solución acuosa de surfactante y agua. Para establecer estas variables se tomó un rango de energías de 90 J/g a 590 J/g con una molaridad constante de 10 mM, simultáneamente se estableció un rango de molaridad de 10 mM a 100 mM, con una energía constante de 390 J/g. Así mismo se monitorearon las muestras durante 13 semanas mediante espectroscopia de UV-vis y Potencial Zeta con el fin de conocer la evolución de la dispersión a medida que transcurre el tiempo, concluyendo que para energías mayores a 440 J/g se da ruptura y fragmentación de los MWNCTs y que con energías mayores a 190 J/g se empieza a dar dispersión en las soluciones, en cuestión de la molaridad se observa que a 10 mM se da un equilibrio de dispersión y estabilidad. Con los datos de mayor relevancia obtenidos, se determinaron las siguientes energías de sonicado 190 J/g, 390 J/g y 490 J/g a 10 mM de tensioactivo, en la semana 1 y 4 de almacenamiento, para ser empleadas en la producción de pastas de cemento portland. La energía de 190 J/g fue elegida puesto que, en esta energía inicia un proceso de dispersión, la de 390 J/g por ser la energía más reportada en investigaciones y la de 490 J/g por encontrarse en la zona de daños estructurales de los MWCNTs, esto con el fin de evaluar cada uno de estos comportamientos en los ensayos cuasi – estáticos. Adicionalmente se evidenció tres tipos de comportamientos (aglomeración MWCNTs alrededor de los poros hidratados, efecto puente y MWCNTs dispersos alrededor de los poros de las muestras) en la morfología interna de las probetas, apreciables mediante microscopia electrónica de barrido (MEB), después de la fractura de la probeta. (Texto tomado de la fuente) | spa |
dc.description.abstract | The present work focuses on studying the optimization of the variables: energy and molarity of the dispersant, in the dispersion process driven by sonication of multiple-walled carbon nanotubes in an aqueous solution of surfactant and water. To establish these variables, an energy range of 90 J / g to 590 J / g was taken with a constant molarity of 10 mM, simultaneously a molarity range of 10 mM to 100 mM was established, with a constant energy of 390 J / g . Subsequently, the samples were monitored for 13 weeks by means of UV-vis and Zeta Potential spectroscopy in order to know the evolution of the dispersion as time passes, concluding that for energies greater than 440 J / g, breakage and fragmentation of the MWNCTs and that with energies greater than 190 J / g dispersion begins to occur in the solutions, in terms of molarity it is observed that at 10 mM there is a balance of dispersion and stability. With the most relevant data obtained, the following sonication energies were determined: 190 J / g, 390 J / g and 490 J / g at 10 mM of surfactant, at week 1 and 4 of storage, to be used in the production of pastes Portland cement. The energy of 190 J / g was chosen since, in this energy, a dispersion process begins, that of 390 J / g for being the most reported energy in investigations and that of 490 J / g for being in the area of structural damage of the MWCNTs, this in order to evaluate each of these behaviors in the quasi - static tests. Additionally, three types of behaviors (agglomeration MWCNTs around the hydrated pores, bridging effect and MWCNTs scattered around the pores of the samples) were evidenced in the internal morphology of the specimens, appreciable by scanning electron microscopy (SEM), after the test tube fracture. | eng |
dc.description.additional | Memoria de Tesis de Maestría presentada como requisito parcial para optar al título de Magíster en Ciencias-Física. | spa |
dc.description.degreelevel | Maestría | spa |
dc.format.extent | 108 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78303 | |
dc.language.iso | spa | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.department | Departamento de Física y Química | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
dc.relation.references | [1] Mendoza, O. (2013). “Efecto híbrido de los Nanotubos de Carbono y la Nanosílice sobre las propiedades mineralógicas y mecánicas de morteros de Cemento Pórtland, (Tesis de maestría)” Universidad Nacional de Colombia, Medellín. | spa |
dc.relation.references | [2] Sharma, S. y Kothiyal, N. C. (2016). “Facile growth of carbon nanotubes coated with carbon nanoparticles: A potential low-cost hybrid nanoadditive for improved mechanical, electrical, microstructural and crystalline properties of cement mortar matrix,” Constr. Build. Mater., vol. 123, pp. 829–846. | spa |
dc.relation.references | [3] Bartos, P. (2004). Nanotechnology in construction. Royal Society of Chemistry. | spa |
dc.relation.references | [4] Achenbach, H. y Wittmann, G. (2010). “A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement,” Tetrahedron Lett., vol. 41, no. 37, pp. 543–549. | spa |
dc.relation.references | [5] Sanchez, F. y Sobolev, K. (2010). “Nanotechnology in concrete – A review,” Constr. Build. Mater., vol. 24, no. 11, pp. 2060–2071. | spa |
dc.relation.references | [6] Gómez Zamorano, L. Y. y Castillo Linton, C. E. (2016). “Modificación de las propiedades de matrices cementantes mediante la adición de partículas de nanosílice,” Alconpat, vol. 6, no. 2007–6835, pp. 101–115. | spa |
dc.relation.references | [7] Morsy, M. S.; Alsayed, S. H. y Aqel, M. (2011). “Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar,” Constr. Build. Mater., vol. 25, no. 1, pp. 145–149. | spa |
dc.relation.references | [8] Lothenbach, B.; Scrivener, K. y Hooton, R. D. (2011). “Supplementary cementitious materials,” Cem. Concr. Res., vol. 41, no. 12, pp. 1244–1256. | spa |
dc.relation.references | [9] Bortz, D. R.; Merino, C. y Martin Gullon, I. (2011). “Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system,” Compos. Sci. Technol., vol. 71, no. 1, pp. 31–38. | spa |
dc.relation.references | [10] Xie, N. (2016). Mechanical and Environmental Resistance of Nanoparticle-Reinforced Pavement Materials, Innovative Developments of Advanced Multifunctional Nanocomposites in Civil and Structural Engineering, pp. 217–246. | spa |
dc.relation.references | [11] Senff L. et al. (2015). “The influence of TiO2nanoparticles and poliacrilonitrile fibers on the rheological behavior and hardened properties of mortars,” Constr. Build. Mater., vol. 75, pp. 315–330 | spa |
dc.relation.references | [12] Ashraf, M. A.; Peng, W. Zare, Y. y Rhee, K. Y. (2018). “Effects of Size and Aggregation/Agglomeration of Nanoparticles on the Interfacial/Interphase Properties and Tensile Strength of Polymer Nanocomposites,” Nanoscale Res. Lett., vol. 13. | spa |
dc.relation.references | [13] Chen, J.; Yu, Y.; Chen, J.; Li, H. Ji, J. y Liu, D. (2015). “Chemical modification of palygorskite with maleic anhydride modified polypropylene: Mechanical properties, morphology, and crystal structure of palygorskite/polypropylene nanocomposites,” Appl. Clay Sci., vol. 115, pp. 230–237. | spa |
dc.relation.references | [14] Shi, Y.; Ren, L.; Li, D.; Gao, H. y Yang, B. (2013). “Optimization Conditions for Single-Walled Carbon Nanotubes Dispersion,” J. Surf. Eng. Mater. Adv. Technol., vol. 03, no. 01, pp. 6–12. | spa |
dc.relation.references | [15] Duan, W. H.; Wang, Q. y Collins, F. (2011). “Dispersion of carbon nanotubes with SDS surfactants: A study from a binding energy perspective,” Chem. Sci., vol. 2, no. 7, pp. 1407–1413. | spa |
dc.relation.references | [16] Naqi, A.; Abbas, N.; Zahra, N.; Hussain, A. y Shabbir, S. Q. (2019). “Effect of multi-walled carbon nanotubes (MWCNTs) on the strength development of cementitious materials,” J. Mater. Res. Technol., vol. 8, no. 1, pp. 1203–1211. | spa |
dc.relation.references | [17] Esfarjani, K.; Farajian, A. A. y Hashi, Y. (2000). “Electronic , transport and mechanical properties of carbon nanotubes,” Clusters and Nanomaterials., pp. 297–320. | spa |
dc.relation.references | [18] Richardson, I. G. (2008). “The calcium silicate hydrates,” Cem. Concr. Res., vol. 38, no. 2, pp. 137–158. | spa |
dc.relation.references | [19] Aristizabal, A. Katzensteiner, A. Bachmaier, F. Mücklich, and S. Suárez. (2018). “On the reinforcement homogenization in CNT/metal matrix composites during severe plastic deformation,” Mater. Charact., vol. 136, no. November 2017, pp. 375–381. | spa |
dc.relation.references | [20] Peigney, C. Laurent, E. Flahaut, and A. Rousset. (200) “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceram. Int., vol. 26, no. 6, pp. 677–683. | spa |
dc.relation.references | [21] Peigney, E. Flahaut, C. Laurent, F. Chastel, and A. Rousset. (2002). “Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion,” Chem. Phys. Lett., vol. 352, no. 1–2, pp. 20–25. | spa |
dc.relation.references | [22] Ariza and J. Casas. (2013). “Estado del Arte Uso de Nanotubos de Carbono para la Mejora de las Propiedades en los Concretos (Tesis de pregrado),” Universidad Católica de Colombia. Bogotá. | spa |
dc.relation.references | [23] Wang, Y. Han, and S. Liu (2013). “Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites,” Constr. Build. Mater., vol. 46, pp. 8–12 | spa |
dc.relation.references | [24] Li, P. Ming, and X. Zhao. (2005). “Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes,” Carbon., vol. 43, pp. 1239–1245. | spa |
dc.relation.references | [25] Abu Al-Rub, A. I. Ashour, and B. M. Tyson. (2012). “On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites,” Constr. Build. Mater., vol. 35, pp. 647–655. | spa |
dc.relation.references | [26] Nadiv, G. Vasilyev, M. Shtein, A. Peled, E. Zussman, and O. Regev (2016). “The multiple roles of a dispersant in nanocomposite systems,” Compos. Sci. Technol., vol. 133, pp. 192–199. | spa |
dc.relation.references | [27] Konsta-Gdoutos, Z. S. Metaxa, and S. P. Shah (2010). “Highly dispersed carbon nanotube reinforced cement based materials,” Cem. Concr. Res., vol. 40, no. 7, pp. 1052–1059. | spa |
dc.relation.references | [28] Shanh, J. . Kim, N. Tregger, and Z. Metaxa. (2010) “Proceedings of the Indian Concrete Institute Asian Conference on Ecstasy in Concrete,” in Proceedings of the Indian Concrete Institute Asian Conference on Ecstasy in Concrete, pp. 1–8. | spa |
dc.relation.references | [29] Rodriguez, J. H. Quintero, Y. P. Arias, O. A. Mendoza-Reales, J. C. Ochoa-Botero, and R. D. Toledo-Filho (2017). “Influence of MWCNT / surfactant dispersions on the mechanical properties of Portland cement pastes Influence of MWCNT / surfactant dispersions mechanical properties of Portland cement pastes on the,” J. Phys. Conf. Ser. Pap., 2017. | spa |
dc.relation.references | [30] Mendoza et al. (2018). “Influence of MWCNT/surfactant dispersions on the rheology of Portland cement pastes,” Cem. Concr. Res., vol. 107, no. February, pp. 101–109. | spa |
dc.relation.references | [31] Hodne and A. Saasen. (2003). “Rheological Properties of the Silica phases in Clinker slurries,” Annu. Trans. Nord. Rheol. Soc., vol. 11, no. 4068. | spa |
dc.relation.references | [32] Mendoza and R. Toledo. (2016). “Carbon Nanomaterials,” in Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Structures, and Nanocomposites, 1st ed., vol. II, K. (New Y. P. Sattler, Ed. p. 573. | spa |
dc.relation.references | [33] Zhang, S. Shang, F. Yin, A. Aishah, A. Salmiah, and T. L. Ooi. (2001). “Adsorptive behavior of surfactants on surface of Portland cement,” Cem. Concr. Res., vol. 31, no. 7, pp. 1009–1015. | spa |
dc.relation.references | [34] Zhang and P. Somasundaran. (2016). “Advances in adsorption of surfactants and their mixtures at solid/solution interfaces,” Adv. Colloid Interface Sci., vol. 123–126, no. SPEC. ISS., pp. 213–229. | spa |
dc.relation.references | [35] Bermudez Canchila. (2017). “Evaluación de la factibilidad de la síntesis de nanotubos de carbono a partir de los productos de la gasificación de un carbón de bajo rango (Tesis de maestría),” Universidad Nacional de Colombia, Medellín. | spa |
dc.relation.references | [36] Quispe, F. A. (2005). “Estructura y síntesis de nanotubos de carbono, (Tesis de pregrado)” Universidad Mayor San Marcos, Lima, Perú, pp. 46. | spa |
dc.relation.references | [37] Ocampo Ruiz, E. (2010). “Nanotecnología aplicada a la Arquitectura La investigación arquitectónica de nuevos materiales y sistemas constructivos como detonante en la creación de nuevos nichos laborales para el arquitecto,” Nov. Sci., vol. 3, no. 5, pp. 179–19. | spa |
dc.relation.references | [38] BIRÓ and P. LAMBIN. (2006). “SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY OF CARBON NANOTUBES,” Carbon Nanotub., pp. 19–42. | spa |
dc.relation.references | [39] Maubert, L. Soto, A. M. León. (2009). “Nanotubos de carbono: La era de la nanotecnología,” Razón y palabra, vol. 44, no. 9, pp. 2838–2844. | spa |
dc.relation.references | [40] González Velázquez. (2015). “Nanomateriales de Carbono, Síntesis, Funcionalización y Aplicaciones, (Tesis doctoral)” Universidad Carlos III de Madrid, Madrid, p. 352 | spa |
dc.relation.references | [41] Novoa and P. E. Rivero. (2011). “Nanotubo de carbono-chitosan en células,” Rev. Unid. Ind. Santander. Salud, vol.43, n.1, pp. 21–26. | spa |
dc.relation.references | [42] Castaños, E. (2019). “Nanotubos de carbono – Lidia con la Química,” 2016. [Online]. Available: https://lidiaconlaquimica.wordpress.com/tag/nanotubos-de-carbono/. [Accessed: 19-Dec. | spa |
dc.relation.references | [43] Ordoñez Casanova, E. G. (2013). “Estudio experimental y teórico de nanotubos de carbono de pocas paredes, (Tesis doctoral)” Centro de investigación en materiales avanzados, México. | spa |
dc.relation.references | [44] Poole and F. J. Owens. (2007). Introducción a la nanotecnología. Editorial Reverté. | spa |
dc.relation.references | [45] Rivas Martínez, J. Román Ganzer, and M. L. Cosme Huertas. (2010). Aplicaciones actuales y futuras de los nanotubos de carbono, Madrid España, Editorial Fundación Madrid para el conocimiento. | spa |
dc.relation.references | [46] Ferrari and D. M. Basko, (2013). “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol., vol. 8, no. 4, pp. 235–246. | spa |
dc.relation.references | [47] Domingo and G. Santoro. (2007). “Espectroscopía Raman de nanotubos de carbono,” Opt. Pura y Apl., vol. 40, no. 2, pp. 175–186. | spa |
dc.relation.references | [48] Dresselhaus, A. Jorio, A. G. Souza Filho, G. Dresselhaus, and R. Saito. (2002). “Raman spectroscopy on one isolated carbon nanotube,” Phys. B Condens. Matter, vol. 323, no. 1–4, pp. 15–20. | spa |
dc.relation.references | [49] Casaos Ansón, A. (2005). “Nanotubos de carbono: estructura porosa y sus implicaciones en el campo de la energía, (Tesis doctoral)” Universidad de Zaragoza. | spa |
dc.relation.references | [50] Fólico and F. M. O. (2014). “Calentamiento por Fotoactivación de NanoTubos de Carbono de pared simple Funcionalizados con Ácido Fólico ( NTC-AF ),” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol 38, pp. 152. | spa |
dc.relation.references | [51] Z.-M. Inc. (2019). “Potencial Zeta,” Zeta-Meter Inc., 2008. [Online]. Available: https://www.malvernpanalytical.com/es/products/measurement-type/zeta-potential. [Accessed: 06-May-2019]. | spa |
dc.relation.references | [52] Lenntech, “Potencial Zeta - Lenntech.” [Online]. Available: https://www.lenntech.es/potential-zeta.htm. [Accessed: 06-May-2019]. | spa |
dc.relation.references | [53] ASTM International, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, no. C39/C39M − 17b. 2015, pp. 1–7. | spa |
dc.relation.references | [54] ASTM International, Compressive Strength of Cylindrical Concrete Specimens. 2015, pp. 1–7. | spa |
dc.relation.references | [55] Smith and J. Hashemi. (2006). Fundamentos de la ciencia e ingeniería de materiales, cuarta edición, México, McGraw-Hill Education | spa |
dc.relation.references | [56] Askeland. D. R. (1984). Ciencia e ingeniería de materiales, Sexta Edición, México, Editorial Cengage learning. | spa |
dc.relation.references | [57] De la Torre Ibarra and M. F. González Rodríguez. (2017). “Análisis de fractura en ensayos de compresión para materiales compuestos utilizando pruebas ópticas no destructivas, (Tesis de maestría)” Centro de investigaciones en óptica, A.C, México. | spa |
dc.relation.references | [58] Vanegas-Useche, L. (2018). Diseño de elementos de máquinas, primera edición, Colombia, Editorial Universidad Tecnológica de Pereira. | spa |
dc.relation.references | [59] Pino-Minguez, J. (2008). “Estudio nanométrico de biocompatibilidad y adhesividad celular a biomateriales utilizados en cirugía ortopédica, (Tesis doctoral)” Universidad de Santiago de Compostela, España. | spa |
dc.relation.references | [60] Zaton-Orcasitas, L. Fernández Carrasco, and D. Torrenas Martin. (2015). “Empleo de aditivos en la fabricación de materiales, (Tesis de maestría)” Escola Técnica Superior d’Enginyeria de Camins, Canals i Ports, Barcelona. | spa |
dc.relation.references | [61] R. Herman and Bogue. (1997) “The Chemistry of Portland Cement,” in Cement chemistry, Second., H. Taylor, Ed., pp. 55–87. | spa |
dc.relation.references | [62] Reales et al., O. A. M. (2018). “Reinforcing Effect of Carbon Nanotubes / Surfactant Dispersions in Portland Cement Pastes,” Advences in civil engineering., vol. 2018. | spa |
dc.relation.references | [63] ASTM International, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars ( Using 2-in . or [ 50-mm ] Cube Specimens ), no. C109/C109M – 11b. 2010, pp. 1–9. | spa |
dc.relation.references | [64] ASTM International, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, no. C192/C192M − 16a Standard. 2007, pp. 1–8. | spa |
dc.relation.references | [65] Prasankumar, R. P. and Taylor, A. J. (2011). Optical techniques for solid-state materials characterization, 1 st, CRC Press. | spa |
dc.relation.references | [66] Hodkiewicz, J. (2010). “Characterizing Carbon Materials with Raman Spectroscopy -application note,” Thermo Fish. Sci. | spa |
dc.relation.references | [67] Frmyr, F. K. Hansen, and T. Olsen. (2012). “The optimum dispersion of carbon nanotubes for epoxy nanocomposites: Evolution of the particle size distribution by ultrasonic treatment,” J. Nanotechnol., vol. 2012. | spa |
dc.relation.references | [68] Duan, Q. Wang, and F. Collins. (2011). “Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective,” Chem. Sci., vol. 2, no. 7, p. 1407. | spa |
dc.relation.references | [69] Abu Al-Rub, A. I. Ashour, and B. M. Tyson. (2012). “On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites,” Constr. Build. Mater., vol. 35, pp. 647–655. | spa |
dc.relation.references | [70] Ryabenko, T. V Dorofeeva, and G. I. Zvereva. (2004). “UV – VIS – NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT / SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy,” Carbon., vol. 42, pp. 1523–1535. | spa |
dc.relation.references | [71] Grossiord, P. Van Der Schoot, J. Meuldijk, C. E. Koning, P. O. Box, and A. X. E. V. (2007). “Determination of the Surface Coverage of Exfoliated Carbon Nanotubes by Surfactant Molecules in Aqueous Solution,” Langmuir., no. 23, pp. 3646–3653. | spa |
dc.relation.references | [72] Castillo-León, J. J. (2012). “Diseño y preparación de nanocompuestos funcionalizados con ácido fólico y sus aplicaciones biomédicas (Tesis de maestría),” Universidad Industrial de Santander, Bucaramanga. | spa |
dc.relation.references | [73] Saito, R. et al. (1992). “Electronic structure of chiral graphene tubules structure of chiral graphene tubules,” Appl. Phys. Lett., vol. 2204, pp. 67–70. | spa |
dc.relation.references | [74] Kumazawaa, Y. et al. (1999). “Optical Properties of Single-Wall Carbon Nanotubes,” Synthetic Metals, vol. 103, pp. 2555–2558. | spa |
dc.relation.references | [75] Alafogianni, K. Dassios, S. Farmaki, S. K. Antiohos, T. E. Matikas, and N. M. Barkoula. (2016). “On the efficiency of UV-vis spectroscopy in assessing the dispersion quality in sonicated aqueous suspensions of carbon nanotubes,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 495, pp. 118–124. | spa |
dc.relation.references | [76] Li H. and Y. Qiu. (2019). “Dispersion, sedimentation and aggregation of multiwalled carbon nanotubes as affected by single and binary mixed surfactants,” R. Soc. Open Sci., vol. 6, no. 7, | spa |
dc.relation.references | [77] Di Crescenzo, P. Di Profio, G. Siani, R. Zappacosta, and A. Fontana. (2016). “Optimizing the Interactions of Surfactants with Graphitic Surfaces and Clathrate Hydrates,” Langmuir, vol. 32, no. 26, pp. 6559–6570. | spa |
dc.relation.references | [78] Blanch, C. E. Lenehan, and J. S. Quinton. (2010). “Optimizing Surfactant Concentrations for Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solution,” Phys. Chem. A, no. Cmc, pp. 9805–9811. | spa |
dc.relation.references | [79] Lédo, R. F. S. Lima, J. B. A. Paulo, and M. A. C. Duarte. (2009). “Estudio comparativo de sulfato de aluminio y semillas de moringa oleifera para la depuración de aguas con baja turbiedad,” Inf. Tecnol., vol. 20, no. 5, pp. 3–12. | spa |
dc.relation.references | [80] Hang Zhao. (2015). “Preparation and characterization of carbon micro/nano hybrids and their functional composites, (Tesis de doctoral)” L’Universite Paris-Saclay, Paris. | spa |
dc.relation.references | [81] Sanchez and K. Sobolev. (2010). “Nanotechnology in concrete – A review,” Constr. Build. Mater., vol. 24, no. 11, pp. 2060–2071. | spa |
dc.relation.references | [82] Gowripalan, N. (2020). “Autogenous Shrinkage of Concrete at Early Ages,” Lect. Notes Civ. Eng., vol. 37, no. December, pp. 269–276 | spa |
dc.relation.references | [83] DeAndrade Viera, S. (2017). “Análisis teórico experimental de morteros de base cemento con adición de nano partículas, (Tesis de maestría)” Universidad Politecnica de Madrid. | spa |
dc.relation.references | [84] Y. Gao, H. Jing, M. Du, and W. Chents. (2018). “Dispersion of multi-walled carbon nanotubes stabilized by humic acid in sustainable cement composites,” Nanomaterials, vol. 8, no. 10. | spa |
dc.relation.references | [85] Han, X. Yu, and J. Ou. (2011). “Multifunctional and Smart Carbon Nanotube Reinforced Cement-Based Materials,” Nanotechnol. Civ. Infrastruct., pp. 1–47. | spa |
dc.relation.references | [86] Mamlouk, M. S. y Zaniewski, J. P. (2000). Materiales para Ingeniería Civil. Editorial PEARSON Prentice Hall. Segunda Edición. Madrid. Recuperado de: https://www.academia.edu/32903208/Materiales_Para_Ingenier%C3%ADa_Civil_-_Michael_S._Mamlouk_and_John_P._Zaniewski_2da_Edici%C3%B3n_ | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.spa | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.proposal | Multi-walled carbon nanotubes | eng |
dc.subject.proposal | Nanotubos de carbono de paredes multiples | spa |
dc.subject.proposal | Tensioactivo | spa |
dc.subject.proposal | Surfactant | eng |
dc.subject.proposal | Dispersión | spa |
dc.subject.proposal | Dispersion | eng |
dc.subject.proposal | Agglomeration | eng |
dc.subject.proposal | Reaglomeración | spa |
dc.subject.proposal | Propiedades mecánicas | spa |
dc.subject.proposal | Mechanical properties | eng |
dc.subject.proposal | Energía | spa |
dc.subject.proposal | Energy | eng |
dc.subject.proposal | Materiales compuestos | spa |
dc.subject.proposal | Composite materials | eng |
dc.title | Energías de dispersión y surfactantes en una solución de nanotubos de carbono en agua: aplicaciones en pastas de cemento portland | spa |
dc.title.alternative | Dispersion energies and surfactants in a carbon nanotube in water solution: applications in portland cement pastes | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053838628.2020.pdf
- Tamaño:
- 3.6 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.8 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: