En 21 día(s), 0 hora(s) y 28 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Producción de hidrógeno verde a partir de agua de producción petrolera

dc.contributor.advisorCortés Correa, Farid B.
dc.contributor.authorHerrera Ríos, Ever
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0002154141spa
dc.contributor.orcidhttps://orcid.org/0009-0002-2032-7089spa
dc.contributor.researchgroupFenómenos de Superficie Michael Polanyispa
dc.date.accessioned2024-02-28T20:13:03Z
dc.date.available2024-02-28T20:13:03Z
dc.date.issued2024
dc.description.abstractThe main objective of this study is to evaluate the effect of the oil content of oilfield production water on the production of green hydrogen by electrolysis in the presence of carbon quantum dots (CQDs). For this purpose, various electrochemical techniques, such as linear sweep voltammetry (LSV), cyclic voltammetry (CV), and potentiometry were used to identify the effect of crude oil during hydrogen production. The results show that the use of CQDs affects the Faradaic efficiency, which increases from 78% to 83% with the incorporation of CQDs. In the presence of CQDs, the effects generated by the presence of the oil are inhibited at low oil concentrations. On the contrary, hydrogen production increases by 10.0% (0.1 ml/min) with a faradaic efficiency of 83% and a half-cell efficiency of 41%, compared to the record obtained with the maximum concentration of emulsified crude oil (400 mg/L). Thermogravimetric analysis (TGA), mass spectrometry (MS), and Fourier-transform infrared spectroscopy (FTIR) were employed to discern the adsorption of crude oil onto the electrodes, quantify the gas fractions generated during the process, and identify the functional groups present at the conclusion of the procedure, respectively. The size of the initial emulsion droplets was 3.4 µm, at the end of the test there was evidence of complete breakage of the emulsion due to the effect of the applied electric field. No evidence of adsorption of crude oil on graphite electrodes during electrolysis is observed based on the tests. It has been shown that green hydrogen production from crude oil production water is feasible due to the proposed of a disruptive electrolyte in the produced water which inhibite the effect of the oil content in the O/W emulsion. This allows the implementation of a new green energy production initiative aligned with the global goal of achieving net zero emissions (NZE) by 2050. The current investigation presents a prospective alternative for harnessing the 18 kW electrical energy potential employed within emulsion-breaking processes within a Colombian field for treatment around of 1000 bblopd. This alternative offers a theoretical potential for hydrogen production, approximating 7.6 kW, thus representing a promising opportunity for practical field deployment.eng
dc.description.abstractEl principal objetivo de este estudio es evaluar el efecto del contenido de aceite del agua de producción de campos petroleros sobre la producción de hidrógeno verde por electrólisis en presencia de puntos cuánticos de carbono (CQD). Para ello, se utilizaron diversas técnicas electroquímicas, como la voltametría de barrido lineal (LSV), la voltametría cíclica (CV) y la potenciometría, para identificar el efecto del petróleo crudo durante la producción de hidrógeno. Los resultados muestran que el uso de CQD afecta la eficiencia faradaica, la cual aumenta del 78% al 83% con la incorporación de CQD. En presencia de CQD, los efectos generados por la presencia del petróleo se inhiben a bajas concentraciones de petróleo. Por el contrario, la producción de hidrógeno aumenta un 10,0% (0,1 ml/min) con una eficiencia Faradaica del 83% y una eficiencia de media celda del 41%, frente al récord obtenido con la máxima concentración de crudo emulsionado (400 mg/ L). Se emplearon análisis termogravimétricos (TGA), espectrometría de masas (MS) y espectroscopía infrarroja por transformada de Fourier (FTIR) para discernir la adsorción de petróleo crudo en los electrodos, cuantificar las fracciones de gas generadas durante el proceso e identificar los grupos funcionales presentes en la conclusión del procedimiento, respectivamente. El tamaño de las gotas iniciales de la emulsión fue de 3,4 µm, al final de la prueba hubo evidencia de rotura completa de la emulsión debido al efecto del campo eléctrico aplicado. Según las pruebas, no se observa evidencia de adsorción de petróleo crudo en electrodos de grafito durante la electrólisis. Se ha demostrado que la producción de hidrógeno verde a partir del agua de producción de petróleo crudo es factible debido a la propuesta de un electrolito disruptivo en el agua producida que inhibe el efecto del contenido de aceite en la emulsión O/W. Esto permite la implementación de una nueva iniciativa de producción de energía verde alineada con el objetivo global de lograr cero emisiones netas (NZE) para 2050. La investigación actual presenta una alternativa prospectiva para aprovechar el potencial de energía eléctrica de 18 kW empleado en los procesos de ruptura de emulsiones dentro de un Campo colombiano para tratamiento alrededor de 1000 bblopd. Esta alternativa ofrece un potencial teórico para la producción de hidrógeno, de aproximadamente 7,6 kW, lo que representa una oportunidad prometedora para el despliegue práctico en el campo. (Tomado de la fuente)spa
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.format.extent54 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85738
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAjanovic, A., M. Sayer, and R. Haas, The economics and the environmental benignity of different colors of hydrogen. International Journal of Hydrogen Energy, 2022.spa
dc.relation.referencesKhan, Z., et al., Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management. 165: p. 602-627.spa
dc.relation.referencesSafari, F. and I. Dincer, A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Conversion and Management, 2020. 205: p. 112182.spa
dc.relation.referencesAtilhan, S., et al., Green hydrogen as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering, 2021. 31: p. 100668.spa
dc.relation.referencesSazali, N., Emerging technologies by hydrogen: A review. International Journal of Hydrogen Energy, 2020. 45(38): p. 18753-18771.spa
dc.relation.referencesDe Souza, R.F., et al., Electrochemical hydrogen production from water electrolysis using ionic liquid as electrolytes: towards the best device. Journal of Power Sources, 2007. 164(2): p. 792-798.spa
dc.relation.referencesKumar, S.S. and V. Himabindu, Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies, 2019. 2(3): p. 442-454.spa
dc.relation.referencesMohammed-Ibrahim, J. and H. Moussab, Recent advances on hydrogen production through seawater electrolysis. Materials Science for Energy Technologies, 2020. 3: p. 780-807.spa
dc.relation.referencesHuang, X.-N., et al., Hydrogen generation from hydrolysis of aluminum/graphite composites with a core–shell structure. International journal of hydrogen energy, 2012. 37(9): p. 7457-7463.spa
dc.relation.referencesZhang, Y., et al., High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting. Journal of Alloys and Compounds, 2018. 732: p. 248-256.spa
dc.relation.referencesNagai, N., et al., Existence of optimum space between electrodes on hydrogen production by water electrolysis. International journal of hydrogen energy, 2003. 28(1): p. 35-41.spa
dc.relation.referencesAmikam, G., P. Nativ, and Y. Gendel, Chlorine-free alkaline seawater electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2018. 43(13): p. 6504-6514.spa
dc.relation.referencesWang, C., et al., Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Applied Catalysis B: Environmental, 2021. 291: p. 120071.spa
dc.relation.referencesVillegas, J.P., et al., Remoción de hidrocarburos de aguas de producción de la industria petrolera utilizando nanointermedios compuestos por SiO2 funcionalizados con nanopartículas magnéticas. Dyna, 2017. 84(202): p. 65-74.spa
dc.relation.referencesAbdallah, M., et al., Corrosion behavior of nickel electrode in NaOH solution and its inhibition by some natural oils. Int. J. Electrochem. Sci, 2014. 9(3): p. 1071-1086.spa
dc.relation.referencesJang, D., H.-S. Cho, and S. Kang, Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system. Applied Energy, 2021. 287: p. 116554.spa
dc.relation.referencesSelvaraju, N., K. Ravichandran, and G. Venugopal, A short review of the kinetic parameters of carbon quantum dots for Electrocatalytic Hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023. 48(10): p. 3807-3823.spa
dc.relation.referencesWu, H., et al., Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochemical Energy Reviews, 2021. 4(3): p. 473-507.spa
dc.relation.referencesCannone, S.F., A. Lanzini, and M. Santarelli, A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates. Energies, 2021. 14(2): p. 387.spa
dc.relation.referencesOlabi, A. and M.A. Abdelkareem, Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 2022. 158: p. 112111.spa
dc.relation.referencesOlabi, A., et al., Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renewable and Sustainable Energy Reviews, 2022. 153: p. 111710.spa
dc.relation.referencesGustavsson, L., et al., Climate effects of forestry and substitution of concrete buildings and fossil energy. Renewable and Sustainable Energy Reviews, 2021. 136: p. 110435.spa
dc.relation.referencesHe, C., et al., Future global urban water scarcity and potential solutions. Nature Communications, 2021. 12(1): p. 4667.spa
dc.relation.referencesTian, L., et al., Carbon quantum dots for advanced electrocatalysis. Journal of Energy Chemistry, 2021. 55: p. 279-294.spa
dc.relation.referencesLavasani, A. and M. Vakili, Experimental study of photothermal specifications and stability of graphene oxide nanoplatelets nanofluid as working fluid for low-temperature Direct Absorption Solar Collectors (DASCs). Solar Energy Materials and Solar Cells, 2017. 164: p. 32-39.spa
dc.relation.referencesZhao, M., et al., Facile in situ synthesis of a carbon quantum dot/graphene heterostructure as an efficient metal-free electrocatalyst for overall water splitting. Chemical Communications, 2019. 55(11): p. 1635-1638.spa
dc.relation.referencesFranco, C.A., et al., Easy and rapid synthesis of carbon quantum dots from Mortino (Vaccinium Meridionale Swartz) extract for use as green tracers in the oil and gas industry: Lab-to-field trial development in Colombia. Industrial & Engineering Chemistry Research, 2020. 59(25): p. 11359-11369.spa
dc.relation.referencesWu, H., S. Lu, and B. Yang, Carbon-dot-enhanced electrocatalytic hydrogen evolution. Accounts of Materials Research, 2022. 3(3): p. 319-330.spa
dc.relation.referencesWei, S., et al., Experimental study of hydrogen production using electrolyte nanofluids with a simulated light source. international journal of hydrogen energy, 2022. 47(12): p. 7522-7534.spa
dc.relation.referencesWei, S., B.V. Balakin, and P. Kosinski, Investigation of nanofluids in alkaline electrolytes: Stability, electrical properties, and hydrogen production. Journal of Cleaner Production, 2023: p. 137723.spa
dc.relation.referencesQuan, X., et al., Capacitive deionization of NaCl solutions with ambient pressure dried carbon aerogel microsphere electrodes. Rsc Advances, 2017. 7(57): p. 35875-35882.spa
dc.relation.referencesCharin, R.M., et al., Crude oil electrical conductivity measurements at high temperatures: introduction of apparatus and methodology. Energy & Fuels, 2017. 31(4): p. 3669-3674.spa
dc.relation.referencesKim, S.K., D.-M. Shin, and J.W. Rhim, Designing a high-efficiency hypochlorite ion generation system by combining cation exchange membrane aided electrolysis with chlorine gas recovery stream. Journal of Membrane Science, 2021. 630: p. 119318.spa
dc.relation.referencesChung, C.M., et al., Effects of anode materials and chloride ions on current efficiency of electrochemical oxidation of carbohydrate compounds. Journal of the Electrochemical Society, 2019. 166(13): p. H628.spa
dc.relation.referencesKatsounaros, I., J.C. Meier, and K.J. Mayrhofer, The impact of chloride ions and the catalyst loading on the reduction of H2O2 on high-surface-area platinum catalysts. Electrochimica Acta, 2013. 110: p. 790-795.spa
dc.relation.referencesYu, J., et al., Seawater electrolyte-based metal–air batteries: from strategies to applications. Energy & Environmental Science, 2020. 13(10): p. 3253-3268.spa
dc.relation.referencesLiu, Y., Y. Wang, and S. Zhao, Journey of electrochemical chlorine production: From brine to seawater. Current Opinion in Electrochemistry, 2022: p. 101202.spa
dc.relation.referencesChen, Y., et al., Study of ion transmission in an electrolyte of graphene quantum dots under ultraviolet light. Ceramics International, 2018. 44(12): p. 14417-14424.spa
dc.relation.referencesLim, S.Y., W. Shen, and Z. Gao, Carbon quantum dots and their applications. Chemical Society Reviews, 2015. 44(1): p. 362-381.spa
dc.relation.referencesSu, H., et al., Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application. Carbon Energy, 2023: p. e280.spa
dc.relation.referencesSharma, K., et al., Treatment of crude oil contaminated wastewater via an electrochemical reaction. RSC advances, 2020. 10(4): p. 1925-1936.spa
dc.relation.referencesEow, J.S. and M. Ghadiri, Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chemical Engineering Journal, 2002. 85(2-3): p. 357-368.spa
dc.relation.referencesHuang, X., et al., Charge-transfer-induced noncoalescence and chain formation of free droplets under a pulsed dc electric field. Langmuir, 2020. 36(47): p. 14255-14267.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.lembHidrógeno
dc.subject.lembElectrolisis del agua
dc.subject.lembAceites minerales
dc.subject.lembCampos petrolíferos - Métodos de producción
dc.subject.lembRecursos energéticos renovables
dc.subject.proposalCrude oileng
dc.subject.proposalCQDseng
dc.subject.proposalElectrolysiseng
dc.subject.proposalGraphite
dc.subject.proposalHydrogeneng
dc.subject.proposalProduced watereng
dc.subject.proposalAgua de producciónspa
dc.subject.proposalElectrólisisspa
dc.subject.proposalGrafitospa
dc.subject.proposalHidrógenospa
dc.titleProducción de hidrógeno verde a partir de agua de producción petroleraeng
dc.title.translatedGeneration of green hydrogen from oil production water
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis MSc.pdf
Tamaño:
1.18 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: