Computational simulation and model of a generalized prototype of an ornamental root

dc.contributor.advisorGarzón Alvarado, Diego Alexander
dc.contributor.advisorVargas Silva, Gustavo
dc.contributor.authorMoreno Chaparro, Daniela
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2022-07-22T14:09:28Z
dc.date.available2022-07-22T14:09:28Z
dc.date.issued2022-07
dc.descriptionilustraciones, fotografías, graficasspa
dc.description.abstractThe growth of a healthy and productive plant depends on the correct development of its roots and the surrounding environment. In this context, root growth is crucial because it provides support, anchoring, and feeding characteristics. Multiple reported studies have focused on interpreting and understanding the root behavior, providing different morphological and topological classifications of root archetypes. This document proposes and evaluates two computational models to simulate the root growth. The first model corresponds to the geometrical representation of root growth in 2D and 3D space. In this scheme, four common root archetypes were addressed and considered their tropisms: adventitious, primary root, napiform, and fasciculate. The visual inspection of different root plants such as beans, carrots, and orchids was considered to develop the algorithm. Then, computational simulations were carried out to obtain the desired root archetypes or morphologies. This model has a stochastic factor providing greater versatility in the simulations, similarly to actual roots. The second computational scheme used is Reaction-diffusion Root Branching (RDRB), which models the dynamic root growth using the finite element method (FEM) in 1D for the roots and 2D for the growing media. This model provides a more detailed and more complex description than the first one, considering the reaction-diffusion of the species, representing the biochemical search for nutrients. Additionally, it accounts for an elastic contribution to account for the mechanical effects of root growing and the media interaction. This model involves biochemical, biophysical, and tropism stimuli. The two proposed mathematical/computational models can correctly represent the plant root growth, incorporating geometrical aspects and biophysical and biochemical features. Furthermore, these models have the potential to be adopted to investigate other natural branching phenomena such as slime mold, fractures, circulatory systems, respiratory systems, and thunders.eng
dc.description.abstractEl crecimiento de una planta sana y productiva depende del correcto desarrollo de sus raíces y del entorno que la rodea. En este contexto, el crecimiento de las raíces es crucial porque proporciona características de soporte, anclaje y alimentación. Múltiples estudios se han centrado en interpretar y comprender el comportamiento de la raíz, proporcionando diferentes clasificaciones morfológicas y topológicas de los arquetipos de raíz. Este documento propone y evalúa dos modelos computacionales para simular el crecimiento de las raíces. El primer modelo corresponde a la representación geométrica del crecimiento de raíces en el espacio 2D y 3D. En este esquema, se abordaron cuatro arquetipos de raíces comunes como lo son: adventicia, raíz primaria, napiforme y fasciculada, adicionalmente se consideraron sus tropismos. Para desarrollar el algoritmo se consideró la inspección visual de diferentes plantas de raíz como frijoles, zanahorias y orquídeas. Seguido de esto, se realizaron simulaciones computacionales para obtener los arquetipos o morfologías de raíces deseadas. Este modelo tiene un factor estocástico que proporciona una mayor versatilidad en las simulaciones, de forma similar a las raíces reales. El segundo modelo computacional utilizado es Reaction-diffusion Root Branching (RDRB), que modela el crecimiento dinámico de raíces usando el método de elementos finitos (FEM) en 1D para las raíces y 2D para los medios de cultivo. Este modelo proporciona una descripción más detallada y compleja que el primero, considerando la reacción-difusión de las especies, representando la búsqueda bioquímica de nutrientes. Además, explica los efectos mecánicos del crecimiento de las raíces y la interacción con el medio de crecimiento. Este modelo involucra estímulos bioquímicos, biofísicos y de tropismo. Los dos modelos matemáticos/computacionales propuestos pueden representar correctamente el crecimiento de las raíces de las plantas, incorporando aspectos geométricos y características biofísicas y bioquímicas. Además, estos modelos tienen el potencial de ser adaptados para investigar otros fenómenos naturales de ramificación, como moho mucilaginoso, fracturas, sistema circulatorio, sistema respiratorio y relámpagos. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería Mecánicaspa
dc.description.researchareaMecánica computacionalspa
dc.format.extentxiii, 59 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81727
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesAdu, M. O., Yawson, D. O., Bennett, M. J., Broadley, M. R., Dupuy, L. X., and White, P. J. (2017). A scanner-based rhizobox system enabling the quantification of root system development and response of brassica rapa seedlings to external p availability. Plant Root, 11, 16–32. https://doi.org/10.3117/plantroot.11.16.spa
dc.relation.referencesAziz, A. A., Lim, K. B., Rahman, E. K. A., Nurmawati, M. H., & Zuruzi, A. S. (2020). Agar with embedded channels to study root growth. Scientific Reports, 10(1), 1-12spa
dc.relation.referencesBentley, L. P., Stegen, J. C., Savage, V. M., Smith, D. D., von Allmen, E. I., Sperry, J. S., and Enquist, B. J. (2013). An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecology letters, 16(8), 1069-1078. https://doi.org/10.1111/ele.12127.spa
dc.relation.referencesBodner, G., Alsalem, M., Nakhforoosh, A., Arnold, T., and Leitner, D. (2017). RGB and spectral root imaging for plant phenotyping and physiological research: Experimental setup and imaging protocols. Journal of Visualized Experiments, 2017(126). https://doi.org/10.3791/56251.spa
dc.relation.referencesBodner, G., Leitner, D., Nakhforoosh, A., Sobotik, M., Moder, K., and Kaul, H. P. (2013). A statistical approach to root system classification. Frontiers in Plant Science, 4(AUG). https://doi.org/10.3389/fpls.2013.00292.spa
dc.relation.referencesBoudon, F., Chopard, J., Ali, O., Gilles, B., Hamant, O., Boudaoud, A., .and Godin, C. (2015). A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol, 11(1), e1003950. https://doi.org/10.1371/journal.pcbi.1003950.spa
dc.relation.referencesBoyer, J. S., Silk, W. K., & Watt, M. (2010). Path of water for root growth. Functional Plant Biology, 37(12), 1105-1116. Bouma, T. J., Nielsen, K. L., & Koutstaal, B. A. S. (2000). Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant and soil, 218(1), 185-196.spa
dc.relation.referencesCannon, W. A. (1949). A tentative classification of root systems. Ecology, 542-548. https://doi.org/10.2307/1932458spa
dc.relation.referencesClark, L. J., Whalley, W. R., and Barraclough, P. B. (2003). How do roots penetrate strong soil? Plant and Soil (Vol. 255). https://doi.org/10.1007/978-94-017-2923-9 10.spa
dc.relation.referencesCourne`de, P. H., Kang, M. Z., Mathieu, A., Barczi, J. F., Yan, H. P., Hu, B. G., and De Reffye, P. (2006). Structural factorization of plants to compute their functional and architectural growth. Simulation, 82(7), 427-438. https://doi.org/10.1177/0037549706069341spa
dc.relation.referencesde Moraes, M. T., Bengough, A. G., Debiasi, H., Franchini, J. C., Levien, R., Schnepf, A., and Leitner, D. (2018). Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil. Plant and Soil, 428(1–2), 67–92. https://doi.org/10.1007/s11104-018-3656-zspa
dc.relation.referencesDoussan, C., Page`s, L., and Pierret, A. (2009). Soil exploration and resource acquisition by plant roots: An architectural and modelling point of view. In Sustainable Agriculture (pp. 583–600). Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8-36. Esau, K. (1965). Plant anatomy. Plant Anatomy., (2nd Edition).spa
dc.relation.referencesDowdy, R. H., Smucker, A. J. M., Dolan, M. S., & Ferguson, J. C. (1998). Automated Image Analysis for Separating Plant Roots from Soil Debris Elutriated from Soil Cores. In Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems (pp. 737-744). Springer, Dordrecht.spa
dc.relation.referencesEshel, A., and Beeckman, T. (Eds.). (2013). Plant roots: the hidden half. CRC press.spa
dc.relation.referencesEsmon, C. A., Pedmale, U. V., and Liscum, E. (2005). Plant tropisms: Providing the power of movement to a sessile organism. International Journal of Developmental Biology. https://doi.org/10.1387/ijdb.052028cespa
dc.relation.referencesFang, S., Clark, R. T., Zheng, Y., Iyer-Pascuzzi, A. S., Weitz, J. S., Kochian, L. V., . . Benfey, P. N. (2013). Genotypic recognition and spatial responses by rice roots. Proceedings of the National Academy of Sciences of the United States of America, 110(7), 2670–2675. https://doi.org/10.1073/pnas.1222821110.spa
dc.relation.referencesFitter, A. H. (1987). An architectural approach to the comparative ecology of plant root systems. New phytologist, 106, 61-77. https://doi.org/10.1111/j.1469-8137.1987.tb04683.xspa
dc.relation.referencesFrench, A., Ubeda-Toma´s, S., Holman, T. J., Bennett, M. J., and Pridmore, T. (2009). High-throughput quantification of root growth using a novel image-analysis tool. Plant physiol- ogy, 150(4), 1784-1795. https://doi.org/10.1104/pp.109.140558spa
dc.relation.referencesGlin´ski, J., and Lipiec, J. (2018). Soil physical conditions and plant roots. CRC press.spa
dc.relation.referencesGodin, C., Costes, E., and Sinoquet, H. (1999). A method for describing plant architec- ture which integrates topology and geometry. Annals of botany, 84(3), 343-357spa
dc.relation.referencesGregory, P. J. (2008). Plant roots: growth, activity and interactions with the soil. John Wiley & Sons. Hochholdinger, F., Yu, P., and Marcon, C. (2018). Genetic control of root system development in maize. Trends in plant science, 23(1), 79-88.spa
dc.relation.referencesHodge, A., Berta, G., Doussan, C., Merchan, F., and Crespi, M. (2009). Plant root growth, architecture and function. Plant and soil, 321(1), 153-187. https://doi.org/10.1007/s11104-009- 9929-9.spa
dc.relation.referencesLeitner, D., Klepsch, S., Knieß, A., and Schnepf, A. (2010). The algorithmic beauty of plant roots–an L-System model for dynamic root growth simulation. Mathematical and Computer Modelling of Dynamical Systems, 16(6), 575-587. https://doi.org/10.1080/13873954.2010.491360spa
dc.relation.referencesLobet G, Koevoets IT, Noll M, Tocquin P, Meyer PE, Pagès L, et al. Using a structural root system model to evaluate and improve the accuracy of root image analysis pipelines. Front Plant Sci. Frontiers; 2017;8. doi:10.3389/fpls.2017.00447spa
dc.relation.referencesLynch, J. (1995). Root architecture and plant productivity. Plant physiology, 109(1), 7. https://doi.org/10.1104/pp.109.1.7spa
dc.relation.referencesMiyazawa, Y., Yamazaki, T., Moriwaki, T., and Takahashi, H. (2011). Root Tropism. Its Mechanism and Possible Functions in Drought Avoidance. Advances in Botanical Research (Vol. 57). https://doi.org/10.1016/B978-0-12-387692- 8.00010-2.spa
dc.relation.referencesNarisetti, N., Henke, M., Seiler, C., Shi, R., Junker, A., Altmann, T., & Gladilin, E. (2019). Semi-automated root image analysis (saRIA). Scientific reports, 9(1), 1-10.spa
dc.relation.referencesOrman-Ligeza, B., Civava, R., de Dorlodot, S., and Draye, X. (2014). Root system architecture. In Root engineering (pp. 39-56). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3- 642-54276-3 3spa
dc.relation.referencesPopova, L., Russino, A., Ascrizzi, A., and Mazzolai, B. (2012). Analysis of movement in primary maize roots. Biologia, 67(3), 517–524. https://doi.org/10.2478/s11756-012-0023-z.spa
dc.relation.referencesPornaro, Cristina & Macolino, Stefano & Menegon, Alessandro & Richardson, Mike. (2017). WinRHIZO Technology for Measuring Morphological Traits of Bermudagrass Stolons. Agronomy Journal. 109. 10.2134/agronj2017.03.0187.spa
dc.relation.referencesSchleicher, S., Lienhard, J., Poppinga, S., Speck, T., and Knippers, J. (2015). A method- ology for transferring principles of plant movements to elastic systems in architecture. Computer-Aided Design, 60, 105-117. https://doi.org/10.1016/j.cad.2014.01.005.spa
dc.relation.referencesSeethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., & York, L. M. (2021). RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. bioRxiv.spa
dc.relation.referencesTaiz, L. and Zeiger, E. (2003). Plant physiology. 3rd edn. Annals of Botany, 91(6), 750–751.spa
dc.relation.referencesWalter, A., Silk, W. K., and Schurr, U. (2009). Environmental Effects on Spatial and Temporal Patterns of Leaf and Root Growth. Annual Review of Plant Biology, 60(1), 279–304. https://doi.org/10.1146/annurev.arplant.59.032607.092819spa
dc.relation.referencesYang, M., Defossez, P., Danjon, F., and Fourcaud, T. (2014). Tree stability under wind: simulating uprooting with root breakage using a finite element method. Annals of botany, 114(4), 695-709. https://doi.org/10.1093/aob/mcu122.spa
dc.relation.referencesYoussef, R. A., and Chino, M. (1988). Development of a new rhizobox system to study the nutrient status in the rhizosphere. Soil Science and Plant Nutrition, 34(3), 461–465. https://doi.org/10.1080/00380768.1988.10415701.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembBiological modelseng
dc.subject.lembModelos biológicosspa
dc.subject.lembPlant physiologyeng
dc.subject.lembFisiología vegetalspa
dc.subject.proposalGrowth algorithmeng
dc.subject.proposalAlgoritmo de crecimientospa
dc.subject.proposalRoot architectureeng
dc.subject.proposalArquitectura de raízspa
dc.subject.proposalGrowth plant modeleng
dc.subject.proposalModelo de crecimiento de plantasspa
dc.titleComputational simulation and model of a generalized prototype of an ornamental rooteng
dc.title.translatedSimulación y modelo computacional de un prototipo de raíz ornamental generalizadaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032460480.2022.pdf
Tamaño:
2.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: