Improvement on the Track Reconstruction Algorithms at the LHCb Experiment
| dc.contributor.advisor | Milanés Carreño, Diego Alejandro | spa |
| dc.contributor.author | Riaño Pascagaza, Jeysson Alexander | spa |
| dc.contributor.researchgroup | Grupo de Partículas FENYX-UN | spa |
| dc.date.accessioned | 2020-03-09T17:36:37Z | spa |
| dc.date.available | 2020-03-09T17:36:37Z | spa |
| dc.date.issued | 2019-12-10 | spa |
| dc.description.abstract | In this MSc. Thesis work, the performance of the ghost categorization algorithms at the LHCb experiment were studied, using the $B_s^0\rightarrow J/\psi(\mu^+ \mu^-)\phi(K^+ K^-)$, $B^0\rightarrow J/\psi(\mu^+ \mu^-)$\\ $K_s^0(\pi^+ \pi^-)$, $B^0\rightarrow \mu^+ \mu^- K^*(K^+ \pi^-)$ and $D^{*+}\rightarrow D^0(K^- \pi^+) \pi^+$ simulated data samples for the years 2011 and 2012. Since, ghost tracks which correspond to reconstructed tracks that were not simulated, affect directly the error of the experimental measurements. Several studies were made in order to have better reconstruction algorithms. The first simulated data samples were used to check the differences between all the variables involved in the reconstruction process. An adaptive binning was done with the information of the $\chi^2_{ndof}$ and the transverse momentum ($\mathrm{P_T}$), the pseudorapidity ($\eta$) and the number of tracks per event. A selection criterion in the $\chi^2_{ndof}$ variable discards ghost tracks, however, some signal is also lost. Furthermore, two kaon tracks, coming from the same $\phi$ meson, were analyzed to discriminate the differences between the meson containing one or two ghost tracks. If one of the kaons is a ghost, a peak in the mass distribution was observed, meanwhile, a flat distribution was obtained for two ghost kaons. The compatibility of this peaking distribution with the real signal was tested using a multivariated selection which gave us as a result that only a few ghost events are compatible with the signal. Finally, the $D^{*+}$ sample for the year 2012 was used to test the modification of the linking fraction between the reconstructed and the generated particle. Decreasing this fraction results in a reduction of ghost tracks and therefor an increase in the signal yields, although the background increases as well. Two scenarios are discussed maximizing the signal gain and minimizing the background increase, and a proposal to improve the linking is presented. | spa |
| dc.description.abstract | En este trabajo de tesis de maestría el desempeño de los algoritmos de categorización de trazas fantasma fue estudiado, empleando para ello muestras de datos simulados de las desintegraciones de los mesones: $B_s^0\rightarrow J/\psi(\mu^+ \mu^-)\phi(K^+ K^-)$, $B^0\rightarrow J/\psi(\mu^+ \mu^-)$\\ $K_s^0(\pi^+ \pi^-)$, $B^0\rightarrow \mu^+ \mu^- K^*(K^+ \pi^-)$ y $D^{*+}\rightarrow D^0(K^- \pi^+) \pi^+$, para los años 2011 y 2012. Ya que las trazas fantasma son aquellas trazas reconstruidas las cuales no fueron generadas y estas afectan directamente el error de las medidas experimentales. Varios estudios fueron realizados para implementar mejoras en los algoritmos de reconstrucción. Las primeras muestras de datos simulados fueron empleadas en la búsqueda de diferencias entre las distribuciones de todas las variables cinemáticas involucradas en el proceso de reconstrucción. Un estudio de paso adaptativo fue llevado a cabo con la información del $\chi^2_{ndof}$ y el momento transversal ($P_T$), la pseudorapidez ($\eta$) y el número de trazas por evento. Un criterio de selección en la variable $\chi^2_{ndof}$ fue empleado para descartar trazas fantasmas sin embargo éste también descarta eventos de señal. Además, dos trazas de kaones, proveninetes del mismo meson $\phi\rightarrow K^+K^-$, fueron analizadas para observar las diferencias entre el meson que contiene una o dos trazas fantasma. Un pico en la distribución de masa fue observado cuando tan solo uno de los kaones es fantasma, en caso contrario se obtiene una distribución plana. La compatibilidad de los eventos en el pico de la distribución eventos fue comparada con la distribución de eventos de señal arrojando como resultado que sólo unos pocos eventos fantasmas son compatibles con la señal. Finalmente la muestra de datos para el $D^{*+}$ del año 2012 fue empleada para testear una modificación en la fracción de relación entre las partículas reconstruidas con las partículas generadas. Imponiendo una condición menos severa sobre esta fracción la cantidad de trazas fantasma reconstruidas se reduce y adicionalmente la cantidad de trazas bien reconstruidas aumenta. Sin embargo, hay también un aumento de la cantidad de fondo reconstruidos. En este trabajo dos escenarios son discutidos, minimizando la cantidad de fondo y maximizando la cantidad de señal reconstruidos para los cuales la propuesta de ganar eventos de señal es cumplida. | spa |
| dc.description.additional | Magíster en Ciencias - Física. Línea de investigación: Física experimental de partículas | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 119 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/75996 | |
| dc.language.iso | eng | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.department | Departamento de Física | spa |
| dc.relation.references | LHCb Collaboration. LHCb - Large Hadron Collider beauty experiment. http:// lhcb-public.web.cern.ch/lhcb-public/, 2018. | spa |
| dc.relation.references | LHCb Collaboration. The lhcb detector at the lhc. Journal of Instrumentation, 3:1–218, 2008. | spa |
| dc.relation.references | M. Meissner. Measurements of particle production and particle correlations in proton- proton and proton-ion collisions with LHCb. Phd thesis, Ruperto-Carola-University, Heidelberg, Germany, 2015. http://inspirehep.net/record/1381400?ln=en. | spa |
| dc.relation.references | Wimberley. J. Ibackgroundcategory. https://twiki.cern.ch/twiki/bin/view/LHCb/ TupleToolMCBackgroundInfo, 2013. | spa |
| dc.relation.references | Gligorov. V. The backgroundcategory tool for background classification. PPTS Meeting, CERN, 2013. | spa |
| dc.relation.references | Olive K.A. et al. Review of particle physics. Chin. Phys C, Beijing, 2014. | spa |
| dc.relation.references | S. Bethke. World summary of αs (2015). In High-precision αs measurements from LHC to FCC-ee, pages 6–10, 2015. | spa |
| dc.relation.references | Marek Karliner and Jonathan L. Rosner. Discovery of the doubly charmed Ξcc baryon implies a stable bbud tetraquark. Phys. Rev. Lett., 119:202001, Nov 2017. | spa |
| dc.relation.references | R. et. al. Aaij. Observation of j/ψp resonances consistent with pentaquark states in Λ0b → j/ψK−p decays. Phys. Rev. Lett., 115:072001, Aug 2015. | spa |
| dc.relation.references | A. Nisati and G. Tonelli. The discovery of the Higgs boson at the Large Hadron Collider. Riv. Nuovo Cim., 38(11):507–573, 2015. | spa |
| dc.relation.references | ATLAS Collaboration. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716:1–29, 2012. | spa |
| dc.relation.references | CMS Collaboration. Observation of a new boson at a mass of 125gev with the cms experiment at the lhc. Physics Letters B, 716:30–61, 2012. CMS. | spa |
| dc.relation.references | S ́ebastien Descotes-Genon and Patrick Koppenburg. The ckm parameters. Annual Review of Nuclear and Particle Science, 67(1):97–127, 2017. | spa |
| dc.relation.references | N.Tuning P.Kooijman. Lectures on cp violation. https://www.nikhef.nl/~h71/ Lectures/2015/ppII-cpviolation-29012015.pdf, 2015. | spa |
| dc.relation.references | R. Ciesielski and K. Goulianos. Mbr monte carlo simulation in pythia8. arXiv:1205.1446, 2012. | spa |
| dc.relation.references | The LHCb collaboration. Measurement of the inelastic pp cross-section at a centre-of- mass energy of 13 tev. Journal of High Energy Physics, 2018(6):100, Jun 2018. | spa |
| dc.relation.references | ATLAS Collaboration. Measurement of the inelastic proton-proton cross section at √s = 13 TeV with the atlas detector at the lhc. Phys. Rev. Lett., 117:182002, Oct 2016. | spa |
| dc.relation.references | Measurement of the inelastic proton-proton cross section at √s = 13 TeV. Technical Report CMS-PAS-FSQ-15-005, CERN, Geneva, 2016. | spa |
| dc.relation.references | L. Evans and P. Bryant. Lhc machine. Journal of Instrumentation, 3:1–165, 2008. | spa |
| dc.relation.references | ATLAS Collaboration. The atlas experiment at the cern large hadron collider. Journal of Instrumentation, 3:1–438, 2008. | spa |
| dc.relation.references | CMS Collaboration. The cms experiment at the cern lhc. Journal of Instrumentation, 3:1–362, 2008. | spa |
| dc.relation.references | ALICE Collaboration. The alice experiment at the cern lhc. Journal of Instrumentation, 3:1–260, 2008. | spa |
| dc.relation.references | O Callot. FastVelo, a fast and efficient pattern recognition package for the Velo. Tech- nical Report LHCb-PUB-2011-001. CERN-LHCb-PUB-2011-001, CERN, Geneva, Jan 2011. LHCb. | spa |
| dc.relation.references | F. Rohner W. Flegel (Project Coordinator), M. Losasso. Lhcb magnet technical design report. Technical report, Magnet Design Team, CERN, 2000. | spa |
| dc.relation.references | LHCb Collaboration. Outer tracker technical design report. Technical report, LHCb, CERN, 2001. | spa |
| dc.relation.references | LHCb Collaboration R. Aaij et al. First observation of CP violation in the decays of Bs0 mesons. Phys.Rev.Lett., 110:221601, 2013. | spa |
| dc.relation.references | LHCb Collaboration R. Aaij et al. Measurement of the CKM angle γ from a combination of B± → Dh± analysis. Phys.Lett.B, 726:151, 2013. | spa |
| dc.relation.references | LHCb Collaboration R. Aaij et al. Measurement of the ratio of the branching fractions B(B0 → K+0γ)/B(Bs0 → φγ). Phys.Rev.Lett., 111:101805, 2013. | spa |
| dc.relation.references | LHCb Collaboration R. Aaij et al. Measurements of the Bs0 → μ+μ− branching frac- tion and search for the B0 → μ+μ− decays at the LHCb experiment. Phys.Rev.Lett., 111:101805, 2013. | spa |
| dc.relation.references | LHCb Collaboration. Lhcb particle identification upgrade technical design report. Tech- nical report, LHCb, CERN, 2013. | spa |
| dc.relation.references | LHCb Collaboration O. Deschamps. LHCb Calorimeters - Commissioning & perfor- mance. LHCb-TALK-2010-053, 2010. | spa |
| dc.relation.references | S Filippov, Yu K Gavrilov, E Guschin, S V Laptev, and V E Postoev. Experimental performance of SPD/PS detector prototypes. Technical Report LHCb-2000-031, CERN, Geneva, Oct 2000. | spa |
| dc.relation.references | G Bo ̈hner, A Falvard, J Lecoq, P Perret, and C Trouilleau. Very front-end electronics for the LHCb preshower. Technical Report LHCb-2000-047, CERN, Geneva, Oct 2000. | spa |
| dc.relation.references | LHCb collaboration Yu Guz. The lhcb hadron calorimeter. Journal of Physics: Confe- rence Series, 160(1):012054, 2009. | spa |
| dc.relation.references | L G Afanasyeva, Y Bogomolov, S Denissov, R I Dzhelyadin, A Kobelev, A K Konoplyan- nikov, O Kurakina, V Matveev, G D Nekipelova, V F Obraztsov, and E Tchernov. The hadron calorimeter design and construction. Technical Report LHCb-2000-045, CERN, Geneva, Oct 2000. | spa |
| dc.relation.references | LHCb Collaboration. LHCb muon system technical design report. Technical report, CERN, Geneva, 2001. | spa |
| dc.relation.references | F Archilli, W Baldini, G Bencivenni, N Bondar, W Bonivento, S Cadeddu, P Cam- pana, A Cardini, P Ciambrone, X Cid Vidal, C Deplano, P De Simone, A Falabella, M Frosini, S Furcas, E Furfaro, M Gandelman, J A Hernando Morata, G Graziani, A Lai, G Lanfranchi, J H Lopes, O Maev, G Manca, G Martellotti, A Massafferri, D Milanes, R Oldeman, M Palutan, G Passaleva, D Pinci, E Polycarpo, R Santacesa- ria, E Santovetti, A Sarti, A Satta, B Schmidt, B Sciascia, F Soomro, A Sciubba, and S Vecchi. Performance of the muon identification at lhcb. Journal of Instrumentation, 8(10):P10020, 2013. | spa |
| dc.relation.references | B. De Paula, F. Marinho, and S. Amato. Analysis of the Bsrightarrowmu+mu− Decay with the Reoptimized LHCb Detector. 2004. | spa |
| dc.relation.references | LHCb collaboration. LHCb Trigger and Online Upgrade Technical Design Report. Technical Report CERN-LHCC-2014-016. LHCB-TDR-016, CERN, May 2014. | spa |
| dc.relation.references | LHCb collaboration Antunes-Nobrega et al. LHCb trigger system: Technical Design Report. Technical Design Report LHCb. CERN, Geneva, 2003. revised version number 1 submitted on 2003-09-24 12:12:22. | spa |
| dc.relation.references | Barbara Storaci. Optimization of the lhcb track reconstruction. Journal of Physics: Conference Series, 664(7):072047, 2015. | spa |
| dc.relation.references | Torbjörn Sjöstrand, Patrik Edén, Christer Friberg, Leif Lönnblad, Gabriela Miu, Step- hen Mrenna, and Emanuel Norrbin. High-energy-physics event generation with pyt- hia 6.1. Computer Physics Communications, 135(2):238 – 259, 2001. | spa |
| dc.relation.references | René Brun, F Bruyant, Federico Carminati, Simone Giani, M Maire, A McPherson, G Patrick, and L Urban. GEANT: Detector Description and Simulation Tool; Oct 1994. CERN Program Library. CERN, Geneva, 1993. Long Writeup W5013. | spa |
| dc.relation.references | Antunes-Nobrega et al. LHCb reoptimized detector design and performance: Technical Design Report. Technical report, CERN, Geneva, 2003. | spa |
| dc.relation.references | Michael H. Seymour and Marilyn Marx. Monte Carlo Event Generators. Springer International Publishing, Cham, 2015. | spa |
| dc.relation.references | Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. Pythia 6.4 physics and manual. Journal of High Energy Physics, 2006(05):026, 2006. | spa |
| dc.relation.references | Torbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. A brief introduction to pythia 8.1. Computer Physics Communications, 178(11):852 – 867, 2008. | spa |
| dc.relation.references | Torbjörn Sjöstrand. Pythia 8 status report. arXiv:0809.0303, 2008. | spa |
| dc.relation.references | J Van Tilburg and M Merk. Track simulation and reconstruction in LHCb. PhD thesis, 2005. Presented on 01 Sep 2005. | spa |
| dc.relation.references | Torbjörn Sjöstrand, Patrik Edén, Christer Friberg, Leif Lönnblad, Gabriela Miu, Stephen Mrenna, and Emanuel Norrbin. High-energy-physics event generation with pyt- hia 6.1. Computer Physics Communications, 135(2):238 – 259, 2001. | spa |
| dc.relation.references | Torbjörn Sjöstrand and Maria van Zijl. A multiple-interaction model for the event structure in hadron collisions. Phys. Rev. D, 36:2019–2041, Oct 1987. | spa |
| dc.relation.references | Marco Clemencic, Hubert Degaudenzi, Pere Mato, Sebastien Binet, Wim Lavrijsen, Charles Leggett, and Ivan Belyaev. Recent developments in the lhcb software framework gaudi. Journal of Physics: Conference Series, 219(4):042006, 2010. | spa |
| dc.relation.references | P Mato. GAUDI-Architecture design document. Technical Report LHCb-98-064, CERN, Geneva, Nov 1998. | spa |
| dc.relation.references | LHCb Collaboration. The gaudi project. http://gaudi.web.cern.ch/gaudi/, 2018. | spa |
| dc.relation.references | LHCb Collaboration. The gauss project. http://lhcbdoc.web.cern.ch/lhcbdoc/ gauss/, 2018. | spa |
| dc.relation.references | Torbjörn Sjöstrand. Status and developments of event generators. arXiv:1608.06425, 2016. | spa |
| dc.relation.references | LHCb Collaboration. Gauss user guide and reference manual. http://lhcb-comp.web. cern.ch/lhcb-comp/Simulation/Gauss.pdf, 2005. | spa |
| dc.relation.references | LHCb Collaboration. The decfiles package. http://lhcbdoc.web.cern.ch/lhcbdoc/ decfiles/, 2018. | spa |
| dc.relation.references | LHCb Collaboration. The boole project. http://lhcbdoc.web.cern.ch/lhcbdoc/ boole/, 2018. | spa |
| dc.relation.references | LHCb Collaboration. The moore project. http://lhcbdoc.web.cern.ch/lhcbdoc/ moore/, 2018. | spa |
| dc.relation.references | Albert Puig. The LHCb trigger in 2011 and 2012. Technical Report LHCb-PUB-2014- 046. CERN-LHCb-PUB-2014-046, CERN, Geneva, Nov 2014. | spa |
| dc.relation.references | LHCb Collaboration. The brunel project. http://lhcbdoc.web.cern.ch/lhcbdoc/ brunel/, 2018. | spa |
| dc.relation.references | LHCb Collaboration. The davinci project. http://lhcbdoc.web.cern.ch/lhcbdoc/ davinci/, 2018. | spa |
| dc.relation.references | LHCb Collaboration. Root data analysis framework. https://root.cern.ch, 2018. | spa |
| dc.relation.references | Antunes-Nobrega et. al. LHCb computing: Technical Design Report. Technical Design Report LHCb. CERN, Geneva, 2005. Submitted on 11 May 2005. | spa |
| dc.relation.references | O Callot and S Hansmann-Menzemer. The Forward Tracking: Algorithm and Performance Studies. Technical Report LHCb-2007-015. CERN-LHCb-2007-015, CERN, Geneva, May 2007. | spa |
| dc.relation.references | R W Forty and M Needham. Standalone Track Reconstruction in the T-stations. Technical Report LHCb-2007-022. CERN-LHCb-2007-022, CERN, Geneva, Mar 2007. | spa |
| dc.relation.references | O Callot, M Kucharczyk, and M Witek. VELO-TT track reconstruction. Technical Report LHCb-2007-010. CERN-LHCb-2007-010, CERN, Geneva, Apr 2007. | spa |
| dc.relation.references | O Callot. Downstream Pattern Recognition. Technical Report LHCb-2007-026. CERN- LHCb-2007-026, CERN, Geneva, Mar 2007. | spa |
| dc.relation.references | P. d’Argent, L. Dufour, L. Grillo, J.A. de Vries, A. Ukleja, R. Aaij, F. Archilli, S. Bach- mann, D. Berninghoff, A. Birnkraut, J. Blouw, M. De Cian, G. Ciezarek, C. F ̈arber, M. Demmer, F. Dettori, E. Gersabeck, J. Grabowski, W.D. Hulsbergen, B. Khanji, M. Kolpin, M. Kucharczyk, B.P. Malecki, M. Merk, M. Mulder, J. Mu ̈ller, V. Mueller, A. Pellegrino, M. Pikies, B. Rachwal, T. Schmelzer, B. Spaan, M. Szczekowski, J. van Tilburg, S. Tolk, N. Tuning, U. Uwer, J. Wishahi, and M. Witek. Improved performance of the lhcb outer tracker in lhc run 2. Journal of Instrumentation, 12(11):P11016, 2017. | spa |
| dc.relation.references | M Needham. Tsa: Fast and efficient reconstruction for the Inner Tracker. Technical Report LHCb-2004-075. CERN-LHCb-2004-075, CERN, Geneva, Sep 2004. | spa |
| dc.relation.references | Luca Lista. Practical statistics for particle physicists. CERN Yellow Reports: School Proceedings, 5(0):213, 2017. | spa |
| dc.relation.references | Rutger M. van der Eijk. Track reconstruction in the LHCb experiment. PhD thesis, Amsterdam U., 2002. | spa |
| dc.relation.references | M Witek. VELO-TT matching and momentum determination at Level-1 trigger. Technical Report LHCb-2003-060, CERN, Geneva, Aug 2003. | spa |
| dc.relation.references | Y Xie. Short track reconstruction with VELO and TT. Technical Report LHCb-2003- 100, CERN, Geneva, Aug 2003. | spa |
| dc.relation.references | Adrian Perieanu. Identification of Ghost Tracks using Neural Networks. Technical Report LHCb 2007-158, CERN, Geneva, Dec 2007. | spa |
| dc.relation.references | M Needham. Identification of Ghost Tracks using a Likelihood Method. Technical Report LHCb-2008-026. CERN-LHCb-2008-026. LPHE-2008-004, CERN, Geneva, May 2008. | spa |
| dc.relation.references | Michel De Cian, Stephen Farry, Paul Seyfert, and Sascha Stahl. Fast neural-net based fake track rejection in the LHCb reconstruction. Technical Report LHCb-PUB-2017- 011. CERN-LHCb-PUB-2017-011, CERN, Geneva, Mar 2017. | spa |
| dc.relation.references | A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, M. Backes, T. Carli, O. Cohen, A. Christov, D. Dannheim, K. Danielowski, S. Henrot-Versille, M. Jachowski, K. Kraszewski, A. Krasznahorkay Jr., M. Kruk, Y. Mahalalel, R. Ospanov, X. Prudent, A. Robert, D. Schouten, F. Tegenfeldt, A. Voigt, K. Voss, M. Wolter, and A. Zemla. Tmva - toolkit for multivariate data analysis. https://arxiv.org/abs/physics/0703039v5, 2007. | spa |
| dc.relation.references | Roel Aaij, Johannes Albrecht, Francesco Dettori, Kevin Dungs, Helder Lopes, Diego Martinez Santos, Jessica Prisciandaro, Barbara Sciascia, Vasileios Syropoulos, Sascha Stahl, and Ricardo Vazquez Gomez. Optimization of the muon reconstruction algo- rithms for LHCb Run 2. Technical Report LHCb-PUB-2017-007. CERN-LHCb-PUB- 2017-007, CERN, Geneva, Feb 2017. | spa |
| dc.relation.references | The LHCb collaboration. Measurement of the track reconstruction efficiency at lhcb. Journal of Instrumentation, 10(02):P02007, 2015. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 530 - Física | spa |
| dc.subject.proposal | Ghost track | eng |
| dc.subject.proposal | Traza fantasma | spa |
| dc.subject.proposal | Signal | eng |
| dc.subject.proposal | Señal | spa |
| dc.subject.proposal | Background | eng |
| dc.subject.proposal | Fondo | spa |
| dc.subject.proposal | Migration | eng |
| dc.title | Improvement on the Track Reconstruction Algorithms at the LHCb Experiment | spa |
| dc.title.alternative | Mejora de los algoritmos de reconstrucción de trazas en el experimento LHCb | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

