Improvement on the Track Reconstruction Algorithms at the LHCb Experiment

dc.contributor.advisorMilanés Carreño, Diego Alejandrospa
dc.contributor.authorRiaño Pascagaza, Jeysson Alexanderspa
dc.contributor.researchgroupGrupo de Partículas FENYX-UNspa
dc.date.accessioned2020-03-09T17:36:37Zspa
dc.date.available2020-03-09T17:36:37Zspa
dc.date.issued2019-12-10spa
dc.description.abstractIn this MSc. Thesis work, the performance of the ghost categorization algorithms at the LHCb experiment were studied, using the $B_s^0\rightarrow J/\psi(\mu^+ \mu^-)\phi(K^+ K^-)$, $B^0\rightarrow J/\psi(\mu^+ \mu^-)$\\ $K_s^0(\pi^+ \pi^-)$, $B^0\rightarrow \mu^+ \mu^- K^*(K^+ \pi^-)$ and $D^{*+}\rightarrow D^0(K^- \pi^+) \pi^+$ simulated data samples for the years 2011 and 2012. Since, ghost tracks which correspond to reconstructed tracks that were not simulated, affect directly the error of the experimental measurements. Several studies were made in order to have better reconstruction algorithms. The first simulated data samples were used to check the differences between all the variables involved in the reconstruction process. An adaptive binning was done with the information of the $\chi^2_{ndof}$ and the transverse momentum ($\mathrm{P_T}$), the pseudorapidity ($\eta$) and the number of tracks per event. A selection criterion in the $\chi^2_{ndof}$ variable discards ghost tracks, however, some signal is also lost. Furthermore, two kaon tracks, coming from the same $\phi$ meson, were analyzed to discriminate the differences between the meson containing one or two ghost tracks. If one of the kaons is a ghost, a peak in the mass distribution was observed, meanwhile, a flat distribution was obtained for two ghost kaons. The compatibility of this peaking distribution with the real signal was tested using a multivariated selection which gave us as a result that only a few ghost events are compatible with the signal. Finally, the $D^{*+}$ sample for the year 2012 was used to test the modification of the linking fraction between the reconstructed and the generated particle. Decreasing this fraction results in a reduction of ghost tracks and therefor an increase in the signal yields, although the background increases as well. Two scenarios are discussed maximizing the signal gain and minimizing the background increase, and a proposal to improve the linking is presented.spa
dc.description.abstractEn este trabajo de tesis de maestría el desempeño de los algoritmos de categorización de trazas fantasma fue estudiado, empleando para ello muestras de datos simulados de las desintegraciones de los mesones: $B_s^0\rightarrow J/\psi(\mu^+ \mu^-)\phi(K^+ K^-)$, $B^0\rightarrow J/\psi(\mu^+ \mu^-)$\\ $K_s^0(\pi^+ \pi^-)$, $B^0\rightarrow \mu^+ \mu^- K^*(K^+ \pi^-)$ y $D^{*+}\rightarrow D^0(K^- \pi^+) \pi^+$, para los años 2011 y 2012. Ya que las trazas fantasma son aquellas trazas reconstruidas las cuales no fueron generadas y estas afectan directamente el error de las medidas experimentales. Varios estudios fueron realizados para implementar mejoras en los algoritmos de reconstrucción. Las primeras muestras de datos simulados fueron empleadas en la búsqueda de diferencias entre las distribuciones de todas las variables cinemáticas involucradas en el proceso de reconstrucción. Un estudio de paso adaptativo fue llevado a cabo con la información del $\chi^2_{ndof}$ y el momento transversal ($P_T$), la pseudorapidez ($\eta$) y el número de trazas por evento. Un criterio de selección en la variable $\chi^2_{ndof}$ fue empleado para descartar trazas fantasmas sin embargo éste también descarta eventos de señal. Además, dos trazas de kaones, proveninetes del mismo meson $\phi\rightarrow K^+K^-$, fueron analizadas para observar las diferencias entre el meson que contiene una o dos trazas fantasma. Un pico en la distribución de masa fue observado cuando tan solo uno de los kaones es fantasma, en caso contrario se obtiene una distribución plana. La compatibilidad de los eventos en el pico de la distribución eventos fue comparada con la distribución de eventos de señal arrojando como resultado que sólo unos pocos eventos fantasmas son compatibles con la señal. Finalmente la muestra de datos para el $D^{*+}$ del año 2012 fue empleada para testear una modificación en la fracción de relación entre las partículas reconstruidas con las partículas generadas. Imponiendo una condición menos severa sobre esta fracción la cantidad de trazas fantasma reconstruidas se reduce y adicionalmente la cantidad de trazas bien reconstruidas aumenta. Sin embargo, hay también un aumento de la cantidad de fondo reconstruidos. En este trabajo dos escenarios son discutidos, minimizando la cantidad de fondo y maximizando la cantidad de señal reconstruidos para los cuales la propuesta de ganar eventos de señal es cumplida.spa
dc.description.additionalMagíster en Ciencias - Física. Línea de investigación: Física experimental de partículasspa
dc.description.degreelevelMaestríaspa
dc.format.extent119spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75996
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.relation.referencesLHCb Collaboration. LHCb - Large Hadron Collider beauty experiment. http:// lhcb-public.web.cern.ch/lhcb-public/, 2018.spa
dc.relation.referencesLHCb Collaboration. The lhcb detector at the lhc. Journal of Instrumentation, 3:1–218, 2008.spa
dc.relation.referencesM. Meissner. Measurements of particle production and particle correlations in proton- proton and proton-ion collisions with LHCb. Phd thesis, Ruperto-Carola-University, Heidelberg, Germany, 2015. http://inspirehep.net/record/1381400?ln=en.spa
dc.relation.referencesWimberley. J. Ibackgroundcategory. https://twiki.cern.ch/twiki/bin/view/LHCb/ TupleToolMCBackgroundInfo, 2013.spa
dc.relation.referencesGligorov. V. The backgroundcategory tool for background classification. PPTS Meeting, CERN, 2013.spa
dc.relation.referencesOlive K.A. et al. Review of particle physics. Chin. Phys C, Beijing, 2014.spa
dc.relation.referencesS. Bethke. World summary of αs (2015). In High-precision αs measurements from LHC to FCC-ee, pages 6–10, 2015.spa
dc.relation.referencesMarek Karliner and Jonathan L. Rosner. Discovery of the doubly charmed Ξcc baryon implies a stable bbud tetraquark. Phys. Rev. Lett., 119:202001, Nov 2017.spa
dc.relation.referencesR. et. al. Aaij. Observation of j/ψp resonances consistent with pentaquark states in Λ0b → j/ψK−p decays. Phys. Rev. Lett., 115:072001, Aug 2015.spa
dc.relation.referencesA. Nisati and G. Tonelli. The discovery of the Higgs boson at the Large Hadron Collider. Riv. Nuovo Cim., 38(11):507–573, 2015.spa
dc.relation.referencesATLAS Collaboration. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716:1–29, 2012.spa
dc.relation.referencesCMS Collaboration. Observation of a new boson at a mass of 125gev with the cms experiment at the lhc. Physics Letters B, 716:30–61, 2012. CMS.spa
dc.relation.referencesS ́ebastien Descotes-Genon and Patrick Koppenburg. The ckm parameters. Annual Review of Nuclear and Particle Science, 67(1):97–127, 2017.spa
dc.relation.referencesN.Tuning P.Kooijman. Lectures on cp violation. https://www.nikhef.nl/~h71/ Lectures/2015/ppII-cpviolation-29012015.pdf, 2015.spa
dc.relation.referencesR. Ciesielski and K. Goulianos. Mbr monte carlo simulation in pythia8. arXiv:1205.1446, 2012.spa
dc.relation.referencesThe LHCb collaboration. Measurement of the inelastic pp cross-section at a centre-of- mass energy of 13 tev. Journal of High Energy Physics, 2018(6):100, Jun 2018.spa
dc.relation.referencesATLAS Collaboration. Measurement of the inelastic proton-proton cross section at √s = 13 TeV with the atlas detector at the lhc. Phys. Rev. Lett., 117:182002, Oct 2016.spa
dc.relation.referencesMeasurement of the inelastic proton-proton cross section at √s = 13 TeV. Technical Report CMS-PAS-FSQ-15-005, CERN, Geneva, 2016.spa
dc.relation.referencesL. Evans and P. Bryant. Lhc machine. Journal of Instrumentation, 3:1–165, 2008.spa
dc.relation.referencesATLAS Collaboration. The atlas experiment at the cern large hadron collider. Journal of Instrumentation, 3:1–438, 2008.spa
dc.relation.referencesCMS Collaboration. The cms experiment at the cern lhc. Journal of Instrumentation, 3:1–362, 2008.spa
dc.relation.referencesALICE Collaboration. The alice experiment at the cern lhc. Journal of Instrumentation, 3:1–260, 2008.spa
dc.relation.referencesO Callot. FastVelo, a fast and efficient pattern recognition package for the Velo. Tech- nical Report LHCb-PUB-2011-001. CERN-LHCb-PUB-2011-001, CERN, Geneva, Jan 2011. LHCb.spa
dc.relation.referencesF. Rohner W. Flegel (Project Coordinator), M. Losasso. Lhcb magnet technical design report. Technical report, Magnet Design Team, CERN, 2000.spa
dc.relation.referencesLHCb Collaboration. Outer tracker technical design report. Technical report, LHCb, CERN, 2001.spa
dc.relation.referencesLHCb Collaboration R. Aaij et al. First observation of CP violation in the decays of Bs0 mesons. Phys.Rev.Lett., 110:221601, 2013.spa
dc.relation.referencesLHCb Collaboration R. Aaij et al. Measurement of the CKM angle γ from a combination of B± → Dh± analysis. Phys.Lett.B, 726:151, 2013.spa
dc.relation.referencesLHCb Collaboration R. Aaij et al. Measurement of the ratio of the branching fractions B(B0 → K+0γ)/B(Bs0 → φγ). Phys.Rev.Lett., 111:101805, 2013.spa
dc.relation.referencesLHCb Collaboration R. Aaij et al. Measurements of the Bs0 → μ+μ− branching frac- tion and search for the B0 → μ+μ− decays at the LHCb experiment. Phys.Rev.Lett., 111:101805, 2013.spa
dc.relation.referencesLHCb Collaboration. Lhcb particle identification upgrade technical design report. Tech- nical report, LHCb, CERN, 2013.spa
dc.relation.referencesLHCb Collaboration O. Deschamps. LHCb Calorimeters - Commissioning & perfor- mance. LHCb-TALK-2010-053, 2010.spa
dc.relation.referencesS Filippov, Yu K Gavrilov, E Guschin, S V Laptev, and V E Postoev. Experimental performance of SPD/PS detector prototypes. Technical Report LHCb-2000-031, CERN, Geneva, Oct 2000.spa
dc.relation.referencesG Bo ̈hner, A Falvard, J Lecoq, P Perret, and C Trouilleau. Very front-end electronics for the LHCb preshower. Technical Report LHCb-2000-047, CERN, Geneva, Oct 2000.spa
dc.relation.referencesLHCb collaboration Yu Guz. The lhcb hadron calorimeter. Journal of Physics: Confe- rence Series, 160(1):012054, 2009.spa
dc.relation.referencesL G Afanasyeva, Y Bogomolov, S Denissov, R I Dzhelyadin, A Kobelev, A K Konoplyan- nikov, O Kurakina, V Matveev, G D Nekipelova, V F Obraztsov, and E Tchernov. The hadron calorimeter design and construction. Technical Report LHCb-2000-045, CERN, Geneva, Oct 2000.spa
dc.relation.referencesLHCb Collaboration. LHCb muon system technical design report. Technical report, CERN, Geneva, 2001.spa
dc.relation.referencesF Archilli, W Baldini, G Bencivenni, N Bondar, W Bonivento, S Cadeddu, P Cam- pana, A Cardini, P Ciambrone, X Cid Vidal, C Deplano, P De Simone, A Falabella, M Frosini, S Furcas, E Furfaro, M Gandelman, J A Hernando Morata, G Graziani, A Lai, G Lanfranchi, J H Lopes, O Maev, G Manca, G Martellotti, A Massafferri, D Milanes, R Oldeman, M Palutan, G Passaleva, D Pinci, E Polycarpo, R Santacesa- ria, E Santovetti, A Sarti, A Satta, B Schmidt, B Sciascia, F Soomro, A Sciubba, and S Vecchi. Performance of the muon identification at lhcb. Journal of Instrumentation, 8(10):P10020, 2013.spa
dc.relation.referencesB. De Paula, F. Marinho, and S. Amato. Analysis of the Bsrightarrowmu+mu− Decay with the Reoptimized LHCb Detector. 2004.spa
dc.relation.referencesLHCb collaboration. LHCb Trigger and Online Upgrade Technical Design Report. Technical Report CERN-LHCC-2014-016. LHCB-TDR-016, CERN, May 2014.spa
dc.relation.referencesLHCb collaboration Antunes-Nobrega et al. LHCb trigger system: Technical Design Report. Technical Design Report LHCb. CERN, Geneva, 2003. revised version number 1 submitted on 2003-09-24 12:12:22.spa
dc.relation.referencesBarbara Storaci. Optimization of the lhcb track reconstruction. Journal of Physics: Conference Series, 664(7):072047, 2015.spa
dc.relation.referencesTorbjörn Sjöstrand, Patrik Edén, Christer Friberg, Leif Lönnblad, Gabriela Miu, Step- hen Mrenna, and Emanuel Norrbin. High-energy-physics event generation with pyt- hia 6.1. Computer Physics Communications, 135(2):238 – 259, 2001.spa
dc.relation.referencesRené Brun, F Bruyant, Federico Carminati, Simone Giani, M Maire, A McPherson, G Patrick, and L Urban. GEANT: Detector Description and Simulation Tool; Oct 1994. CERN Program Library. CERN, Geneva, 1993. Long Writeup W5013.spa
dc.relation.referencesAntunes-Nobrega et al. LHCb reoptimized detector design and performance: Technical Design Report. Technical report, CERN, Geneva, 2003.spa
dc.relation.referencesMichael H. Seymour and Marilyn Marx. Monte Carlo Event Generators. Springer International Publishing, Cham, 2015.spa
dc.relation.referencesTorbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. Pythia 6.4 physics and manual. Journal of High Energy Physics, 2006(05):026, 2006.spa
dc.relation.referencesTorbjörn Sjöstrand, Stephen Mrenna, and Peter Skands. A brief introduction to pythia 8.1. Computer Physics Communications, 178(11):852 – 867, 2008.spa
dc.relation.referencesTorbjörn Sjöstrand. Pythia 8 status report. arXiv:0809.0303, 2008.spa
dc.relation.referencesJ Van Tilburg and M Merk. Track simulation and reconstruction in LHCb. PhD thesis, 2005. Presented on 01 Sep 2005.spa
dc.relation.referencesTorbjörn Sjöstrand, Patrik Edén, Christer Friberg, Leif Lönnblad, Gabriela Miu, Stephen Mrenna, and Emanuel Norrbin. High-energy-physics event generation with pyt- hia 6.1. Computer Physics Communications, 135(2):238 – 259, 2001.spa
dc.relation.referencesTorbjörn Sjöstrand and Maria van Zijl. A multiple-interaction model for the event structure in hadron collisions. Phys. Rev. D, 36:2019–2041, Oct 1987.spa
dc.relation.referencesMarco Clemencic, Hubert Degaudenzi, Pere Mato, Sebastien Binet, Wim Lavrijsen, Charles Leggett, and Ivan Belyaev. Recent developments in the lhcb software framework gaudi. Journal of Physics: Conference Series, 219(4):042006, 2010.spa
dc.relation.referencesP Mato. GAUDI-Architecture design document. Technical Report LHCb-98-064, CERN, Geneva, Nov 1998.spa
dc.relation.referencesLHCb Collaboration. The gaudi project. http://gaudi.web.cern.ch/gaudi/, 2018.spa
dc.relation.referencesLHCb Collaboration. The gauss project. http://lhcbdoc.web.cern.ch/lhcbdoc/ gauss/, 2018.spa
dc.relation.referencesTorbjörn Sjöstrand. Status and developments of event generators. arXiv:1608.06425, 2016.spa
dc.relation.referencesLHCb Collaboration. Gauss user guide and reference manual. http://lhcb-comp.web. cern.ch/lhcb-comp/Simulation/Gauss.pdf, 2005.spa
dc.relation.referencesLHCb Collaboration. The decfiles package. http://lhcbdoc.web.cern.ch/lhcbdoc/ decfiles/, 2018.spa
dc.relation.referencesLHCb Collaboration. The boole project. http://lhcbdoc.web.cern.ch/lhcbdoc/ boole/, 2018.spa
dc.relation.referencesLHCb Collaboration. The moore project. http://lhcbdoc.web.cern.ch/lhcbdoc/ moore/, 2018.spa
dc.relation.referencesAlbert Puig. The LHCb trigger in 2011 and 2012. Technical Report LHCb-PUB-2014- 046. CERN-LHCb-PUB-2014-046, CERN, Geneva, Nov 2014.spa
dc.relation.referencesLHCb Collaboration. The brunel project. http://lhcbdoc.web.cern.ch/lhcbdoc/ brunel/, 2018.spa
dc.relation.referencesLHCb Collaboration. The davinci project. http://lhcbdoc.web.cern.ch/lhcbdoc/ davinci/, 2018.spa
dc.relation.referencesLHCb Collaboration. Root data analysis framework. https://root.cern.ch, 2018.spa
dc.relation.referencesAntunes-Nobrega et. al. LHCb computing: Technical Design Report. Technical Design Report LHCb. CERN, Geneva, 2005. Submitted on 11 May 2005.spa
dc.relation.referencesO Callot and S Hansmann-Menzemer. The Forward Tracking: Algorithm and Performance Studies. Technical Report LHCb-2007-015. CERN-LHCb-2007-015, CERN, Geneva, May 2007.spa
dc.relation.referencesR W Forty and M Needham. Standalone Track Reconstruction in the T-stations. Technical Report LHCb-2007-022. CERN-LHCb-2007-022, CERN, Geneva, Mar 2007.spa
dc.relation.referencesO Callot, M Kucharczyk, and M Witek. VELO-TT track reconstruction. Technical Report LHCb-2007-010. CERN-LHCb-2007-010, CERN, Geneva, Apr 2007.spa
dc.relation.referencesO Callot. Downstream Pattern Recognition. Technical Report LHCb-2007-026. CERN- LHCb-2007-026, CERN, Geneva, Mar 2007.spa
dc.relation.referencesP. d’Argent, L. Dufour, L. Grillo, J.A. de Vries, A. Ukleja, R. Aaij, F. Archilli, S. Bach- mann, D. Berninghoff, A. Birnkraut, J. Blouw, M. De Cian, G. Ciezarek, C. F ̈arber, M. Demmer, F. Dettori, E. Gersabeck, J. Grabowski, W.D. Hulsbergen, B. Khanji, M. Kolpin, M. Kucharczyk, B.P. Malecki, M. Merk, M. Mulder, J. Mu ̈ller, V. Mueller, A. Pellegrino, M. Pikies, B. Rachwal, T. Schmelzer, B. Spaan, M. Szczekowski, J. van Tilburg, S. Tolk, N. Tuning, U. Uwer, J. Wishahi, and M. Witek. Improved performance of the lhcb outer tracker in lhc run 2. Journal of Instrumentation, 12(11):P11016, 2017.spa
dc.relation.referencesM Needham. Tsa: Fast and efficient reconstruction for the Inner Tracker. Technical Report LHCb-2004-075. CERN-LHCb-2004-075, CERN, Geneva, Sep 2004.spa
dc.relation.referencesLuca Lista. Practical statistics for particle physicists. CERN Yellow Reports: School Proceedings, 5(0):213, 2017.spa
dc.relation.referencesRutger M. van der Eijk. Track reconstruction in the LHCb experiment. PhD thesis, Amsterdam U., 2002.spa
dc.relation.referencesM Witek. VELO-TT matching and momentum determination at Level-1 trigger. Technical Report LHCb-2003-060, CERN, Geneva, Aug 2003.spa
dc.relation.referencesY Xie. Short track reconstruction with VELO and TT. Technical Report LHCb-2003- 100, CERN, Geneva, Aug 2003.spa
dc.relation.referencesAdrian Perieanu. Identification of Ghost Tracks using Neural Networks. Technical Report LHCb 2007-158, CERN, Geneva, Dec 2007.spa
dc.relation.referencesM Needham. Identification of Ghost Tracks using a Likelihood Method. Technical Report LHCb-2008-026. CERN-LHCb-2008-026. LPHE-2008-004, CERN, Geneva, May 2008.spa
dc.relation.referencesMichel De Cian, Stephen Farry, Paul Seyfert, and Sascha Stahl. Fast neural-net based fake track rejection in the LHCb reconstruction. Technical Report LHCb-PUB-2017- 011. CERN-LHCb-PUB-2017-011, CERN, Geneva, Mar 2017.spa
dc.relation.referencesA. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, M. Backes, T. Carli, O. Cohen, A. Christov, D. Dannheim, K. Danielowski, S. Henrot-Versille, M. Jachowski, K. Kraszewski, A. Krasznahorkay Jr., M. Kruk, Y. Mahalalel, R. Ospanov, X. Prudent, A. Robert, D. Schouten, F. Tegenfeldt, A. Voigt, K. Voss, M. Wolter, and A. Zemla. Tmva - toolkit for multivariate data analysis. https://arxiv.org/abs/physics/0703039v5, 2007.spa
dc.relation.referencesRoel Aaij, Johannes Albrecht, Francesco Dettori, Kevin Dungs, Helder Lopes, Diego Martinez Santos, Jessica Prisciandaro, Barbara Sciascia, Vasileios Syropoulos, Sascha Stahl, and Ricardo Vazquez Gomez. Optimization of the muon reconstruction algo- rithms for LHCb Run 2. Technical Report LHCb-PUB-2017-007. CERN-LHCb-PUB- 2017-007, CERN, Geneva, Feb 2017.spa
dc.relation.referencesThe LHCb collaboration. Measurement of the track reconstruction efficiency at lhcb. Journal of Instrumentation, 10(02):P02007, 2015.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalGhost trackeng
dc.subject.proposalTraza fantasmaspa
dc.subject.proposalSignaleng
dc.subject.proposalSeñalspa
dc.subject.proposalBackgroundeng
dc.subject.proposalFondospa
dc.subject.proposalMigrationeng
dc.titleImprovement on the Track Reconstruction Algorithms at the LHCb Experimentspa
dc.title.alternativeMejora de los algoritmos de reconstrucción de trazas en el experimento LHCbspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075871154.2019.pdf
Tamaño:
14.08 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: