Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos

dc.contributor.advisorde Brito Brandão, Pedro Filipespa
dc.contributor.advisorLizarazo Marriaga, Juan Manuelspa
dc.contributor.authorTamayo Figueroa, Diana Paolaspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000005690spa
dc.contributor.researchgroupGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germinaspa
dc.contributor.researchgroupAnálisis, Diseño y Materiales Giesspa
dc.date.accessioned2024-01-16T02:14:27Z
dc.date.available2024-01-16T02:14:27Z
dc.date.issued2023-11-21
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractLa reparación de grietas en estructuras de construcción es un desafío común, donde la precipitación de calcita inducida microbiológicamente es una técnica prometedora. Allí, se emplean bacterias ureolíticas que alcalinizan el microambiente celular generando precipitación de calcita en las grietas, sellándolas. Esta investigación evaluó la reparación de grietas en materiales base cemento empleando cultivos bacterianos ureolíticos axénicos y mixtos mediante el aislamiento y caracterización de 49 microorganismos, donde se seleccionaron 4 correspondientes a los géneros Arthrobacter, Psychrobacillus, Glutamicibacter y Rhodococcus por su capacidad de precipitar el 99.7% (25 mM) de calcio en menos de 24 horas. Estas 4 bacterias fueron evaluadas en diferentes mezclas para establecer cultivos mixtos, donde el cultivo mixto con mayor actividad correspondió a la mezcla R. qingshengii S1 + A. crystallopoietes M4C20 + P. psycrodurans S17. Se determinó la estrategia de aplicación sobre el concreto, frecuencia y componentes del medio de cultivo, evidenciando que a mayor frecuencia de aplicación del microorganismo de manera directa sobre las grietas y empleando un biopolímero de dextrano (BILAC) se mejoró la eficiencia de la reparación acortando los tiempos iniciales en más del 50%. Finalmente, comparado con dos tratamientos comerciales, las probetas de mortero reparadas biotecnológicamente alcanzaron 5 veces más resistencia demostrando el potencial de aplicación de esta biotecnología en este campo. Para este estudio, el cultivo axénico de G. arilaitiensis M3C3 presentó mayor eficiencia que los cultivos mixtos, siendo este el primer reporte del uso de este microorganismo para la reparación de grietas en materiales base cemento empleando un biopolímero de dextrano. (Texto tomado de la fuente).spa
dc.description.abstractCrack repair in building structures is a common challenge where microbiologically induced calcite precipitation (MICP) is a promising technique. In this process, ureolytic bacteria are used to alkalize the cellular microenvironment generating calcite precipitation in the cracks, sealing them. This study evaluated the crack reparation in cement-based materials using axenic and mixed ureolytic bacterial cultures by isolating and characterizing 49 strains, where 4 correspond to the genera Arthrobacter, Psychrobacillus, Glutamicibacter and Rhodococcus. These strains were selected for their ability to precipitate 99.7%. (25 mM) of calcium in less than 24 hours. These 4 bacteria were evaluated in different mixtures to establish mixed cultures, where the mixed culture with the highest activity corresponded to R. qingshengii S1 + A. crystallopoietes M4C20 + P. psycrodurans S17. The application strategy, frequency and components of the culture medium were determined, evidencing that the higher the frequency of application of the microorganism directly on the cracks and using a dextran biopolymer BILAC, improves the efficiency of the repair, shortening the initial times by more than 50%. Finally, compared with two commercial treatments, the biotechnologically repaired specimens reached 5 times more resistance, demonstrating the potential application of this biotechnology in this field. For this study, the axenic culture of G. arilaitiensis M3C3 presented greater efficiency than mixed cultures, being this the first report on the use of this microorganism for the repair of cracks in cement-based materials using a dextran biopolymer.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaMicrobiología ambiental y aplicadaspa
dc.format.extentxxiii, 272 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85319
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesAbadi, S., Azouri, D., Pupko, T., & Mayrose, I. (2019). Model selection may not be a mandatory step for phylogeny reconstruction. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08822-wspa
dc.relation.referencesAchal, V., Pan, X., & Özyurt, N. (2011). Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering, 37(4). https://doi.org/10.1016/j.ecoleng.2010.11.009spa
dc.relation.referencesACI Committee 222. (2001). Protection of Metals in Concrete Against Corrosion. Aci 222R-01.spa
dc.relation.referencesAkoğuz, H., Çelik, S., & Bariş, Ö. (2019). THE EFFECTS OF DIFFERENT SOURCES OF CALCIUM IN IMPROVEMENT OF SOILS BY MICROBIALLY INDUCED CALCITE PRECIPITATION (MICP). In Sigma J Eng & Nat Sci (Vol. 37, Issue 3).spa
dc.relation.referencesAllaire, J. J. (2015). RStudio: Integrated development environment for R. The Journal of Wildlife Management, 75(8).spa
dc.relation.referencesAppanna, V. D., Anderson, S. L., & Skakoon, T. (1997). Biogenesis of calcite: A biochemical model. Microbiological Research, 152(4), 341–343. https://doi.org/10.1016/S0944-5013(97)80049-3spa
dc.relation.referencesArmstrong, K. A. (1983). Molecular Cloning: A Laboratory Manual . T. Maniatis , E. F. Fritsch , J. Sambrook . The Quarterly Review of Biology, 58(2). https://doi.org/10.1086/413230spa
dc.relation.referencesArpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Construction and Building Materials, 282, 122722. https://doi.org/10.1016/J.CONBUILDMAT.2021.122722spa
dc.relation.referencesBang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001a). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28(4), 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3spa
dc.relation.referencesBang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001b). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28(4), 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3spa
dc.relation.referencesBang, S. S., & Ramakrishnan, V. (2001). Microbiologically-enhanced crack remediation (MECR). Proceedings of the International Symposium on Industrial Application of Microbial Genomes. Daegu, Korea.spa
dc.relation.referencesBassam, B. J., Caetano-Anollés, G., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196(1). https://doi.org/10.1016/0003-2697(91)90120-Ispa
dc.relation.referencesBhattacharya, A., Naik, S. N., & Khare, S. K. (2018). Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). Journal of Environmental Management, 215, 143–152. https://doi.org/10.1016/j.jenvman.2018.03.055spa
dc.relation.referencesBrandão, P. F., Torimura, M., Kurane, R., & Bull, A. T. (2002). Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Applied Microbiology and Biotechnology, 58(1). https://doi.org/10.1007/s00253-001-0855-xspa
dc.relation.referencesDe Muynck, W., Cox, K., Belie, N. De, & Verstraete, W. (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 22(5), 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011spa
dc.relation.referencesDe Muynck, W., Debrouwer, D., De Belie, N., & Verstraete, W. (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and Concrete Research, 38(7), 1005–1014. https://doi.org/10.1016/j.cemconres.2008.03.005spa
dc.relation.referencesDick, J., De Windt, W., De Graef, B., Saveyn, H., Van Der Meeren, P., De Belie, N., & Verstraete, W. (2006). Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation. https://doi.org/10.1007/s10532-005-9006-xspa
dc.relation.referencesEmerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous Ammonia Equilibrium Calculations: Effect of pH and Temperature. Journal of the Fisheries Research Board of Canada, 32(12). https://doi.org/10.1139/f75-274spa
dc.relation.referencesFarajnia, A., Shafaat, A., Farajnia, S., Sartipipour, M., & Khodadadi Tirkolaei, H. (2022). The efficiency of ureolytic bacteria isolated from historical adobe structures in the production of bio-bricks. Construction and Building Materials, 317, 125868. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.125868spa
dc.relation.referencesFeng, W. W., Wang, T. T., Bai, J. L., Ding, P., Xing, K., Jiang, J. H., Peng, X., & Qin, S. (2017). Glutamicibacter halophytocola sp. nov., an endophytic actinomycete isolated from the roots of a coastal halophyte, Limonium sinense. International Journal of Systematic and Evolutionary Microbiology, 67(5). https://doi.org/10.1099/ijsem.0.001775spa
dc.relation.referencesGarg, R., Garg, R., & Eddy, N. O. (2022). Microbial induced calcite precipitation for self-healing of concrete: a review. Journal of Sustainable Cement-Based Materials, 1–14. https://doi.org/10.1080/21650373.2022.2054477spa
dc.relation.referencesGomez, M. G., Graddy, C. M. R., DeJong, J. T., & Nelson, D. C. (2019). Biogeochemical Changes During Bio-cementation Mediated by Stimulated and Augmented Ureolytic Microorganisms. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47973-0spa
dc.relation.referencesGorospe, C. M., Han, S. H., Kim, S. G., Park, J. Y., Kang, C. H., Jeong, J. H., & So, J. S. (2013). Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering, 18(5). https://doi.org/10.1007/s12257-013-0030-0spa
dc.relation.referencesHall, T. A. (1999). BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT.spa
dc.relation.referencesHou, X. G., Kawamura, Y., Sultana, F., Shu, S., Hirose, K., Goto, K., & Ezaki, T. (1998). Description of Arthrobacter creatinolyticus sp. nov., isolated from human urine. International Journal of Systematic Bacteriology, 48(2). https://doi.org/10.1099/00207713-48-2-423spa
dc.relation.referencesIamchaturapatr, J., Piriyakul, K., Ketklin, T., Di Emidio, G., & Petcherdchoo, A. (2021). Sandy Soil Improvement Using MICP-Based Urease Enzymatic Acceleration Method Monitored by Real-Time System. Advances in Materials Science and Engineering, 2021, 6905802. https://doi.org/10.1155/2021/6905802spa
dc.relation.referencesJanda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. In Journal of Clinical Microbiology (Vol. 45, Issue 9). https://doi.org/10.1128/JCM.01228-07spa
dc.relation.referencesJohnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., Sodergren, E., & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13036-1spa
dc.relation.referencesKalfon, A., Larget-Thiéry, I., Charles, J. F., & de Barjac, H. (1983). Growth, sporulation and larvicidal activity of Bacillus sphaericus. European Journal of Applied Microbiology and Biotechnology, 18(3). https://doi.org/10.1007/BF00498040spa
dc.relation.referencesKandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1). https://doi.org/10.1007/BF00257924spa
dc.relation.referencesKato, C., Li, L., Tamaoka, J., & Horikoshi, K. (1997). Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles, 1(3), 117–123. https://doi.org/10.1007/s007920050024spa
dc.relation.referencesKaur, N. P., Majhi, S., Dhami, N. K., & Mukherjee, A. (2020). Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Construction and Building Materials, 242. https://doi.org/10.1016/j.conbuildmat.2020.118151spa
dc.relation.referencesKim, G., & Youn, H. (2016). Microbially induced calcite precipitation employing environmental isolates. Materials. https://doi.org/10.3390/ma9060468spa
dc.relation.referencesKim, H. J., Eom, H. J., Park, C., Jung, J., Shin, B., Kim, W., Chung, N., Choi, I. G., & Park, W. (2015). Calcium carbonate precipitation by Bacillus and sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. Journal of Microbiology and Biotechnology, 26(3). https://doi.org/10.4014/jmb.1511.11008spa
dc.relation.referencesKim, H. K., Park, S. J., Han, J. I., & Lee, H. K. (2013). Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Construction and Building Materials, 38. https://doi.org/10.1016/j.conbuildmat.2012.07.040spa
dc.relation.referencesKim, W., Traiwan, J., Park, M. H., Jung, M. Y., Oh, S. J., Yoon, J. H., & Sukhoom, A. (2012). Chungangia koreensis gen. nov., sp. nov., isolated from marine sediment. International Journal of Systematic and Evolutionary Microbiology, 62(8). https://doi.org/10.1099/ijs.0.028837-0spa
dc.relation.referencesKoch. (2002). Corrosion costs and preventive strategies in the United States. US Federal Highway Administration. Materials Performance, 41(7 (cost of corrosion supplement)).spa
dc.relation.referencesKrajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59–67. https://doi.org/https://doi.org/10.1016/j.jare.2017.10.009spa
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096spa
dc.relation.referencesLane, D. J. (1991). 16S/23S rRNA Sequencing. Nucleic Acid Techniques in Bacterial Systematics.spa
dc.relation.referencesLauchnor, E. G., Topp, D. M., Parker, A. E., & Gerlach, R. (2015). Whole cell kinetics of ureolysis by Sporosarcina pasteurii. Journal of Applied Microbiology, 118(6), 1321–1332. https://doi.org/10.1111/jam.12804spa
dc.relation.referencesLi, M., Wen, K., Li, Y., & Zhu, L. (2018). Impact of Oxygen Availability on Microbially Induced Calcite Precipitation (MICP) Treatment. Geomicrobiology Journal, 35(1), 15–22. https://doi.org/10.1080/01490451.2017.1303553spa
dc.relation.referencesLiang, H., Liu, Y., Tian, B., Li, Z., & Ou, H. (2022). A sustainable production of biocement via microbially induced calcium carbonate precipitation. International Biodeterioration & Biodegradation, 172, 105422. https://doi.org/10.1016/J.IBIOD.2022.105422spa
dc.relation.referencesLozano-Ruíz, J. M. (2018). Evaluación del efecto de soluciones de urea y sales de calcio sobre la resistencia a la compresión del mortero hidráulico, compuestos necesarios en el proceso de precipitación de calcita inducida por microorganismos. Universidad Nacional de colombia.spa
dc.relation.referencesLuhar, S., Luhar, I., & Shaikh, F. U. (2022). A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. In Journal of Composites Science (Vol. 6, Issue 1). https://doi.org/10.3390/jcs6010023spa
dc.relation.referencesMa, L., Pang, A.-P., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories, 19(1), 12. https://doi.org/10.1186/s12934-020-1281-zspa
dc.relation.referencesMacFaddin, J. F. (2003). Pruebas bioquímicas para la identificación de bacterias de importancia clínica (3a ed.). Médica Panamericana.spa
dc.relation.referencesMiles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. Journal of Hygiene. https://doi.org/10.1017/S002217240001158Xspa
dc.relation.referencesMonnet, C., Loux, V., Gibrat, J. F., Spinnler, E., Barbe, V., Vacherie, B., Gavory, F., Gourbeyre, E., Siguier, P., Chandler, M., Elleuch, R., Irlinger, F., & Vallaeys, T. (2010). The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese. PLoS ONE, 5(11). https://doi.org/10.1371/journal.pone.0015489spa
dc.relation.referencesMontaño-Salazar, S. M. (2013). Aislamiento de bacterias formadoras de calcita presentes en muestras e concreto de Colombia. Universidad Nacional de colombia.spa
dc.relation.referencesMontaño-Salazar, S. M., Lizarazo-Marriaga, J., & Brandão, P. F. B. (2018). Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings. Current Microbiology, 75(3), 256–265. https://doi.org/10.1007/s00284-017-1373-0spa
dc.relation.referencesNain, N., Surabhi, R., Yathish, N. V., Krishnamurthy, V., Deepa, T., & Tharannum, S. (2019). Enhancement in strength parameters of concrete by application of Bacillus bacteria. Construction and Building Materials, 202. https://doi.org/10.1016/j.conbuildmat.2019.01.059spa
dc.relation.referencesNasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8(7), e09879. https://doi.org/10.1016/J.HELIYON.2022.E09879spa
dc.relation.referencesNuaklong, P., Jongvivatsakul, P., Phanupornprapong, V., Intarasoontron, J., Shahzadi, H., Pungrasmi, W., Thaiboonrod, S., & Likitlersuang, S. (2023). Self-repairing of shrinkage crack in mortar containing microencapsulated bacterial spores. Journal of Materials Research and Technology, 23, 3441–3454. https://doi.org/10.1016/J.JMRT.2023.02.010spa
dc.relation.referencesOmoregie, A. I., Khoshdelnezamiha, G., Senian, N., Ong, D. E. L., & Nissom, P. M. (2017). Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecological Engineering, 109. https://doi.org/10.1016/j.ecoleng.2017.09.012spa
dc.relation.referencesOmoregie, A. I., Senian, N., Li, P. Y., Hei, N. L., Leong, D. O. E., Ginjom, I. R. H., & Nissom, P. M. (2016). Ureolytic bacteria isolated from Sarawak limestone caves show high urease enzyme activity comparable to that of Sporosarcina pasteurii (DSM 33). Malaysian Journal of Microbiology, 12(6).spa
dc.relation.referencesOnal Okyay, T., & Frigi Rodrigues, D. (2013). High throughput colorimetric assay for rapid urease activity quantification. Journal of Microbiological Methods, 95(3), 324–326. https://doi.org/10.1016/J.MIMET.2013.09.018spa
dc.relation.referencesPark, S. J., Park, Y. M., Chun, W. Y., Kim, W. J., & Ghim, S. Y. (2010). Calcite-forming bacteria for compressive strength improvement in mortar. Journal of Microbiology and Biotechnology, 20(4), 782–788. https://doi.org/10.4014/jmb.0911.11015spa
dc.relation.referencesPeker, N., Garcia-Croes, S., Dijkhuizen, B., Wiersma, H. H., Van Zanten, E., Wisselink, G., Friedrich, A. W., Kooistra-Smid, M., Sinha, B., Rossen, J. W. A., & Couto, N. (2019). A comparison of three different bioinformatics analyses of the 16S-23S rRNA encoding region for bacterial identification. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/fmicb.2019.00620spa
dc.relation.referencesPungrasmi, W., Intarasoontron, J., Jongvivatsakul, P., & Likitlersuang, S. (2019). Evaluation of Microencapsulation Techniques for MICP Bacterial Spores Applied in Self-Healing Concrete. Scientific Reports. https://doi.org/10.1038/s41598-019-49002-6spa
dc.relation.referencesReddy, B. M. S., & Revathi, D. (2019). An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2019.08.135spa
dc.relation.referencesRohmah, E., Febria, F. A., & Tjong, D. H. (2021). Isolation, screening and characterization of ureolytic bacteria from cave ornament. Pakistan Journal of Biological Sciences, 24(9). https://doi.org/10.3923/pjbs.2021.939.943spa
dc.relation.referencesRuan, S., Qiu, J., Weng, Y., Yang, Y., Yang, E.-H., Chu, J., & Unluer, C. (2019a). The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cement and Concrete Research, 115, 176–188. https://doi.org/10.1016/J.CEMCONRES.2018.10.018spa
dc.relation.referencesRuan, S., Qiu, J., Weng, Y., Yang, Y., Yang, E.-H., Chu, J., & Unluer, C. (2019b). The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cement and Concrete Research, 115, 176–188. https://doi.org/10.1016/J.CEMCONRES.2018.10.018spa
dc.relation.referencesSantos, R. G., Hurtado, R., Gomes, L. G. R., Profeta, R., Rifici, C., Attili, A. R., Spier, S. J., Giuseppe, M., Morais-Rodrigues, F., Gomide, A. C. P., Brenig, B., Gala-García, A., Cuteri, V., Castro, T. L. de P., Ghosh, P., Seyffert, N., & Azevedo, V. (2020). Complete genome analysis of Glutamicibacter creatinolyticus from mare abscess and comparative genomics provide insight of diversity and adaptation for Glutamicibacter. Gene, 741. https://doi.org/10.1016/j.gene.2020.144566spa
dc.relation.referencesSchwantes-Cezario, N., Medeiros, L. P., De Oliveira, A. G., Nakazato, G., Katsuko Takayama Kobayashi, R., & Toralles, B. M. (2017). Bioprecipitation of calcium carbonate induced by Bacillus subtilis isolated in Brazil. International Biodeterioration and Biodegradation, 123, 200–205. https://doi.org/10.1016/j.ibiod.2017.06.021spa
dc.relation.referencesSchwieger, F., & Tebbe, C. C. (1998). A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environmental Microbiology, 64(12). https://doi.org/10.1128/aem.64.12.4870-4876.1998spa
dc.relation.referencesSeifan, M., & Berenjian, A. (2019). Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. In Applied Microbiology and Biotechnology (Vol. 103, Issue 12). https://doi.org/10.1007/s00253-019-09861-5spa
dc.relation.referencesSeifan Mostafa and Samani, A. K. and B. A. (2017). New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101(8), 3131–3142. https://doi.org/10.1007/s00253-017-8109-8spa
dc.relation.referencesShaheen, N., Jalil, A., Adnan, F., & Arsalan Khushnood, R. (2021). Isolation of alkaliphilic calcifying bacteria and their feasibility for enhanced CaCO3 precipitation in bio-based cementitious composites. Microbial Biotechnology, 14(3), 1044–1059. https://doi.org/10.1111/1751-7915.13752spa
dc.relation.referencesShen, Z., Han, J., Wang, Y., Sahin, O., & Zhang, Q. (2013). The Contribution of ArsB to Arsenic Resistance in Campylobacter jejuni. PLoS ONE, 8(3). https://doi.org/10.1371/journal.pone.0058894spa
dc.relation.referencesSiala, R., Hammemi, I., Sellimi, S., Vallaeys, T., Kamoun, A. S., & Nasri, M. (2015). <i>Arthrobacter arilaitensis</i> Re117 as a Source of Solvent-Stable Proteases: Production, Characteristics, Potential Application in the Deproteinization of Shrimp Wastes and Evaluation in Liquid Laundry Commercial Detergents. Advances in Bioscience and Biotechnology, 06(02). https://doi.org/10.4236/abb.2015.62011spa
dc.relation.referencesSuchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1). https://doi.org/10.1093/ve/vey016spa
dc.relation.referencesSun, X., Miao, L., Tong, T., & Wang, C. (2019). Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotechnica, 14(3). https://doi.org/10.1007/s11440-018-0758-yspa
dc.relation.referencesSutthiwong, N., & Dufossé, L. (2014). Production of carotenoids by Arthrobacter arilaitensis strains isolated from smear-ripened cheeses. FEMS Microbiology Letters, 360(2). https://doi.org/10.1111/1574-6968.12603spa
dc.relation.referencesTamaki, H., Wright, C. L., Li, X., Lin, Q., Hwang, C., Wang, S., Thimmapuram, J., Kamagata, Y., & Liu, W. T. (2011). Analysis of 16S rRNA amplicon sequencing options on the roche/454 next-generation titanium sequencing platform. PLoS ONE, 6(9). https://doi.org/10.1371/journal.pone.0025263spa
dc.relation.referencesTamayo-Figueroa, Diana Paola; Brandão, Pedro; Lizarazo Marriaga, Juan Manuel (2023), “diffractograms of crystals precipitated by the ureolytic activity of isolated bacteria that carry out MICP from cement-based materials in Colombia”, Mendeley Data, V1, doi: 10.17632/cr6p7x6ycp.1spa
dc.relation.referencesTan, Y., Xie, X., Wu, S., Wu, T., Seifan, M., Samani, A. K., Hewitt, S., Berenjian, A., Wang, X., Tao, J., Bao, R., Tran, T., Tucker-Kulesza, S., Amarakoon, G. G. N. N., Kawasaki, S., Pasillas, J. N., Khodadadi, H., Martin, K., Bandini, P., … Whiffin, V. S. (2018). Microbial CaCO3 Precipitation for the Production of Biocement. In Murdor University Repository (Vols. 2018-March, Issue September).spa
dc.relation.referencesTavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. In American Mathematical Society: Lectures on Mathematics in the Life Sciences (Vol. 17).spa
dc.relation.referencesTepe, M., Arslan, Ş., Koralay, T., & Mercan Doğan, N. (2019). Precipitation and characterization of CaCO3 of Bacillus amyloliquefaciens U17 strain producing urease and carbonic anhydrase. Turkish Journal of Biology, 43(3). https://doi.org/10.3906/biy-1901-56spa
dc.relation.referencesThompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22). https://doi.org/10.1093/nar/22.22.4673spa
dc.relation.referencesVahabi, A., Ramezanianpour, A. A., Sharafi, H., Zahiri, H. S., Vali, H., & Noghabi, K. A. (2015a). Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: A promising alternative for sealing cement-based materials. Journal of Basic Microbiology, 55(1), 105–111. https://doi.org/10.1002/jobm.201300560spa
dc.relation.referencesVahabi, A., Ramezanianpour, A. A., Sharafi, H., Zahiri, H. S., Vali, H., & Noghabi, K. A. (2015b). Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: A promising alternative for sealing cement-based materials. Journal of Basic Microbiology, 55(1), 105–111. https://doi.org/10.1002/jobm.201300560spa
dc.relation.referencesWang, J., Jonkers, H. M., Boon, N., & De Belie, N. (2017). Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Applied Microbiology and Biotechnology, 101(12), 5101–5114. https://doi.org/10.1007/s00253-017-8260-2spa
dc.relation.referencesXu, J., Du, Y., Jiang, Z., & She, A. (2015). Effects of calcium source on biochemical properties of microbial CaCo3 precipitation. Frontiers in Microbiology, 6(DEC). https://doi.org/10.3389/fmicb.2015.01366spa
dc.relation.referencesYang, G., Li, F., Zhang, W., Guo, X., & Zhang, S. (2023). Formation mechanism of disc-shaped calcite—a case study on Arthrobacter sp. MF-2. RSC Advances, 13(11), 7524–7534. https://doi.org/10.1039/D2RA07455Aspa
dc.relation.referencesYang, Y., Chu, J., Cao, B., Liu, H., & Cheng, L. (2020). Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge. Journal of Cleaner Production, 262. https://doi.org/10.1016/j.jclepro.2020.121315spa
dc.relation.referencesYang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. In Trends in Ecology and Evolution (Vol. 11, Issue 9). https://doi.org/10.1016/0169-5347(96)10041-0spa
dc.relation.referencesYao, Y., Tang, H., Su, F., & Xu, P. (2015). Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter. Scientific Reports, 5. https://doi.org/10.1038/srep08642spa
dc.relation.referencesZagorac, D., Muller, H., Ruehl, S., Zagorac, J., & Rehme, S. (2019). Recent developments in the Inorganic Crystal Structure Database: Theoretical crystal structure data and related features. Journal of Applied Crystallography, 52. https://doi.org/10.1107/S160057671900997Xspa
dc.relation.referencesZhan, Q., Yu, X., Zhang, S., Xu, Y., Pan, Z., & Qian, C. (2020). Study on improving the consolidation properties of microbial cementitious material by promoting spore germination ratio. Construction and Building Materials, 252. https://doi.org/10.1016/j.conbuildmat.2020.119036spa
dc.relation.referencesZhang, C., Li, F., Li, X., Li, L., & Liu, L. (2018). The Roles of Mg over the Precipitation of Carbonate and Morphological Formation in the Presence of Arthrobacter sp. Strain MF-2. Https://Doi.Org/10.1080/01490451.2017.1421727, 35(7), 545–554. https://doi.org/10.1080/01490451.2017.1421727spa
dc.relation.referencesZhang, C., Li, X., Lyu, J., & Li, F. (2020). Comparison of carbonate precipitation induced by Curvibacter sp. HJ-1 and Arthrobacter sp. MF-2: Further insight into the biomineralization process. Journal of Structural Biology, 212(2), 107609. https://doi.org/10.1016/J.JSB.2020.107609spa
dc.relation.referencesZhang, J. L., Wu, R. S., Li, Y. M., Zhong, J. Y., Deng, X., Liu, B., Han, N. X., & Xing, F. (2016). Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. Applied Microbiology and Biotechnology, 100(15). https://doi.org/10.1007/s00253-016-7382-2spa
dc.relation.referencesZhang, J., Zhao, C., Zhou, A., Yang, C., Zhao, L., & Li, Z. (2019). Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Construction and Building Materials, 224. https://doi.org/10.1016/j.conbuildmat.2019.07.129spa
dc.relation.referencesZhang, Y., Guo, H. X., & Cheng, X. H. (2014). Influences of calcium sources on microbially induced carbonate precipitation in porous media. Materials Research Innovations, 18. https://doi.org/10.1179/1432891714Z.000000000384spa
dc.relation.referencesZhao, X., Wang, M., Wang, H., Tang, D., Huang, J., & Sun, Y. (2019). Study on the remediation of Cd pollution by the biomineralization of urease-producing bacteria. International Journal of Environmental Research and Public Health, 16(2). https://doi.org/10.3390/ijerph16020268spa
dc.relation.referencesAl Qabany, A., Soga, K., & Santamarina, C. (2012). Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8). https://doi.org/10.1061/(asce)gt.1943-5606.0000666spa
dc.relation.referencesAmerican Society for Testing and Materials (ASTM). (2021). ASTM C359: Standard Test Method for Early Stiffening of Hydraulic-Cement (Mortar Method). Annual Book of ASTM Standards, 04(01), 1–4.spa
dc.relation.referencesArora, D., Gupta, P., Jaglan, S., Roullier, C., Grovel, O., & Bertrand, S. (2020). Expanding the chemical diversity through microorganisms co-culture: Current status and outlook. In Biotechnology Advances (Vol. 40). https://doi.org/10.1016/j.biotechadv.2020.107521spa
dc.relation.referencesArpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Construction and Building Materials, 282, 122722. https://doi.org/10.1016/J.CONBUILDMAT.2021.122722spa
dc.relation.referencesASTM. (2017). ASTM C778 Standard Specification for Standard Sand. ASTM (American Society for Testing and Materials), C.spa
dc.relation.referencesStandard Test Method for Unconfined Compressive Strength of Cohesive Soil, (2006). https://doi.org/https://doi.org/10.1520/D2166-06spa
dc.relation.referencesASTM I. (2005). Standard Test Method for Effect of Organic Impurities in Fine Aggregate on Strength of Mortar - C87-05. In ASTM International (Vol. 04, Issue Reapproved).spa
dc.relation.referencesASTM International. (2002). ASTM C109 / C109M - 2002. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). Annual Book of ASTM Standards, 04.spa
dc.relation.referencesAzadi, M., Ghayoomi, M., Shamskia, N., & Kalantari, H. (2017). Physical and mechanical properties of reconstructed bio-cemented sand. Soils and Foundations, 57(5). https://doi.org/10.1016/j.sandf.2017.08.002spa
dc.relation.referencesBansal, R., Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2016). Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment. Journal of Industrial Microbiology and Biotechnology, 43(11). https://doi.org/10.1007/s10295-016-1835-6spa
dc.relation.referencesCardoso, R., Pedreira, R., Duarte, S. O. D., & Monteiro, G. A. (2020). About calcium carbonate precipitation on sand biocementation. Engineering Geology, 271. https://doi.org/10.1016/j.enggeo.2020.105612spa
dc.relation.referencesDeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2). https://doi.org/10.1016/j.ecoleng.2008.12.029spa
dc.relation.referencesDhami, N. K., Alsubhi, W. R., Watkin, E., & Mukherjee, A. (2017). Bacterial community dynamics and biocement formation during stimulation and augmentation: Implications for soil consolidation. Frontiers in Microbiology, 8(JUL). https://doi.org/10.3389/fmicb.2017.01267spa
dc.relation.referencesFu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1). https://doi.org/10.1016/j.bgtech.2023.100002spa
dc.relation.referencesGabor, E. M., De Vries, E. J., & Janssen, D. B. (2003). Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiology Ecology, 44(2). https://doi.org/10.1016/S0168-6496(02)00462-2spa
dc.relation.referencesHammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1(1), 3–7. https://doi.org/10.1023/A:1015135629155spa
dc.relation.referencesHan, R., Xu, S., Zhang, J., Liu, Y., & Zhou, A. (2022). Insights into the effects of microbial consortia-enhanced recycled concrete aggregates on crack self-healing in concrete. Construction and Building Materials, 343. https://doi.org/10.1016/j.conbuildmat.2022.128138spa
dc.relation.referencesHarnpicharnchai, P., Mayteeworakoon, S., Kitikhun, S., Chunhametha, S., Likhitrattanapisal, S., Eurwilaichitr, L., & Ingsriswang, S. (2022). High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains. Letters in Applied Microbiology, 75(4). https://doi.org/10.1111/lam.13748spa
dc.relation.referencesHussain, A. Z., Tom, A., Sasi, C. K., Joseph, J., & Joseph, S. (2016). Microbial Concrete and Influence of Microbes on Properties of Concrete. International Journal of Science and Research (IJSR), 5(12).spa
dc.relation.referencesImhoff, J. F. (2016). Natural products from marine fungi - Still an underrepresented resource. Marine Drugs, 14(1). https://doi.org/10.3390/md14010019spa
dc.relation.referencesKaur, N. P., Majhi, S., Dhami, N. K., & Mukherjee, A. (2020). Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Construction and Building Materials, 242. https://doi.org/10.1016/j.conbuildmat.2020.118151spa
dc.relation.referencesKeerthana, K., & Kishen, J. M. C. (2020). Micromechanics of fracture and failure in concrete under monotonic and fatigue loadings. Mechanics of Materials, 148. https://doi.org/10.1016/j.mechmat.2020.103490spa
dc.relation.referencesKim, H. J., Eom, H. J., Park, C., Jung, J., Shin, B., Kim, W., Chung, N., Choi, I. G., & Park, W. (2015). Calcium carbonate precipitation by Bacillus and sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. Journal of Microbiology and Biotechnology, 26(3). https://doi.org/10.4014/jmb.1511.11008spa
dc.relation.referencesKim, H. J., Shin, B., Lee, Y. S., & Park, W. (2017). Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Applied Microbiology and Biotechnology, 101(16). https://doi.org/10.1007/s00253-017-8372-8spa
dc.relation.referencesKonstantinou, C., Biscontin, G., Jiang, N. J., & Soga, K. (2021). Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone. Journal of Rock Mechanics and Geotechnical Engineering, 13(3). https://doi.org/10.1016/j.jrmge.2021.01.010spa
dc.relation.referencesKrishnapriya, S., Venkatesh Babu, D. L., & G., P. A. (2015). Isolation and identification of bacteria to improve the strength of concrete. Microbiological Research, 174, 48–55. https://doi.org/https://doi.org/10.1016/j.micres.2015.03.009spa
dc.relation.referencesLanda-Marbán, D., Tveit, S., Kumar, K., & Gasda, S. E. (2021). Practical approaches to study microbially induced calcite precipitation at the field scale. International Journal of Greenhouse Gas Control, 106, 103256. https://doi.org/10.1016/J.IJGGC.2021.103256spa
dc.relation.referencesLi, F., Hu, X., Li, J., Sun, X., Luo, C., Zhang, X., Li, H., Lu, J., Li, Y., & Bao, M. (2023). Purification, Structural Characterization, Antioxidant and Emulsifying Capabilities of Exopolysaccharide Produced by Rhodococcus qingshengii QDR4-2. Journal of Polymers and the Environment, 31(1), 64–80. https://doi.org/10.1007/s10924-022-02604-0spa
dc.relation.referencesLiang, H., Liu, Y., Tian, B., Li, Z., & Ou, H. (2022). A sustainable production of biocement via microbially induced calcium carbonate precipitation. International Biodeterioration & Biodegradation, 172, 105422. https://doi.org/10.1016/J.IBIOD.2022.105422spa
dc.relation.referencesLuo, M., & Qian, C. X. (2016). Performance of Two Bacteria-Based Additives Used for Self-Healing Concrete. Journal of Materials in Civil Engineering, 28(12). https://doi.org/10.1061/(asce)mt.1943-5533.0001673spa
dc.relation.referencesMa, X., Zhou, Q., Qiu, W., Mei, J., & Xie, J. (2021). An active gelatin coating containing eugenol and vacuum delays the decay of chinese seabass (Lateolabrax maculatus) fillets during cold storage: A microbiome perspective. Coatings, 11(2). https://doi.org/10.3390/coatings11020147spa
dc.relation.referencesMiftah, A., Tirkolaei, H. K., & Bilsel, H. (2020). Biocementation of calcareous beach sand using enzymatic calcium carbonate precipitation. Crystals, 10(10). https://doi.org/10.3390/cryst10100888spa
dc.relation.referencesMiles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. Journal of Hygiene. https://doi.org/10.1017/S002217240001158Xspa
dc.relation.referencesMontaño-Salazar, S. M., Lizarazo-Marriaga, J., & Brandão, P. F. B. (2018). Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings. Current Microbiology, 75(3), 256–265. https://doi.org/10.1007/s00284-017-1373-0spa
dc.relation.referencesMonteiro, N. B. R., Moita Neto, J. M., & da Silva, E. A. (2021). Environmental assessment in concrete industries. Journal of Cleaner Production, 327. https://doi.org/10.1016/j.jclepro.2021.129516spa
dc.relation.referencesNai, C., & Meyer, V. (2018). From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology. In Trends in Microbiology (Vol. 26, Issue 6). https://doi.org/10.1016/j.tim.2017.11.004spa
dc.relation.referencesNonsocua-Triviño, K. (2022). Cambios en la abundancia de cultivos mixtos de bacterias ureolíticas que precipitan carbonato de calcio. . Universidad Nacional de Colombia .spa
dc.relation.referencesOkwadha, G. D. O., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9), 1143–1148. https://doi.org/10.1016/j.chemosphere.2010.09.066spa
dc.relation.referencesOrts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)spa
dc.relation.referencesPaerl, H. W., & Pinckney, J. L. (1996). A mini-review of microbial consortia: Their roles in aquatic production and biogeochemical cycling. Microbial Ecology, 31(3). https://doi.org/10.1007/BF00171569spa
dc.relation.referencesPark, S. J., Park, Y. M., Chun, W. Y., Kim, W. J., & Ghim, S. Y. (2010). Calcite-forming bacteria for compressive strength improvement in mortar. Journal of Microbiology and Biotechnology, 20(4), 782–788. https://doi.org/10.4014/jmb.0911.11015spa
dc.relation.referencesRizwan, S. A., Khan, H., Bier, T. A., & Adnan, F. (2017). Use of Effective Micro-organisms (EM) technology and self-compacting concrete (SCC) technology improved the response of cementitious systems. Construction and Building Materials, 152, 642–650. https://doi.org/10.1016/j.conbuildmat.2017.05.102spa
dc.relation.referencesShah, S. G., & Kishen, J. M. C. (2010). Nonlinear fracture properties of concrete-concrete interfaces. Mechanics of Materials, 42(10). https://doi.org/10.1016/j.mechmat.2010.08.002spa
dc.relation.referencesShirakawa, M. A., Kaminishikawahara, K. K., John, V. M., Kahn, H., & Futai, M. M. (2011). Sand bioconsolidation through the precipitation of calcium carbonate by two ureolytic bacteria. Materials Letters, 65(11). https://doi.org/10.1016/j.matlet.2011.02.032spa
dc.relation.referencesSoysal, A., Milla, J., King, G. M., Hassan, M., & Rupnow, T. (2020). Evaluating the Self-Healing Efficiency of Hydrogel-Encapsulated Bacteria in Concrete. Transportation Research Record, 2674(6), 113–123. https://doi.org/10.1177/0361198120917973spa
dc.relation.referencesStatements, B., & Mass, D. (2008). ASTM Standard C348 - Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International, i(C).spa
dc.relation.referencesStocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. https://doi.org/10.1016/S0038-0717(99)00082-6spa
dc.relation.referencesSu, Y., Feng, J., Jin, P., & Qian, C. (2019). Influence of bacterial self-healing agent on early age performance of cement-based materials. Construction and Building Materials, 218. https://doi.org/10.1016/j.conbuildmat.2019.05.077spa
dc.relation.referencesTang, C. S., Yin, L. yang, Jiang, N. jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5). https://doi.org/10.1007/s12665-020-8840-9spa
dc.relation.referencesTobler, D. J., Maclachlan, E., & Phoenix, V. R. (2012). Microbially mediated plugging of porous media and the impact of differing injection strategies. Ecological Engineering, 42. https://doi.org/10.1016/j.ecoleng.2012.02.027spa
dc.relation.referencesTourney, J., & Ngwenya, B. T. (2009). Bacterial extracellular polymeric substances (EPS) mediate CaCO3morphology and polymorphism. Chemical Geology, 262(3–4), 138–146. https://doi.org/10.1016/j.chemgeo.2009.01.006spa
dc.relation.referencesTrilokesh, C., Harish, B. S., & Uppuluri, K. B. (2023). The antibiofilm potential of a heteropolysaccharide produced and characterized from the isolated marine bacterium Glutamicibacter nicotianae BPM30. Preparative Biochemistry and Biotechnology. https://doi.org/10.1080/10826068.2023.2209886spa
dc.relation.referencesWhiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5). https://doi.org/10.1080/01490450701436505spa
dc.relation.referencesYang, Y., Chu, J., Cao, B., Liu, H., & Cheng, L. (2020). Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge. Journal of Cleaner Production, 262. https://doi.org/10.1016/j.jclepro.2020.121315spa
dc.relation.referencesZhang, J., Zhou, A., Liu, Y., Zhao, B., Luan, Y., Wang, S., Yue, X., & Li, Z. (2017). Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-15177-zspa
dc.relation.referencesZhu, S., Hu, X., Zhao, Y., Fan, Y., Wu, M., Cheng, W., Wang, P., & Wang, S. (2020). Coal Dust Consolidation Using Calcium Carbonate Precipitation Induced by Treatment with Mixed Cultures of Urease-Producing Bacteria. Water, Air, and Soil Pollution, 231(8). https://doi.org/10.1007/s11270-020-04815-4spa
dc.relation.referencesAbou-Zeid, Mohamed, David W. Fowler, Edward G. Nawy, & John H. Allen. (2001). Control of Cracking in Concrete Structures. ACI 224R-01,Reported by ACI Committee 224, October, 1–8. https://doi.org/0097-8515spa
dc.relation.referencesAchal, V., Mukerjee, A., & Sudhakara Reddy, M. (2013). Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials, 48, 1–5. https://doi.org/10.1016/j.conbuildmat.2013.06.061spa
dc.relation.referencesAkoğuz, H., Çelik, S., & Bariş, Ö. (2019). THE EFFECTS OF DIFFERENT SOURCES OF CALCIUM IN IMPROVEMENT OF SOILS BY MICROBIALLY INDUCED CALCITE PRECIPITATION (MICP). In Sigma J Eng & Nat Sci (Vol. 37, Issue 3).spa
dc.relation.referencesAl Qabany, A., Soga, K., & Santamarina, C. (2012). Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8). https://doi.org/10.1061/(asce)gt.1943-5606.0000666spa
dc.relation.referencesAMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). (2002). Astm C78/C78M - 02: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)ASTM International. USA, 04.02.spa
dc.relation.referencesBarreiro, D. S., Oliveira, R. N. S., & Pauleta, S. R. (2023). Bacterial peroxidases – Multivalent enzymes that enable the use of hydrogen peroxide for microaerobic and anaerobic proliferation. In Coordination Chemistry Reviews (Vol. 485). https://doi.org/10.1016/j.ccr.2023.215114spa
dc.relation.referencesBarton, L. L., & Northup, D. E. (2011). Microbes at Work in Nature: Biomineralization and Microbial Weathering. In Microbial Ecology. https://doi.org/10.1002/9781118015841.ch11spa
dc.relation.referencesBraissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., & Visscher, P. T. (2007). Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5(4). https://doi.org/10.1111/j.1472-4669.2007.00117.xspa
dc.relation.referencesBryant, R. S., & Burchfield, T. E. (1989). Review of microbial technology for improving oil recovery. SPE Reservoir Engineering (Society of Petroleum Engineers), 4(2). https://doi.org/10.2118/16646-paspa
dc.relation.referencesBuitrago Hurtado, G., Villamil Porras, W. A., Vargas Sepúlveda, D. J., Otálvaro Alvarez, A., & Flórez, G. Y. (2013). Evaluating the effect of the number of generations in IBUN 91.2.98 leuconostoc mesenteroides cultures on enzyme extract production. Ingenieria e Investigacion, 33(1). https://doi.org/10.15446/ing.investig.v33n1.37669spa
dc.relation.referencesCabalar, A. F., & Canakci, H. (2011). Direct shear tests on sand treated with xanthan gum. Proceedings of the Institution of Civil Engineers: Ground Improvement, 164(2). https://doi.org/10.1680/grim.800041spa
dc.relation.referencesChang, I., & Cho, G. C. (2019). Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay. Acta Geotechnica, 14(2). https://doi.org/10.1007/s11440-018-0641-xspa
dc.relation.referencesChang, I., Im, J., & Cho, G. C. (2016a). Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Canadian Geotechnical Journal, 53(10). https://doi.org/10.1139/cgj-2015-0475spa
dc.relation.referencesChang, I., Im, J., & Cho, G. C. (2016b). Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. In Sustainability (Switzerland) (Vol. 8, Issue 3). https://doi.org/10.3390/su8030251spa
dc.relation.referencesChang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. In Transportation Geotechnics (Vol. 24). https://doi.org/10.1016/j.trgeo.2020.100385spa
dc.relation.referencesDhami, N. K., Reddy, M. S., & Mukherjee, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4(OCT), 1–13. https://doi.org/10.3389/fmicb.2013.00314spa
dc.relation.referencesDíaz-Montes, E. (2021). Dextran: Sources, Structures, and Properties. Polysaccharides, 2(3). https://doi.org/10.3390/polysaccharides2030033spa
dc.relation.referencesErcole, C., Cacchio, P., Botta, A. L., Centi, V., & Lepidi, A. (2007). Bacterially induced mineralization of calcium carbonate: The role of exopolysaccharides and capsular polysaccharides. Microscopy and Microanalysis, 13(1). https://doi.org/10.1017/S1431927607070122spa
dc.relation.referencesErdmann, N., & Strieth, D. (2022). Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World Journal of Microbiology and Biotechnology 2022 39:2, 39(2), 1–18. https://doi.org/10.1007/S11274-022-03499-8spa
dc.relation.referencesFlórez Guzman, G. Y., Hurtado, G. B., & Ospina, S. A. (2018). New dextransucrase purification process of the enzyme produced by Leuconostoc mesenteroides IBUN 91.2.98 based on binding product and dextranase hydrolysis. Journal of Biotechnology, 265. https://doi.org/10.1016/j.jbiotec.2017.10.019spa
dc.relation.referencesGross, R., & Scholz, C. (2001). Biopolymers from Polysaccharides and Agroproteins. https://doi.org/10.1021/bk-2001-0786.fw001spa
dc.relation.referencesGupta, S. G., Rathi, C., & Kapur, S. (2013). Biologically Induced Self Healing Concrete: A Futuristic Solution for Crack Repair. International Journal of Applied Sciences and Biotechnology. https://doi.org/10.3126/ijasbt.v1i3.8582spa
dc.relation.referencesHam, S.-M., Chang, I., Noh, D.-H., Kwon, T.-H., & Muhunthan, B. (2018). Improvement of Surface Erosion Resistance of Sand by Microbial Biopolymer Formation. Journal of Geotechnical and Geoenvironmental Engineering, 144(7). https://doi.org/10.1061/(asce)gt.1943-5606.0001900spa
dc.relation.referencesHuling, S. G., Bledsoe, B. E., & White, M. V. (1991). The Feasibility of Utilizing Hydrogen Peroxide as a Source of Oxygen in Bioremediation. In In Situ Bioreclamation. https://doi.org/10.1016/b978-0-7506-9301-1.50010-xspa
dc.relation.referencesNTC 3356 CONCRETOS. MORTERO PREMEZCLADO PARA MAMPOSTERÍA, 1 (2000).spa
dc.relation.referencesIşik, M., Altaş, L., Özcan, S., Şimşek, I., Aĝdaĝ, O. N., & Alaş, A. (2012). Effect of urea concentration on microbial Ca precipitation. Journal of Industrial and Engineering Chemistry, 18(6), 1908–1911. https://doi.org/10.1016/j.jiec.2012.05.002spa
dc.relation.referencesJain, S., & Arnepalli, D. N. (2019). Biochemically Induced Carbonate Precipitation in Aerobic and Anaerobic Environments by Sporosarcina pasteurii. Geomicrobiology Journal, 36(5), 443–451. https://doi.org/10.1080/01490451.2019.1569180spa
dc.relation.referencesJamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5). https://doi.org/10.1111/j.1541-4337.2010.00126.xspa
dc.relation.referencesJiang, N. J., Yoshioka, H., Yamamoto, K., & Soga, K. (2016). Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecological Engineering, 90, 96–104. https://doi.org/10.1016/j.ecoleng.2016.01.073spa
dc.relation.referencesKazzaz, J. A., Xu, J., Palaia, T. A., Mantell, L., Fein, A. M., & Horowitz, S. (1996). Cellular oxygen toxicity: Oxidant injury without apoptosis. Journal of Biological Chemistry, 271(25). https://doi.org/10.1074/jbc.271.25.15182spa
dc.relation.referencesKhachatoorian, R., Petrisor, I. G., Kwan, C. C., & Yen, T. F. (2003). Biopolymer plugging effect: Laboratory-pressurized pumping flow studies. Journal of Petroleum Science and Engineering, 38(1–2). https://doi.org/10.1016/S0920-4105(03)00019-6spa
dc.relation.referencesKim, G., & Youn, H. (2016). Microbially induced calcite precipitation employing environmental isolates. Materials. https://doi.org/10.3390/ma9060468spa
dc.relation.referencesKim, H. J., Shin, B., Lee, Y. S., & Park, W. (2017). Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Applied Microbiology and Biotechnology, 101(16). https://doi.org/10.1007/s00253-017-8372-8spa
dc.relation.referencesKim, H., Son, H. M., Seo, J., & Lee, H. K. (2021). Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: A review. Construction and Building Materials, 274. https://doi.org/10.1016/j.conbuildmat.2020.122094spa
dc.relation.referencesKrajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59–67. https://doi.org/https://doi.org/10.1016/j.jare.2017.10.009spa
dc.relation.referencesKwon, T. H., & Ajo-Franklin, J. B. (2013). High-frequency seismic response during permeability reduction due to biopolymer clogging in unconsolidated porous media. Geophysics, 78(6). https://doi.org/10.1190/GEO2012-0392.1spa
dc.relation.referencesKwon, Y. M., Ham, S. M., Kwon, T. H., Cho, G. C., & Chang, I. (2020). Surface-erosion behaviour of biopolymer-treated soils assessed by EFA. Geotechnique Letters, 10(2). https://doi.org/10.1680/jgele.19.00106spa
dc.relation.referencesLe Métayer-Levrel, G., Castanier, S., Orial, G., Loubière, J. F., & Perthuisot, J. P. (1999). Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology, 126(1–4). https://doi.org/10.1016/S0037-0738(99)00029-9spa
dc.relation.referencesLi, F., Hu, X., Li, J., Sun, X., Luo, C., Zhang, X., Li, H., Lu, J., Li, Y., & Bao, M. (2023). Purification, Structural Characterization, Antioxidant and Emulsifying Capabilities of Exopolysaccharide Produced by Rhodococcus qingshengii QDR4-2. Journal of Polymers and the Environment, 31(1), 64–80. https://doi.org/10.1007/s10924-022-02604-0spa
dc.relation.referencesLiendo, F., Arduino, M., Deorsola, F. A., & Bensaid, S. (2022). Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technology, 398, 117050. https://doi.org/10.1016/J.POWTEC.2021.117050spa
dc.relation.referencesLiu, Y., Ali, A., Su, J. F., Li, K., Hu, R. Z., & Wang, Z. (2023). Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. In Science of the Total Environment (Vol. 860). https://doi.org/10.1016/j.scitotenv.2022.160439spa
dc.relation.referencesMa, L., Pang, A.-P., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories, 19(1), 12. https://doi.org/10.1186/s12934-020-1281-zspa
dc.relation.referencesMitchell, A. C., Espinosa-Ortiz, E. J., Parks, S. L., Phillips, A. J., Cunningham, A. B., & Gerlach, R. (2019a). Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions. Biogeosciences, 16(10), 2147–2161. https://doi.org/10.5194/bg-16-2147-2019spa
dc.relation.referencesMitchell, A. C., Espinosa-Ortiz, E. J., Parks, S. L., Phillips, A. J., Cunningham, A. B., & Gerlach, R. (2019b). Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions. Biogeosciences, 16(10). https://doi.org/10.5194/bg-16-2147-2019spa
dc.relation.referencesM-MMP-2-02-004-04. (2003). Parte 2. Materiales para estructuras, Título 02. Materiales para Concreto Hidráulico. In MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES.spa
dc.relation.referencesNasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8(7), e09879. https://doi.org/10.1016/J.HELIYON.2022.E09879spa
dc.relation.referencesN-CMT-2-02-001. (2011). Parte 2. Materiales para estructuras, Título 02. Materiales para concreto hidráulico. In CMT. CARACTERÍSTICAS DE LOS MATERIALESspa
dc.relation.referencesNg, W., Lee, M., & Hii, S. (2012). An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement. International Journal of Civil and Environmental Engineering, 6(2).spa
dc.relation.referencesOrts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007a). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)spa
dc.relation.referencesOrts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007b). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)spa
dc.relation.referencesPardieck, D. L., Bouwer, E. J., & Stone, A. T. (1992). Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: A review. In Journal of Contaminant Hydrology (Vol. 9, Issue 3). https://doi.org/10.1016/0169-7722(92)90006-Zspa
dc.relation.referencesPini, R., Canarutto, S., & Vigna Guidi, G. (1994). Soil microaggregation as influenced by uncharged organic conditioners. Communications in Soil Science and Plant Analysis, 25(11–12). https://doi.org/10.1080/00103629409369183spa
dc.relation.referencesRahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., & Iqbal, A. (2020). State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability, 12(15), 6281. https://doi.org/10.3390/su12156281spa
dc.relation.referencesRodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. Ben, & Gonzalez-Muñoz, M. T. (2003). Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization. Appiled and Environmental Microbiology, 69(4), 2182–2193. https://doi.org/10.1128/AEM.69.4.2182spa
dc.relation.referencesSeifan, M., & Berenjian, A. (2019). Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. In Applied Microbiology and Biotechnology (Vol. 103, Issue 12). https://doi.org/10.1007/s00253-019-09861-5spa
dc.relation.referencesSeifan, M., Samani, A. K., & Berenjian, A. (2017). A novel approach to accelerate bacterially induced calcium carbonate precipitation using oxygen releasing compounds (ORCs). Biocatalysis and Agricultural Biotechnology, 12. https://doi.org/10.1016/j.bcab.2017.10.021spa
dc.relation.referencesSeifan Mostafa and Samani, A. K. and B. A. (2017). New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101(8), 3131–3142. https://doi.org/10.1007/s00253-017-8109-8spa
dc.relation.referencesSong, M., Ju, T., Meng, Y., Han, S., Lin, L., & Jiang, J. (2022). A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation. Chemosphere, 290, 133229. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133229spa
dc.relation.referencesTan, L., Reeksting, B., Justo-Reinoso, I., Ferrandiz-Mas, V., Heath, A., Gebhard, S., & Paine, K. (2023). The effect of oxygen and water on the provision of crack closure in bacteria-based self-healing cementitious composites. Cement and Concrete Composites, 142, 105201. https://doi.org/10.1016/J.CEMCONCOMP.2023.105201spa
dc.relation.referencesTang, C. S., Yin, L. yang, Jiang, N. jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5). https://doi.org/10.1007/s12665-020-8840-9spa
dc.relation.referencesTiano, P., Cantisani, E., Sutherland, I., & Paget, J. M. (2006). Biomediated reinforcement of weathered calcareous stones. Journal of Cultural Heritage, 7(1). https://doi.org/10.1016/j.culher.2005.10.003spa
dc.relation.referencesTsai, T. T., Kao, C. M., Surampalli, R. Y., & Chien, H. Y. (2009). Enhanced Bioremediation of Fuel-Oil Contaminated Soils: Laboratory Feasibility Study. Journal of Environmental Engineering, 135(9). https://doi.org/10.1061/(asce)ee.1943-7870.0000049spa
dc.relation.referencesTziviloglou, E., Wiktor, V., Jonkers, H. M., & Schlangen, E. (2016). Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials, 122, 118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080spa
dc.relation.referencesvan Hijum, S. A. F. T., Kralj, S., Ozimek, L. K., Dijkhuizen, L., & van Geel-Schutten, I. G. H. (2006). Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 70(1). https://doi.org/10.1128/mmbr.70.1.157-176.2006spa
dc.relation.referencesVogt, C., Alfreider, A., Lorbeer, H., Hoffmann, D., Wuensche, L., & Babel, W. (2004). Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide. Journal of Contaminant Hydrology, 68(1–2). https://doi.org/10.1016/S0169-7722(03)00092-5spa
dc.relation.referencesYi, H., Zheng, T., Jia, Z., Su, T., & Wang, C. (2021). Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria. Journal of Crystal Growth, 564, 126113. https://doi.org/10.1016/J.JCRYSGRO.2021.126113spa
dc.relation.referencesZhang, K., Tang, C. S., Jiang, N. J., Pan, X. H., Liu, B., Wang, Y. J., & Shi, B. (2023). Microbial induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. Environmental Earth Sciences, 82(9). https://doi.org/10.1007/s12665-023-10899-yspa
dc.relation.referencesBibi, S., Oualha, M., Ashfaq, M. Y., Suleiman, M. T., & Zouari, N. (2018). Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization. RSC Advances, 8(11). https://doi.org/10.1039/c7ra12758hspa
dc.relation.referencesChang, I., Im, J., & Cho, G. C. (2016). Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Canadian Geotechnical Journal, 53(10). https://doi.org/10.1139/cgj-2015-0475spa
dc.relation.referencesChang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. In Transportation Geotechnics (Vol. 24). https://doi.org/10.1016/j.trgeo.2020.100385spa
dc.relation.referencesChen, B., Sun, W., Sun, X., Cui, C., Lai, J., Wang, Y., & Feng, J. (2021). Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochemistry, 107. https://doi.org/10.1016/j.procbio.2021.05.001spa
dc.relation.referencesDurga, C. S. S., Ruben, N., Chand, M. S. R., & Venkatesh, C. (2019). Evaluation of mechanical parameters of bacterial concrete. Annales de Chimie: Science Des Materiaux, 43(6). https://doi.org/10.18280/acsm.430606spa
dc.relation.referencesGhosh, P., Mandal, S., Chattopadhyay, B. D., & Pal, S. (2005). Use of microorganism to improve the strength of cement mortar. Cement and Concrete Research, 35(10). https://doi.org/10.1016/j.cemconres.2005.03.005spa
dc.relation.referencesHansson, C. M., Mammoliti, L., & Hope, B. B. (1998). Corrosion inhibitors in concrete - Part I: The principles. Cement and Concrete Research, 28(12). https://doi.org/10.1016/S0008-8846(98)00142-2spa
dc.relation.referencesHarnpicharnchai, P., Mayteeworakoon, S., Kitikhun, S., Chunhametha, S., Likhitrattanapisal, S., Eurwilaichitr, L., & Ingsriswang, S. (2022). High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains. Letters in Applied Microbiology, 75(4). https://doi.org/10.1111/lam.13748spa
dc.relation.referencesKarthik, C., & Rama Mohan Rao, P. (2016). Properties of bacterial-based self-healing concrete - A review. In International Journal of ChemTech Research (Vol. 9, Issue 2).spa
dc.relation.referencesKashif Ur Rehman, S., Mahmood, F., Jameel, M., Riaz, N., Javed, M. F., Salmi, A., & Awad, Y. A. (2022). A Biomineralization, Mechanical and Durability Features of Bacteria-Based Self-Healing Concrete—A State of the Art Review. In Crystals (Vol. 12, Issue 9). https://doi.org/10.3390/cryst12091222spa
dc.relation.referencesKim, T. K., & Park, J. S. (2021). Experimental evaluation of the durability of concrete repair materials. Applied Sciences (Switzerland), 11(5). https://doi.org/10.3390/app11052303spa
dc.relation.referencesLeonhardt, F. (1988). Cracks and Crack Control in Concrete Structures. PCI Journal, 33(4). https://doi.org/10.15554/pcij.07011988.124.145spa
dc.relation.referencesLiendo, F., Arduino, M., Deorsola, F. A., & Bensaid, S. (2022). Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technology, 398, 117050. https://doi.org/10.1016/J.POWTEC.2021.117050spa
dc.relation.referencesLitina, C., Bumanis, G., Anglani, G., Dudek, M., Maddalena, R., Amenta, M., Papaioannou, S., Pérez, G., Calvo, J. L. G., Asensio, E., Cobos, R. B., Pinto, F. T., Augonis, A., Davies, R., Guerrero, A., Moreno, M. S., Stryszewska, T., Karatasios, I., Tulliani, J. M., … Al‐tabbaa, A. (2021). Evaluation of methodologies for assessing self‐healing performance of concrete with mineral expansive agents: An interlaboratory study. Materials, 14(8). https://doi.org/10.3390/ma14082024spa
dc.relation.referencesOrts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)spa
dc.relation.referencesOtieno, M. B., Alexander, M. G., & Beushausen, H. D. (2010). Corrosion in cracked and uncracked concrete - influence of crack width, concrete quality and crack reopening. Magazine of Concrete Research, 62(6). https://doi.org/10.1680/macr.2010.62.6.393spa
dc.relation.referencesRahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., & Iqbal, A. (2020). State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability, 12(15), 6281. https://doi.org/10.3390/su12156281spa
dc.relation.referencesRao, M. V. S., Reddy, V. S., Hafsa, M., Veena, P., & Anusha, P. (2013). Bioengineered concrete - A sustainable self-healing construction material. Research Journal of Engineering Sciences, 2(6).spa
dc.relation.referencesRodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. Ben, & Gonzalez-Muñoz, M. T. (2003). Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization. Appiled and Environmental Microbiology, 69(4), 2182–2193. https://doi.org/10.1128/AEM.69.4.2182spa
dc.relation.referencesSafiuddin, M., Kaish, A. B. M. A., Woon, C. O., & Raman, S. N. (2018). Early-age cracking in concrete: Causes, consequences, remedialmeasures, and recommendations. In Applied Sciences (Switzerland) (Vol. 8, Issue 10). https://doi.org/10.3390/app8101730spa
dc.relation.referencesSarkar, G., & Suthindhiran, K. (2020). Identification of urease producing Virgibacillus sp. UR1 from marine sediments. Indian Journal of Biotechnology, 19(1).spa
dc.relation.referencesSikder, A., & Saha, P. (2019). Effect of bacteria on performance of concrete/mortar: A review. In International Journal of Recent Technology and Engineering (Vol. 7, Issue 6C2, pp. 12–17). Blue Eyes Intelligence Engineering and Sciences Publicationspa
dc.relation.referencesSusilowati, P. E., Ardianti, D., Kartini, S., Sudiana, I. N., & Zaeni, A. (2021). Isolation of Ureolytic Bacteria of Soft Coral and Their Potential in Microbially Induced Calcite Precipitation (MICP). Journal of Physics: Conference Series, 1899(1), 012003. https://doi.org/10.1088/1742-6596/1899/1/012003spa
dc.relation.referencesTziviloglou, E., Wiktor, V., Jonkers, H. M., & Schlangen, E. (2016). Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials, 122, 118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080spa
dc.relation.referencesYoon, H. S., Lee, J. Y., Yang, K. H., & Park, S. H. (2022). Evaluation of the Crack Healing Efficiency of Mortar Incorporating Self-healing Pellets based on Cementitious Materials. Journal of the Architectural Institute of Korea, 38(4). https://doi.org/10.5659/JAIK.2022.38.4.207spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicosspa
dc.subject.proposalUreasaspa
dc.subject.proposalBacteriaspa
dc.subject.proposalPrecipitación de Calcita Inducida Microbiológicamentespa
dc.subject.proposalMateriales base cementospa
dc.subject.proposalGrietasspa
dc.subject.proposalUreaseeng
dc.subject.proposalMicrobial induced calcite precipitationeng
dc.subject.proposalCrackseng
dc.subject.proposalCement based materialseng
dc.subject.unescoMateriales de construcciónspa
dc.subject.unescoBuilding materialseng
dc.subject.unescoBiotecnologíaspa
dc.subject.unescoBiotechnologyeng
dc.subject.unescoMicroorganismospa
dc.subject.unescoMicroorganismseng
dc.titleReparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtosspa
dc.title.translatedRepair of cracks in cement-based materials using axenic and mixed bacterial cultureseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlePrecipitación de carbonatos inducida por microorganismos nativos de Colombia: su aprovechamiento y valoración en biomateriales y en la remediación de elementos tóxicosspa
oaire.fundernameMinisterio de Cienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018430894.2023.pdf
Tamaño:
8.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: