Physics-informed neural networks-based optimization for gas-powered energy systems
dc.contributor.advisor | Álvarez Meza, Andrés Marino | |
dc.contributor.advisor | Castellanos Domínguez, César Germán | |
dc.contributor.author | Pérez Rosero, Diego Armando | |
dc.contributor.cvlac | Pérez Rosero, Diego Armando [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001779699] | spa |
dc.contributor.googlescholar | Pérez Rosero, Diego Armando [https://scholar.google.com/citations?user=IF9Bxe0AAAAJ&hl=es&oi=ao] | spa |
dc.contributor.orcid | Pérez Rosero, Diego Armando [0000-0001-9258-7088] | spa |
dc.contributor.researchgroup | Grupo de Control y Procesamiento Digital de Señales | spa |
dc.date.accessioned | 2024-10-29T16:40:24Z | |
dc.date.available | 2024-10-29T16:40:24Z | |
dc.date.issued | 2024 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | La transición global hacia un paradigma energético sostenible destaca tanto la persistencia de los combustibles fósiles como el auge de las fuentes de energía renovable. En este contexto, la adopción de tecnologías basadas en turbinas de gas surge como una opción viable que minimiza el impacto ambiental al reducir las emisiones y los costos operativos. Aunque se espera que la demanda de combustibles fósiles para la generación de electricidad aumente hasta 2030, paralelamente a este evento, se prevé una inversión considerable en energía renovable, especialmente en los sectores solar y eólico. América Latina, con una notable capacidad hidroeléctrica de 340,332 MW, está a la vanguardia de los esfuerzos de mitigación de emisiones de carbono. Sin embargo, la región enfrenta desafíos, incluida la dependencia de combustibles importados y la fragilidad de su infraestructura energética. En Colombia, la variabilidad climática impulsa la diversificación energética. La Comisión de Regulación de Energía y Gas (CREG) tiene como objetivo optimizar el transporte de gas, consciente de la limitación temporal de las reservas actuales, estimadas en solo siete años. El modelo lineal utilizado tradicionalmente por CREG, aunque efectivo para ciertos propósitos, no considera factores críticos como las variaciones de presión y el papel de las estaciones de compresión, revelando la necesidad de un modelo de optimización no lineal (NOPT). Sin embargo, los desafíos de NOPT incluyen la gestión de datos variables y mediciones ruidosas, lo que puede llevar a soluciones erróneas o subóptimas. Este documento presenta un nuevo enfoque: la Red Neuronal Informada por la Física Regularizada (RPINN), diseñada para abordar tanto tareas de optimización supervisada como no supervisada. RPINN combina funciones de activación personalizadas y penalizaciones de regularización dentro de una arquitectura de red neuronal artificial (ANN), lo que le permite manejar la variabilidad de los datos y entradas inexactas. Incorpora principios físicos en el diseño de la red, calculando variables de optimización a partir de los pesos de la red y las características aprendidas. Además, emplea técnicas de diferenciación automática para optimizar la escalabilidad del sistema y reducir el tiempo de cálculo mediante la retropropagación por lotes. Los resultados experimentales demuestran que RPINNes competitivo con los solucionadores de última generación para tareas de optimización supervisada y no supervisada, mostrando robustez frente a mediciones ruidosas. Este avance lo posiciona como una solución prometedora para entornos con información fluctuante, como se evidencia en los modelos de mezcla uniforme y sistemas alimentados por gas. La base ANN de RPINN no solo asegura flexibilidad y escalabilidad, sino que también destaca su potencial como una metodología robusta y efectiva en comparación con la tradicional (Texto tomado de la fuente) | spa |
dc.description.abstract | The global transition towards a sustainable energy paradigm highlights both the persistence of fossil fuels and the rise of renewable energy sources. In this context, the adoption of gas turbine-based technologies emerges as a viable option that minimizes environmental impact by reducing emissions and operational costs. While the demand for fossil fuels for electricity generation is expected to increase until 2030, parallel to this event a considerable investment in renewable energy, especially in the solar and wind sectors, is expected. Latin America, with a notable hydroelectric capacity of 340,332 MW, is at the forefront of carbon emission mitigation efforts. However, the region faces challenges, including dependence on imported fuels and the fragility of its energy infrastructure. In Colombia, climatic variability drives energy diversification. The Energy and Gas Regulatory Commission (CREG) aims to optimize gas transportation, aware of the temporary limitation of current reserves, estimated at only seven years. The linear model traditionally used by CREG, though effective for certain purposes, does not consider critical factors such as pressure variations and the role of compression stations, revealing the need for a nonlinear optimization (NOPT}) model. However, NOPT challenges include managing variable data and noisy measurements, which can lead to erroneous or suboptimal solutions. This document presents a new approach: the Regularized Physics-Informed Neural Network (RPINN), designed to address both supervised and unsupervised optimization tasks.RPINNcombines custom activation functions and regularization penalties within an artificial neural network (ANN) architecture, enabling it to handle data variability and inaccurate inputs. It incorporates physical principles into the network design, calculating optimization variables from network weights and learned features. Additionally, it employs automatic differentiation techniques to optimize system scalability and reduce computation time through batch-based backpropagation. Experimental results demonstrate that RPINNis competitive with state-of-the-art solvers for both supervised and unsupervised optimization tasks, exhibiting robustness against noisy measurements. This advancement positions it as a promising solution for environments with fluctuating information, as evidenced in uniform mixture models and gas-fed systems. The ANN foundation of RPINN not only ensures flexibility and scalability but also highlights its potential as a robust and effective methodology when compared to traditional approaches. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.description.researcharea | Inteligencia Artificial | spa |
dc.description.sponsorship | Desarrollo de una herramienta para la planeación a largo plazo de la operación del sistema de transporte de gas natural de Colombia’", soportado por MINCIENCIAS (Code 111085269982). | spa |
dc.format.extent | xiii, 94 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87099 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | [CRE, 2023] , 2023; Creg; https://creg.gov.co/; Último acceso en 2024. | spa |
dc.relation.references | [Cor, 2023] , 2023; Actualidad del sector energético colom- biano; https://investigaciones.corficolombiana.com/ analisis-sectorial-y-sostenibilidad/perspectiva-sectorial-energia/ actualidad-del-sector-energetico-colombiano/informe_1290865; Último acceso en 2024. | spa |
dc.relation.references | [Ene, 2023] , 2023; Cómo se genera la electricidad; https://www.enel.com.co/es/ empresas/enel-generacion/como-se-genera-la-electricidad.html; Último ac- ceso en 2024. | spa |
dc.relation.references | [REA, 2023] , 2023; Renewable energy association; https://www.r-e-a.net; Último acceso en 2024. | spa |
dc.relation.references | [Uni, 2023] , 2023; Colombia puede liderar la transición energética que ex- ige el planeta; https://uniandes.edu.co/es/noticias/ingenieria/ colombia-puede-liderar-la-transicion-energetica-que-exige-el-planeta; Último acceso en 2024. | spa |
dc.relation.references | [FIC, 2024] , 2024; Xpress optimization; https://www.fico.com/en/products/ fico-xpress-optimization; Último acceso en 2024. | spa |
dc.relation.references | [Gur, 2024] , 2024; Gurobi optimization; https://www.gurobi.com/; Último acceso en 2024. | spa |
dc.relation.references | [Ipo, 2024] , 2024; Ipopt deprecated features; https://coin-or.github.io/Ipopt/ deprecated.html; Último acceso en 2024. | spa |
dc.relation.references | [Mos, 2024] , 2024; Mosek; https://www.mosek.com/; Último acceso en 2024. | spa |
dc.relation.references | [Ab Wahab et al., 2020] Ab Wahab, M. N.; Nefti-Meziani, S. & Atyabi, A.: , 2020; A comparative review on mobile robot path planning: Classical or meta-heuristic methods?; Annual Reviews in Control ; 50: 233–252. | spa |
dc.relation.references | [Abubakar & Kumam, 2019] Abubakar, A. B. & Kumam, P.: , 2019; A descent dai- liao conjugate gradient method for nonlinear equations; Numerical Algorithms; 81: 197–210. | spa |
dc.relation.references | [Agrawal & Boyd, 2020] Agrawal, A. & Boyd, S.: , 2020; Disciplined quasiconvex pro- gramming; Optimization Letters; to appear. | spa |
dc.relation.references | [Agrawal et al., 2019] Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S. & Kolter, J. Z.: , 2019; Differentiable convex optimization layers; Advances in neural information processing systems; 32. | spa |
dc.relation.references | [Andrei et al., 2020] Andrei, N. et al.: , 2020; Nonlinear conjugate gradient methods for unconstrained optimization; Springer. | spa |
dc.relation.references | [ANH, 2022] ANH: , 2022; Informe de reservas y recursos contingentes de hidrocar- buros 2022; https://www.anh.gov.co/documents/21617/Informe_de_Reservas_ _y_Recursos_Contingentes_de_Hidrocarburos_2022_pfMyhzQ.pdf; Último acceso en 2024. | spa |
dc.relation.references | [Applegate et al., 2021] Applegate, D.; Diaz, M.; Hinder, O.; Lu, H.; Lubin, M.; O' Donoghue, B. & Schudy, W.: , 2021; Practical large-scale linear pro- gramming using primal-dual hybrid gradient; en Advances in Neural Information Processing Systems, tomo 34 (Editado por Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P. & Vaughan, J. W.); Curran Associates, Inc.; págs. 20243–20257; URL https://proceedings.neurips.cc/paper_files/paper/2021/ file/a8fbbd3b11424ce032ba813493d95ad7-Paper.pdf. | spa |
dc.relation.references | [Arya, 2022] Arya, A. K.: , 2022; A critical review on optimization parameters and techniques for gas pipeline operation profitability; Journal of Petroleum Exploration and Production Technology; 12 (11): 3033–3057. | spa |
dc.relation.references | [Arya et al., 2022] Arya, A. K.; Jain, R.; Yadav, S.; Bisht, S. & Gautam, S.: , 2022; Recent trends in gas pipeline optimization; Materials Today: Proceedings; 57: 1455–1461. | spa |
dc.relation.references | [Asgharieh Ahari & Kocuk, 2023] Asgharieh Ahari, S. & Kocuk, B.: , 2023; A mixed- integer exponential cone programming formulation for feature subset selection in logistic regression; EURO Journal on Computational Optimization; 11: 100069; doi: https://doi.org/10.1016/j.ejco.2023.100069; URL https://www.sciencedirect.com/ science/article/pii/S2192440623000138. | spa |
dc.relation.references | [Attari & Torkayesh, 2018] Attari, M. Y. N. & Torkayesh, A. E.: , 2018; Developing benders decomposition algorithm for a green supply chain network of mine industry: Case of iranian mine industry; Operations Research Perspectives; 5: 371–382. | spa |
dc.relation.references | [Awwal et al., 2019] Awwal, A. M.; Kumam, P. & Abubakar, A. B.: , 2019; A modified conjugate gradient method for monotone nonlinear equations with convex constraints; Applied Numerical Mathematics; 145: 507–520. | spa |
dc.relation.references | [Azad et al., 2020] Azad, A. S.; Rahaman, M. S. A.; Watada, J.; Vasant, P. & Vintaned, J. A. G.: , 2020; Optimization of the hydropower energy generation using meta-heuristic approaches: A review; Energy Reports; 6: 2230–2248. | spa |
dc.relation.references | [Bahrami & Mohammadi, 2019] Bahrami, S. & Mohammadi, A.: , 2019; Smart micro- grids; Springer. | spa |
dc.relation.references | [Baker, 2020] Baker, K.: , 2020; A learning-boosted quasi-newton method for ac optimal power flow; arXiv preprint arXiv:2007.06074. | spa |
dc.relation.references | [Bayat & Bagheri, 2019] Bayat, A. & Bagheri, A.: , 2019; Optimal active and reactive power allocation in distribution networks using a novel heuristic approach; Applied Energy; 233: 71–85. | spa |
dc.relation.references | [Baydin et al., 2018] Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A. & Siskind, J. M.: , 2018; Automatic differentiation in machine learning: a survey; Journal of Marchine Learning Research; 18: 1–43. | spa |
dc.relation.references | [Beal et al., 2018] Beal, L.; Hill, D.; Martin, R. & Hedengren, J.: , 2018; Gekko optimization suite; Processes; 6 (8): 106; doi:10.3390/pr6080106. | spa |
dc.relation.references | [Beyza et al., 2020] Beyza, J.; Bravo, V. M.; Garcia-Paricio, E.; Yusta, J. M. & Artal-Sevil, J. S.: , 2020; Vulnerability and resilience assessment of power systems: From deterioration to recovery via a topological model based on graph theory; en 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), tomo 4; págs. 1–6; doi:10.1109/ROPEC50909.2020.9258709. | spa |
dc.relation.references | [Bolte & Pauwels, 2021] Bolte, J. & Pauwels, E.: , 2021; Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning; Mathematical Programming; 188: 19–51. | spa |
dc.relation.references | [Böttcher et al., 2023] Böttcher, L.; Wolf, H.; Jung, B.; Lutat, P.; Trageser, M.; Pohl, O.; Tao, X.; Ulbig, A. & Grohe, M.: , 2023; Solving ac power flow with graph neural networks under realistic constraints; en 2023 IEEE Belgrade PowerTech; IEEE; págs. 1–7. | spa |
dc.relation.references | [Buitrago-Villada et al., 2021] Buitrago-Villada, M. d. P.; García-Marín, S.; Zuluaga- Orozco, J. E. & Murillo-Sánchez, C. E.: , 2021; On the importance of using an ac or dc network model in the multi-period secure stochastic optimal power flow for settling a multidimensional day-ahead market; IEEE Latin America Transactions; 19 (12): 2003–2010; doi:10.1109/TLA.2021.9480141. | spa |
dc.relation.references | [Casacio et al., 2019] Casacio, L.; Lyra, C. & Oliveira, A. R.: , 2019; Interior point methods for power flow optimization with security constraints; International Transac- tions in Operational Research; 26 (1): 364–378. | spa |
dc.relation.references | [CEOWORLD, 2022] CEOWORLD: , 2022; The power of optimization; https:// ceoworld.biz/2022/12/05/the-power-of-optimization/; Último acceso en 2024. | spa |
dc.relation.references | [Chang et al., 2022] Chang, H.; Chen, Q.; Lin, R.; Shi, Y.; Xie, L. & Su, H.: , 2022; Controlling pressure of gas pipeline network based on mixed proximal policy optimization; en 2022 China Automation Congress (CAC); IEEE; págs. 4642–4647. | spa |
dc.relation.references | [Chen et al., 2020a] Chen, C.; Liu, S.; Lin, Z.; Yang, L.; Wu, X.; Qiu, W.; Gao, Q.; Zhu, T.; Xing, F. & Zhang, J.: , 2020a; Optimal coordinative operation strategy of the electric–thermal–gas integrated energy system considering csp plant; IET Energy Systems Integration; 2 (3): 187–195. | spa |
dc.relation.references | [Chen et al., 2021] Chen, J.; Wang, L.; Wang, C.; Yao, B.; Tian, Y. & Wu, Y.-S.: , 2021; Automatic fracture optimization for shale gas reservoirs based on gradient descent method and reservoir simulation; Advances in Geo-Energy Research; 5 (2): 191–201. | spa |
dc.relation.references | [Chen et al., 2022] Chen, M.; Lu, H. & Zheng, C.: , 2022; An integrated energy system optimization model coupled with power-to-gas and carbon capture; en 2022 Interna- tional Conference on Renewable Energies and Smart Technologies (REST), tomo 1; IEEE; págs. 1–5. | spa |
dc.relation.references | [Chen et al., 2020b] Chen, Q.; Zuo, L.; Wu, C.; Bu, Y.; Lu, Y.; Huang, Y. & Chen, F.: , 2020b; Short-term supply reliability assessment of a gas pipeline system under demand variations; Reliability Engineering & System Safety; 202: 107004. | spa |
dc.relation.references | [Chen et al., 2023] Chen, T.-C.; Alvarez, J. R. N.; Dwijendra, N. K. A.; Kadhim, Z. J.; Alayi, R.; Kumar, R.; PraveenKumar, S. & Velkin, V. I.: , 2023; Modeling and optimization of combined heating, power, and gas production system based on renewable energies; Sustainability; 15 (10): 7888. | spa |
dc.relation.references | [Chevalier & Chatzivasileiadis, 2023] Chevalier, S. & Chatzivasileiadis, S.: , 2023; Global performance guarantees for neural network models of ac power flow | spa |
dc.relation.references | [Chowdhury & Kamalasadan, 2021] Chowdhury, M. M.-U.-T. & Kamalasadan, S.: , 2021; A new second-order cone programming model for voltage control of power distribution system with inverter-based distributed generation; IEEE Transactions on Industry Applications; 57 (6): 6559–6567. | spa |
dc.relation.references | [Cotter et al., 2019] Cotter, A.; Jiang, H.; Gupta, M.; Wang, S.; Narayan, T.; You, S. & Sridharan, K.: , 2019; Optimization with non-differentiable constraints with applications to fairness, recall, churn, and other goals; Journal of Machine Learning Research; 20 (172): 1–59. | spa |
dc.relation.references | [CREG, 2022a] CREG: , 2022a; Anexo 7; https://gestornormativo. creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/ efe89a093559fe0b052589b9007d308b/$FILE/Anexo7.pdf; Último acceso en 2024. | spa |
dc.relation.references | [CREG, 2022b] CREG: , 2022b; Regulación de la creg sobre energías renovables comprende seis grandes temas; https://creg.gov.co/publicaciones/8625/regulacion-de-la-creg-sobre-energias-renovables-comprende-seis-grandes-temas/; Último acceso en 2024. | spa |
dc.relation.references | [CREG, 2022c] CREG: , 2022c; Reglamento Único de la comisión de regulación de energía y gas (creg); https://gestornormativo.creg.gov.co/gestor/entorno/docs/ru_ creg_gn.htm; Último acceso en 2024. | spa |
dc.relation.references | [Delgado et al., 2022] Delgado, J. A.; Baptista, E. C.; Balbo, A. R.; Soler, E. M.; Silva, D. N.; Martins, A. C. & Nepomuceno, L.: , 2022; A primal–dual penalty- interior-point method for solving the reactive optimal power flow problem with discrete control variables; International Journal of Electrical Power & Energy Systems; 138: 107917. | spa |
dc.relation.references | [Diamond & Boyd, 2016] Diamond, S. & Boyd, S.: , 2016; CVXPY: A Python-embedded modeling language for convex optimization; Journal of Machine Learning Research; 17 (83): 1–5 | spa |
dc.relation.references | [Diehl, 2019] Diehl, F.: , 2019; Warm-starting ac optimal power flow with graph neural networks; en 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); págs. 1–6. | spa |
dc.relation.references | [EIA, 2022] EIA: , 2022; Natural gas explained; https://www.eia.gov/energyexplained/ natural-gas/; Último acceso en 2024. | spa |
dc.relation.references | [Eleftheriadis et al., 2023] Eleftheriadis, P.; Leva, S. & Ogliari, E.: , 2023; Bayesian hyperparameter optimization of stacked bidirectional long short-term memory neural network for the state of charge estimation; Sustainable Energy, Grids and Networks; 36: 101160. | spa |
dc.relation.references | [Energy Master, 2023] Energy Master: , 2023; Consumo de energía; https:// energymaster.co/consumo-de-energia-2/; Último acceso en 2024. | spa |
dc.relation.references | [Energy5, 2024] Energy5: , 2024; Optimización de las redes de gasoductos de gas natural para mejorar la gestión de la cadena de suministro; https://energy5.com/es/ optimizacion-de-las-redes-de-gasoductos-de-gas-natural-para-mejorar-la-gestion-de- Último acceso en 2024. | spa |
dc.relation.references | [Falconer & Mones, 2022] Falconer, T. & Mones, L.: , 2022; Leveraging power grid topology in machine learning assisted optimal power flow; IEEE Transactions on Power Systems; 38 (3): 2234–2246. | spa |
dc.relation.references | [Falconer & Mones, 2023] Falconer, T. & Mones, L.: , 2023; Leveraging power grid topology in machine learning assisted optimal power flow; IEEE Transactions on Power Systems; 38 (3): 2234–2246; doi:10.1109/TPWRS.2022.3187218. | spa |
dc.relation.references | [Fallahi & Maghouli, 2020] Fallahi, F. & Maghouli, P.: , 2020; Integrated unit com- mitment and natural gas network operational planning under renewable generation uncertainty; International Journal of Electrical Power & Energy Systems; 117: 105647. | spa |
dc.relation.references | [Falsone et al., 2020] Falsone, A.; Notarnicola, I.; Notarstefano, G. & Prandini, M.: , 2020; Tracking-admm for distributed constraint-coupled optimization; Automatica; 117: 108962. | spa |
dc.relation.references | [Fan et al., 2023] Fan, Y.; Chen, Y. & Cui, M.: , 2023; Electric-hydrogen integrated energy system optimization considering ladder-type carbon trading mechanism and user-side flexible load; en 2023 IEEE 6th International Electrical and Energy Conference (CIEEC); IEEE; págs. 1780–1784. | spa |
dc.relation.references | [Farrokhifar et al., 2020] Farrokhifar, M.; Nie, Y. & Pozo, D.: , 2020; Energy sys- tems planning: A survey on models for integrated power and natural gas networks coordination; Applied Energy; 262: 114567. | spa |
dc.relation.references | [Füllner & Rebennack, 2022] Füllner, C. & Rebennack, S.: , 2022; Non-convex nested benders decomposition; Mathematical Programming; 196 (1-2): 987–1024. | spa |
dc.relation.references | [Gao et al., 2022] Gao, G.; Wang, Y.; Vink, J. C.; Wells, T. J. & Saaf, F. J.: , 2022; Distributed quasi-newton derivative-free optimization method for optimization problems with multiple local optima; Computational Geosciences; 26 (4): 847–863. | spa |
dc.relation.references | [Gao & Li, 2021] Gao, H. & Li, Z.: , 2021; A benders decomposition based algorithm for steady-state dispatch problem in an integrated electricity-gas system; IEEE Transac- tions on Power Systems; 36 (4): 3817–3820. | spa |
dc.relation.references | [Gao et al., 2019] Gao, S.; Yu, Y.; Wang, Y.; Wang, J.; Cheng, J. & Zhou, M.: , 2019; Chaotic local search-based differential evolution algorithms for optimization; IEEE Transactions on Systems, Man, and Cybernetics: Systems; 51 (6): 3954–3967. | spa |
dc.relation.references | [García-Marín et al., 2019] García-Marín, S.; González-Vanegas, W. & Murillo- Sánchez, C.: , 2019; MPNG: MATPOWER-Natural Gas; https://github.com/ MATPOWER/mpng; [Online; accessed (fecha de acceso)]. | spa |
dc.relation.references | [García-Marín et al., 2022] García-Marín, S.; González-Vanegas, W. & Murillo- Sánchez, C.: , 2022; Mpng: A matpower-based tool for optimal power and natural gas flow analyses; IEEE Transactions on Power Systems: 1–9; doi:10.1109/TPWRS. 2022.3195684. | spa |
dc.relation.references | [Gholizadeh et al., 2020] Gholizadeh, S.; Danesh, M. & Gheyratmand, C.: , 2020; A new newton metaheuristic algorithm for discrete performance-based design optimization of steel moment frames; Computers & Structures; 234: 106250. | spa |
dc.relation.references | [González et al., 2021] González, A. B. P.; Silva, B. D. J. & Macia, Y. M.: , 2021; Transición energética en américa latina y el caribe: diálogos inter y transdisciplinarios en tiempos de pandemia por covid-19; Revista LIDER: 33–61. | spa |
dc.relation.references | [Gonzalez & Peña-Vinces, 2023] Gonzalez, C. C. & Peña-Vinces, J.: , 2023; A frame- work for a green accounting system-exploratory study in a developing country context, colombia; Environment, Development and Sustainability; 25 (9): 9517–9541. | spa |
dc.relation.references | [González-Vanegas et al., 2019] González-Vanegas, W.; Álvarez Meza, A.; Hernández-Muriel, J. & Orozco-Gutiérrez, : , 2019; Akl-abc: An automatic ap- proximate bayesian computation approach based on kernel learning; Entropy; 21 (10); doi:10.3390/e21100932; URL https://www.mdpi.com/1099-4300/21/10/932. | spa |
dc.relation.references | [Goulart & Chen, 2024] Goulart, P. & Chen, Y.: , 2024; Clarabel documentation; https: //oxfordcontrol.github.io/ClarabelDocs/stable/; Último acceso en 2024. | spa |
dc.relation.references | [Greyson, 2021] Greyson, K. A.: , 2021; Vehicles power consumption measurements: Case study of dart in tanzania; en 2021 IEEE AFRICON ; págs. 1–7; doi:10.1109/ AFRICON51333.2021.9570955. | spa |
dc.relation.references | [Habib & Yildirim, 2022] Habib, A. & Yildirim, U.: , 2022; Developing a physics-informed and physics-penalized neural network model for preliminary design of multi-stage friction pendulum bearings; Engineering Applications of Artificial Intelligence; 113: 104953. | spa |
dc.relation.references | [Haghighat et al., 2021] Haghighat, E.; Raissi, M.; Moure, A.; Gomez, H. & Juanes, R.: , 2021; A physics-informed deep learning framework for inversion and surro- gate modeling in solid mechanics; Computer Methods in Applied Mechanics and Engineering; 379: 113741; doi:https://doi.org/10.1016/j.cma.2021.113741; URL https://www.sciencedirect.com/science/article/pii/S0045782521000773. | spa |
dc.relation.references | [Haji & Abdulazeez, 2021] Haji, S. H. & Abdulazeez, A. M.: , 2021; Comparison of optimization techniques based on gradient descent algorithm: A review; PalArch’s Journal of Archaeology of Egypt/Egyptology; 18 (4): 2715–2743. | spa |
dc.relation.references | [Han et al., 2024] Han, M.; Du, Z.; Yuen, K. F.; Zhu, H.; Li, Y. & Yuan, Q.: , 2024; Walrus optimizer: A novel nature-inspired metaheuristic algorithm; Expert Systems with Applications; 239: 122413. | spa |
dc.relation.references | [Harrington, 2018] Harrington, K. R.: , 2018; Panorama actual sobre eficiencia energética en américa latina; Revista VIRTUALPRO; 200. | spa |
dc.relation.references | [Hasanzadeh et al., 2021] Hasanzadeh, A.; Chitsaz, A.; Mojaver, P. & Ghasemi, A.: , 2021; Stand-alone gas turbine and hybrid mcfc and sofc-gas turbine systems: Comparative life cycle cost, environmental, and energy assessments; Energy Reports; 7: 4659–4680. | spa |
dc.relation.references | [Heipcke & Colombani, 2020] Heipcke, S. & Colombani, Y.: , 2020; Xpress mosel: Mod- eling and programming features for optimization projects; en Operations Research Proceedings 2019: Selected Papers of the Annual International Conference of the Ger- man Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 ; Springer; págs. 677–683. | spa |
dc.relation.references | [Hu & Jiang, 2024] Hu, J. & Jiang, Y.: , 2024; Accelerating benders decomposition approach for shared parking spaces allocation considering parking unpunctuality and no-shows; Expert Systems with Applications; 240: 122346. | spa |
dc.relation.references | [Hu & Zhang, 2023] Hu, Z. & Zhang, H.: , 2023; Optimal power flow based on physical- model-integrated neural network with worth-learning data generation. | spa |
dc.relation.references | [Huang & Wang, 2023] Huang, B. & Wang, J.: , 2023; Applications of physics-informed neural networks in power systems - a review; IEEE Transactions on Power Systems; 38 (1): 572–588; doi:10.1109/TPWRS.2022.3162473. | spa |
dc.relation.references | [Huang et al., 2023] Huang, W.; Zhang, X.; Cheng, H.; Xie, J. et al.: , 2023; Metamodel-based optimization method for traffic network signal design under stochastic demand; Journal of Advanced Transportation; 2023 | spa |
dc.relation.references | [Ibrahim & Hossain, 2021] Ibrahim, I. A. & Hossain, M. J.: , 2021; Low voltage distri- bution networks modeling and unbalanced (optimal) power flow: A comprehensive review; IEEE Access; 9: 143026–143084. | spa |
dc.relation.references | [Impacto TIC, 2023] Impacto TIC: , 2023; Energías renovables en colombia: Situación, retos y proyectos; https://impactotic.co/innovacion/sostenibilidad/ energias-renovables-en-colombia-situacion-retos-y-proyectos/; Último ac- ceso en 2024. | spa |
dc.relation.references | [International Energy Agency (IEA), 2022] International Energy Agency (IEA): , 2022; World energy investment 2022; https://www.iea.org/reports/ world-energy-investment-2022; license: CC BY 4.0. | spa |
dc.relation.references | [International Energy Agency (IEA), 2023] International Energy Agency (IEA): , 2023; Global energy and climate model; https://www.iea.org/reports/ global-energy-and-climate-model; license: CC BY 4.0. | spa |
dc.relation.references | [Jakovetić et al., 2020] Jakovetić, D.; Bajović, D.; Xavier, J. & Moura, J. M.: , 2020; Primal–dual methods for large-scale and distributed convex optimization and data analytics; Proceedings of the IEEE ; 108 (11): 1923–1938. | spa |
dc.relation.references | [Jamii et al., 2022] Jamii, J.; Trabelsi, M.; Mansouri, M.; Mimouni, M. F. & Shatanawi, W.: , 2022; Non-linear programming-based energy management for a wind farm coupled with pumped hydro storage system; Sustainability; 14 (18); doi:10.3390/su141811287; URL https://www.mdpi.com/2071-1050/14/18/11287. | spa |
dc.relation.references | [Jeon & Van Roy, 2022] Jeon, H. J. & Van Roy, B.: , 2022; An information-theoretic framework for deep learning; Advances in Neural Information Processing Systems; 35: 3279–3291. | spa |
dc.relation.references | [Kardoš et al., 2022] Kardoš, J.; Kourounis, D.; Schenk, O. & Zimmerman, R.: , 2022; Beltistos: A robust interior point method for large-scale optimal power flow problems; Electric Power Systems Research; 212: 108613. | spa |
dc.relation.references | [Karimi et al., 2019] Karimi, M.; Shahriari, A.; Aghamohammadi, M.; Marzooghi, H. & Terzija, V.: , 2019; Application of newton-based load flow methods for determining steady-state condition of well and ill-conditioned power systems: A review; International Journal of Electrical Power & Energy Systems; 113: 298–309. | spa |
dc.relation.references | [Khan et al., 2020] Khan, I. U.; Javaid, N.; Gamage, K. A.; Taylor, C. J.; Baig, S. & Ma, X.: , 2020; Heuristic algorithm based optimal power flow model incorporating stochastic renewable energy sources; IEEE Access; 8: 148622–148643. | spa |
dc.relation.references | [KILIÇARSLAN et al., 2021] KILIÇARSLAN, S.; Kemal, A. & Çelik, M.: , 2021; An overview of the activation functions used in deep learning algorithms; Journal of New Results in Science; 10 (3): 75–88. | spa |
dc.relation.references | [Kim et al., 2023] Kim, H. et al.: , 2023; Self-supervised equality embedded deep lagrange dual for approximate constrained optimization; arXiv preprint arXiv:2306.06674. | spa |
dc.relation.references | [Klatzer et al., 2022] Klatzer, T.; Bachhiesl, U. & Wogrin, S.: , 2022; State-of-the-art expansion planning of integrated power, natural gas, and hydrogen systems; Interna- tional Journal of Hydrogen Energy; 47 (47): 20585–20603. | spa |
dc.relation.references | [Kohjitani et al., 2022] Kohjitani, H.; Koda, S.; Himeno, Y.; Makiyama, T.; Ya- mamoto, Y.; Yoshinaga, D.; Wuriyanghai, Y.; Kashiwa, A.; Toyoda, F.; Zhang, Y. et al.: , 2022; Gradient-based parameter optimization method to determine membrane ionic current composition in human induced pluripotent stem cell-derived cardiomyocytes; Scientific Reports; 12 (1): 19110. | spa |
dc.relation.references | [Koksal & Aydin, 2023] Koksal, E. S. & Aydin, E.: , 2023; Physics informed piecewise linear neural networks for process optimization; Computers Chemical Engineering; 174: 108244; doi:https://doi.org/10.1016/j.compchemeng.2023.108244; URL https: //www.sciencedirect.com/science/article/pii/S009813542300114X. | spa |
dc.relation.references | [Kuhns & Shaw, 2018] Kuhns, R. J. & Shaw, G. H.: , 2018; Coal and Natural Gas; Springer International Publishing, Cham; ISBN 978-3-319-22783-2; págs. 65–69; doi:10. 1007/978-3-319-22783-2_8; URL https://doi.org/10.1007/978-3-319-22783-2_ 8. | spa |
dc.relation.references | [Kumar & Rahaman, 2020] Kumar, J. & Rahaman, O.: , 2020; Lower bound limit analysis using power cone programming for solving stability problems in rock mechanics for generalized hoek–brown criterion; Rock Mechanics and Rock Engineering; 53 (7): 3237–3252. | spa |
dc.relation.references | [Laue, 2022] Laue, S.: , 2022; On the equivalence of automatic and symbolic differentiation. | spa |
dc.relation.references | [Lee et al., 2023] Lee, M.; Kim, K. T. & Park, J.: , 2023; A numerically efficient output- only system-identification framework for stochastically forced self-sustained oscillators; arXiv preprint arXiv:2305.02801. | spa |
dc.relation.references | [Leon et al., 2020] Leon, L. M.; Bretas, A. S. & Rivera, S.: , 2020; Quadratically constrained quadratic programming formulation of contingency constrained optimal power flow with photovoltaic generation; Energies; 13 (13): 3310. | spa |
dc.relation.references | [Li et al., 2022] Li, S.; Ding, T.; Jia, W.; Huang, C.; Catalão, J. P. S. & Li, F.: , 2022; A machine learning-based vulnerability analysis for cascading failures of integrated power-gas systems; IEEE Transactions on Power Systems; 37 (3): 2259–2270; doi: 10.1109/TPWRS.2021.3119237. | spa |
dc.relation.references | [Li et al., 2017] Li, X.; Tomasgard, A. & Barton, P. I.: , 2017; Natural gas production network infrastructure development under uncertainty; Optimization and Engineering; 18: 35–62. | spa |
dc.relation.references | [Liang & Zhao, 2023] Liang, H. & Zhao, C.: , 2023; Deepopf-u: A unified deep neural network to solve ac optimal power flow in multiple networks. | spa |
dc.relation.references | [Lin et al., 2022a] Lin, Y.; Zhang, X.; Wang, J.; Shi, D. & Bian, D.: , 2022a; Voltage stability constrained optimal power flow for unbalanced distribution system based on semidefinite programming; Journal of Modern Power Systems and Clean Energy; 10 (6): 1614–1624; doi:10.35833/MPCE.2021.000220. | spa |
dc.relation.references | [Lin et al., 2022b] Lin, Y.; Zhang, X.; Wang, J.; Shi, D. & Bian, D.: , 2022b; Voltage stability constrained optimal power flow for unbalanced distribution system based on semidefinite programming; Journal of Modern Power Systems and Clean Energy; 10 (6): 1614–1624. | spa |
dc.relation.references | [Liu et al., 2021] Liu, B.; Yang, Q.; Zhang, H. & Wu, H.: , 2021; An interior-point solver for ac optimal power flow considering variable impedance-based facts devices; IEEE Access; 9: 154460–154470. | spa |
dc.relation.references | [Lopez-Garcia & Domínguez-Navarro, 2023] Lopez-Garcia, T. B. & Domínguez- Navarro, J. A.: , 2023; Power flow analysis via typed graph neural networks; Engineering Applications of Artificial Intelligence; 117: 105567. | spa |
dc.relation.references | [Ma et al., 2020a] Ma, M.; Fan, L.; Miao, Z.; Zeng, B. & Ghassempour, H.: , 2020a; A sparse convex ac opf solver and convex iteration implementation based on 3-node cycles; Electric Power Systems Research; 180: 106169; doi:https://doi.org/10.1016/ j.epsr.2019.106169; URL https://www.sciencedirect.com/science/article/pii/ S0378779619304882. | spa |
dc.relation.references | [Ma et al., 2020b] Ma, X.; Huang, H.; Wang, Y.; Romano, S.; Erfani, S. & Bailey, J.: , 2020b; Normalized loss functions for deep learning with noisy labels; en International conference on machine learning; PMLR; págs. 6543–6553. | spa |
dc.relation.references | [Mahapatra & Rajan, 2020] Mahapatra, D. & Rajan, V.: , 2020; Multi-task learning with user preferences: Gradient descent with controlled ascent in pareto optimization; en International Conference on Machine Learning; PMLR; págs. 6597–6607. | spa |
dc.relation.references | [Mai & Mortari, 2022] Mai, T. & Mortari, D.: , 2022; Theory of functional connections applied to quadratic and nonlinear programming under equality constraints; Journal of Computational and Applied Mathematics; 406: 113912. | spa |
dc.relation.references | [Mannel & Rund, 2021] Mannel, F. & Rund, A.: , 2021; A hybrid semismooth quasi- newton method for nonsmooth optimal control with pdes; Optimization and Engineer- ing; 22 (4): 2087–2125. | spa |
dc.relation.references | [McKinsey & Company, 2023] McKinsey & Company: , 2023; Global energy perspec- tive 2023; https://www.mckinsey.com/industries/oil-and-gas/our-insights/ global-energy-perspective-2023; accedido el [fecha de acceso]. | spa |
dc.relation.references | [Meng et al., 2020a] Meng, L.; Zhang, C.; Ren, Y.; Zhang, B. & Lv, C.: , 2020a; Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem; Computers & industrial engineering; 142: 106347. | spa |
dc.relation.references | [Meng et al., 2020b] Meng, Z.; Zhao, Z.; Mei, D. & Zhou, Y.: , 2020b; Numerical differentiation for two-dimensional functions by a fourier extension method; Inverse Problems in Science and Engineering; 28 (1): 126–143. | spa |
dc.relation.references | [Mhanna & Mancarella, 2021] Mhanna, S. & Mancarella, P.: , 2021; An exact sequential linear programming algorithm for the optimal power flow problem; IEEE Transactions on Power Systems; 37 (1): 666–679. | spa |
dc.relation.references | [Ministerio de Minas y Energía, 2020] Ministerio de Minas y Energía: , 2020; Res- olución 40311 de 2020; https://gestornormativo.creg.gov.co/gestor/entorno/ docs/resolucion_minminas_40311_2020.htm; Último acceso en 2024. | spa |
dc.relation.references | [Ministerio de Minas y Energía, 2021] Ministerio de Minas y Energía: , 2021; Res- olución 40279 de 2021; https://gestornormativo.creg.gov.co/gestor/entorno/ docs/resolucion_minminas_40279_2021.htm; Último acceso en 2024. | spa |
dc.relation.references | [Misra, 1908] Misra, D.: , 1908; Mish: A self regularized non-monotonic activation function. arxiv 2019; arXiv preprint arXiv:1908.08681. | spa |
dc.relation.references | [Misyris et al., 2020] Misyris, G. S.; Venzke, A. & Chatzivasileiadis, S.: , 2020; Physics-informed neural networks for power systems; en 2020 IEEE power & energy society general meeting (PESGM); IEEE; págs. 1–5. | spa |
dc.relation.references | [Misyris et al., 2021] Misyris, G. S.; Stiasny, J. & Chatzivasileiadis, S.: , 2021; Captur- ing power system dynamics by physics-informed neural networks and optimization; en 2021 60th IEEE Conference on Decision and Control (CDC); IEEE; págs. 4418–4423. | spa |
dc.relation.references | [Moehle et al., 2017] Moehle, N.; Mattingley, J. & Boyd, S.: , 2017; Embedded convex optimization with cvxpy; url= https://github. com/moehle/cvxpy codegen. | spa |
dc.relation.references | [Mokhtari & Ribeiro, 2020] Mokhtari, A. & Ribeiro, A.: , 2020; Stochastic quasi-newton methods; Proceedings of the IEEE ; 108 (11): 1906–1922. | spa |
dc.relation.references | [Montoya et al., 2020a] Montoya, O.; Gil-González, W.; Hernández, J. C.; Giral- Ramírez, D. A. & Medina-Quesada, A.: , 2020a; A mixed-integer nonlinear programming model for optimal reconfiguration of dc distribution feeders; Energies; 13 (17): 4440. | spa |
dc.relation.references | [Montoya et al., 2020b] Montoya, O. D.; Gil-González, W. & Grisales-Noreña, L.: , 2020b; Relaxed convex model for optimal location and sizing of dgs in dc grids using sequential quadratic programming and random hyperplane approaches; International Journal of Electrical Power & Energy Systems; 115: 105442. | spa |
dc.relation.references | [Mora-Camino & Nunes Cosenza, 2018] Mora-Camino, F. & Nunes Cosenza, C. A.: , 2018; Fuzzy Dual Numbers; Springer International Publishing, Cham; ISBN 978-3-319- 65418-8; págs. 11–16; doi:10.1007/978-3-319-65418-8_3; URL https://doi.org/10. 1007/978-3-319-65418-8_3. | spa |
dc.relation.references | [Mugel et al., 2022] Mugel, S.; Kuchkovsky, C.; Sanchez, E.; Fernandez-Lorenzo, S.; Luis-Hita, J.; Lizaso, E. & Orus, R.: , 2022; Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks; Physical Review Research; 4 (1): 013006. | spa |
dc.relation.references | [Muñoz et al., 2022] Muñoz, P.; Franceschini, E. A.; Levitan, D.; Rodriguez, C. R.; Humana, T. & Perelmuter, G. C.: , 2022; Comparative analysis of cost, emissions and fuel consumption of diesel, natural gas, electric and hydrogen urban buses; Energy Conversion and Management; 257: 115412. | spa |
dc.relation.references | [Murphy, 2022] Murphy, K. P.: , 2022; Probabilistic machine learning: an introduction; MIT press. | spa |
dc.relation.references | [Naderi et al., 2021] Naderi, E.; Pourakbari-Kasmaei, M.; Cerna, F. V. & Lehtonen, M.: , 2021; A novel hybrid self-adaptive heuristic algorithm to handle single-and multi-objective optimal power flow problems; International Journal of Electrical Power & Energy Systems; 125: 106492. | spa |
dc.relation.references | [Nellikkath & Chatzivasileiadis, 2022a] Nellikkath, R. & Chatzivasileiadis, S.: , 2022a; Physics-informed neural networks for ac optimal power flow; Electric Power Systems Research; 212: 108412; doi:https://doi.org/10.1016/j.epsr.2022.108412; URL https: //www.sciencedirect.com/science/article/pii/S0378779622005636. | spa |
dc.relation.references | [Nellikkath & Chatzivasileiadis, 2022b] Nellikkath, R. & Chatzivasileiadis, S.: , 2022b; Minimizing worst-case violations of neural networks; arXiv preprint arXiv:2212.10930. | spa |
dc.relation.references | [Nellikkath & Chatzivasileiadis, 2022c] Nellikkath, R. & Chatzivasileiadis, S.: , 2022c; Physics-informed neural networks for ac optimal power flow; Electric Power Systems Research; 212: 108412. | spa |
dc.relation.references | [Notarnicola & Notarstefano, 2019] Notarnicola, I. & Notarstefano, G.: , 2019; Constraint-coupled distributed optimization: A relaxation and duality approach; IEEE Transactions on Control of Network Systems; 7 (1): 483–492. | spa |
dc.relation.references | [O’Donoghue, 2021] O’Donoghue, B.: , 2021; Operator splitting for a homogeneous em- bedding of the linear complementarity problem; SIAM Journal on Optimization; 31: 1999–2023. | spa |
dc.relation.references | [O’Donoghue et al., 2016] O’Donoghue, B.; Chu, E.; Parikh, N. & Boyd, S.: , 2016; Conic optimization via operator splitting and homogeneous self-dual embed- ding; Journal of Optimization Theory and Applications; 169 (3): 1042–1068; URL http://stanford.edu/~boyd/papers/scs.html. | spa |
dc.relation.references | [Oliva et al., 2019] Oliva, D.; Abd Elaziz, M.; Elsheikh, A. H. & Ewees, A. A.: , 2019; A review on meta-heuristics methods for estimating parameters of solar cells; Journal of Power Sources; 435: 126683. | spa |
dc.relation.references | [Owerko et al., 2020] Owerko, D.; Gama, F. & Ribeiro, A.: , 2020; Optimal power flow using graph neural networks; en ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); IEEE; págs. 5930–5934. | spa |
dc.relation.references | [Owerko et al., 2022] Owerko, D.; Gama, F. & Ribeiro, A.: , 2022; Unsupervised optimal power flow using graph neural networks; arXiv preprint arXiv:2210.09277. | spa |
dc.relation.references | [Pan et al., 2021] Pan, X.; Zhao, T.; Chen, M. & Zhang, S.: , 2021; Deepopf: A deep neural network approach for security-constrained dc optimal power flow; IEEE Transactions on Power Systems; 36 (3): 1725–1735; doi:10.1109/TPWRS.2020.3026379. | spa |
dc.relation.references | [Pan et al., 2022] Pan, X.; Chen, M.; Zhao, T. & Low, S. H.: , 2022; Deepopf: A feasibility-optimized deep neural network approach for ac optimal power flow problems; IEEE Systems Journal ; 17 (1): 673–683. | spa |
dc.relation.references | [Pan et al., 2023] Pan, X.; Chen, M.; Zhao, T. & Low, S. H.: , 2023; Deepopf: A feasibility-optimized deep neural network approach for ac optimal power flow problems; IEEE Systems Journal ; 17 (1): 673–683; doi:10.1109/JSYST.2022.3201041. | spa |
dc.relation.references | [Park et al., 2023] Park, S.; Chen, W.; Mak, T. W. K. & Hentenryck, P. V.: , 2023; Compact optimization learning for ac optimal power flow. | spa |
dc.relation.references | [Pas et al., 2022] Pas, P.; Schuurmans, M. & Patrinos, P.: , 2022; Alpaqa: A matrix- free solver for nonlinear mpc and large-scale nonconvex optimization; en 2022 European Control Conference (ECC); págs. 417–422; doi:10.23919/ECC55457.2022.9838172. | spa |
dc.relation.references | [Paszke et al., 2017] Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L. & Lerer, A.: , 2017; Automatic differentiation in pytorch. | spa |
dc.relation.references | [Pérez-Cedeño et al., 2022] Pérez-Cedeño, R. O.; Stanescu, C. L. V. et al.: , 2022; Relación entre el consumo energético y las emisiones de co2 con el índice de desarrollo humano en países americanos: un análisis de eficiencia usando dea; Publicaciones en Ciencias y Tecnología; 16 (1): 3–15. | spa |
dc.relation.references | [Pillutla et al., 2023] Pillutla, K.; Roulet, V.; Kakade, S. M. & Harchaoui, Z.: , 2023; Modified gauss-newton algorithms under noise; en 2023 IEEE Statistical Signal Processing Workshop (SSP); págs. 51–55; doi:10.1109/SSP53291.2023.10207977 | spa |
dc.relation.references | [Pinheiro et al., 2022] Pinheiro, R. B.; Balbo, A. R.; Cabana, T. G. & Nepomuceno, L.: , 2022; Solving nonsmooth and discontinuous optimal power flow problems via interior-point p-penalty approach; Computers & Operations Research; 138: 105607. | spa |
dc.relation.references | [Pritchard et al., 1999] Pritchard, J. K.; Seielstad, M. T.; Perez-Lezaun, A. & Feld- man, M. W.: , 1999; Population growth of human y chromosomes: a study of y chromosome microsatellites.; Molecular biology and evolution; 16 (12): 1791–1798. | spa |
dc.relation.references | [Qi et al., 2020] Qi, J.; Du, J.; Siniscalchi, S. M.; Ma, X. & Lee, C.-H.: , 2020; On mean absolute error for deep neural network based vector-to-vector regression; IEEE Signal Processing Letters; 27: 1485–1489. | spa |
dc.relation.references | [Qiu et al., 2020] Qiu, B.; Huang, Z.; Liu, X.; Meng, X.; You, Y.; Liu, G.; Yang, K.; Maier, A.; Ren, Q. & Lu, Y.: , 2020; Noise reduction in optical coherence tomography images using a deep neural network with perceptually-sensitive loss function; Biomed. Opt. Express; 11 (2): 817–830; doi:10.1364/BOE.379551; URL https://opg.optica.org/boe/abstract.cfm?URI=boe-11-2-817. | spa |
dc.relation.references | [Rasamoelina et al., 2020] Rasamoelina, A. D.; Adjailia, F. & Sinčák, P.: , 2020; A review of activation function for artificial neural network; en 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI); IEEE; págs. 281–286. | spa |
dc.relation.references | [Raynaud et al., 2022] Raynaud, G.; Houde, S. & Gosselin, F. P.: , 2022; Modalpinn: An extension of physics-informed neural networks with enforced truncated fourier decomposition for periodic flow reconstruction using a limited number of imperfect sensors; Journal of Computational Physics; 464: 111271. | spa |
dc.relation.references | [Ríos-Mercado & Borraz-Sánchez, 2015] Ríos-Mercado, R. Z. & Borraz-Sánchez, C.: , 2015; Optimization problems in natural gas transportation systems: A state-of-the-art review; Applied Energy; 147: 536–555. | spa |
dc.relation.references | [Ritchie & Rosado, 2020] Ritchie, H. & Rosado, P.: , 2020; Energy mix; Our World in Data; https://ourworldindata.org/energy-mix. | spa |
dc.relation.references | [Robuschi et al., 2021] Robuschi, N.; Zeile, C.; Sager, S. & Braghin, F.: , 2021; Multi- phase mixed-integer nonlinear optimal control of hybrid electric vehicles; Automatica; 123: 109325 | spa |
dc.relation.references | [Rumelhart et al., 1986] Rumelhart, D. E.; Hinton, G. E. & Williams, R. J.: , 1986; Learning representations by back-propagating errors; nature; 323 (6088): 533–536. | spa |
dc.relation.references | [Sadat & Sahraei-Ardakani, 2021] Sadat, S. A. & Sahraei-Ardakani, M.: , 2021; Cus- tomized sequential quadratic programming for solving large-scale ac optimal power flow; en 2021 North American Power Symposium (NAPS); IEEE; págs. 1–6. | spa |
dc.relation.references | [Sadat & Sahraei-Ardakani, 2022] Sadat, S. A. & Sahraei-Ardakani, M.: , 2022; Tuning successive linear programming to solve ac optimal power flow problem for large networks; International Journal of Electrical Power & Energy Systems; 137: 107807. | spa |
dc.relation.references | [Sakketou & Ampazis, 2019] Sakketou, F. & Ampazis, N.: , 2019; On the invariance of the selu activation function on algorithm and hyperparameter selection in neural network recommenders; en Artificial Intelligence Applications and Innovations: 15th IFIP WG 12.5 International Conference, AIAI 2019, Hersonissos, Crete, Greece, May 24–26, 2019, Proceedings 15 ; Springer; págs. 673–685. | spa |
dc.relation.references | [Saldarriaga-Cortés et al., 2019] Saldarriaga-Cortés, C.; Salazar, H.; Moreno, R. & Jiménez-Estévez, G.: , 2019; Stochastic planning of electricity and gas networks: An asynchronous column generation approach; Applied energy; 233: 1065–1077. | spa |
dc.relation.references | [Sangaiah et al., 2020] Sangaiah, A. K.; Tirkolaee, E. B.; Goli, A. & Dehnavi-Arani, S.: , 2020; Robust optimization and mixed-integer linear programming model for lng supply chain planning problem; Soft computing; 24: 7885–7905 | spa |
dc.relation.references | [Schiassi et al., 2021] Schiassi, E.; De Florio, M.; D’Ambrosio, A.; Mortari, D. & Furfaro, R.: , 2021; Physics-informed neural networks and functional interpola- tion for data-driven parameters discovery of epidemiological compartmental models; Mathematics; 9 (17): 2069. | spa |
dc.relation.references | [Schreider et al., 2015] Schreider, S.; Plummer, J.; McInnes, D. & Miller, B.: , 2015; Sensitivity analysis of gas supply optimization models; Annals of Operations Research; 226: 565–588. | spa |
dc.relation.references | [Schuster et al., 2020] Schuster, R.; Hanson, J. O.; Strimas-Mackey, M. & Bennett, J. R.: , 2020; Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems; PeerJ ; 8: e9258. | spa |
dc.relation.references | [Shi & Hong, 2020] Shi, Q. & Hong, M.: , 2020; Penalty dual decomposition method for nonsmooth nonconvex optimization—part i: Algorithms and convergence analysis; IEEE Transactions on Signal Processing; 68: 4108–4122. | spa |
dc.relation.references | [Sosa & Navarro, 2020] Sosa, P. V. & Navarro, D. M.: , 2020; Crecimiento, complejidad económica y emisiones de co2: un análisis para colombia; Revista CIFE: Lecturas de Economía Social ; 22 (37): 21–41. | spa |
dc.relation.references | [Stiasny et al., 2021] Stiasny, J.; Chevalier, S. & Chatzivasileiadis, S.: , 2021; Learning without data: Physics-informed neural networks for fast time-domain simulation; en 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm); IEEE; págs. 438–443. | spa |
dc.relation.references | [Street, 1988] Street, J. H.: , 1988; The contribution of simon s. kuznets to institutionalist development theory; Journal of Economic Issues; 22 (2): 499–509. | spa |
dc.relation.references | [Strelow et al., 2023] Strelow, E. L.; Gerisch, A.; Lang, J. & Pfetsch, M. E.: , 2023; Physics informed neural networks: A case study for gas transport problems; Journal of Computational Physics; 481: 112041. | spa |
dc.relation.references | [Sun et al., 2022] Sun, X.; Zhang, Y.; Zhang, Y.; Xie, J. & Sun, B.: , 2022; Operation optimization of integrated energy system considering power-to-gas technology and carbon trading; International Transactions on Electrical Energy Systems; 2022: 1–12 | spa |
dc.relation.references | [Sun et al., 2020] Sun, Y.; Zhang, B.; Ge, L.; Sidorov, D.; Wang, J. & Xu, Z.: , 2020; Day-ahead optimization schedule for gas-electric integrated energy system based on second-order cone programming; CSEE Journal of Power and Energy Systems; 6 (1): 142–151. | spa |
dc.relation.references | [Thangamuthu et al., 2022] Thangamuthu, A.; Kumar, G.; Bishnoi, S.; Bhattoo, R.; Krishnan, N. & Ranu, S.: , 2022; Unravelling the performance of physics- informed graph neural networks for dynamical systems; Advances in Neural Information Processing Systems; 35: 3691–3702. | spa |
dc.relation.references | [Unigas, 2023] Unigas: , 2023; Panorama energético en colombia: re- tos del segundo semestre de 2023; https://www.unigas.com.co/blog/ panorama-energetico-en-colombia-retos-del-segundo-semestre-de-2023/; Último acceso en 2024 | spa |
dc.relation.references | [UPME, 2019] UPME: , 2019; Informe final del plan energético nacional: Indicadores de eficiencia energética; URL https://www1.upme.gov.co/DemandayEficiencia/ Documents/Informe_PEVI_final.pdf; accessed: 2024-07-15. | spa |
dc.relation.references | [UPME, 2021a] UPME: , 2021a; Resolución 0283 de 2021; https://gestornormativo. creg.gov.co/gestor/entorno/docs/resolucion_upme_0283_2021.htm; Último ac- ceso en 2024 | spa |
dc.relation.references | [UPME, 2021b] UPME: , 2021b; Resolución 0330 de 2021; https://normas.cra.gov.co/ gestor/docs/resolucion_upme_0330_2021.htm; Último acceso en 2024. | spa |
dc.relation.references | [UPME, 2022a] UPME: , 2022a; Proyectos de eficiencia energética; https://www1.upme. gov.co/DemandayEficiencia/Paginas/Proyectos-de-eficiencia-energetica. aspx; Último acceso en 2024. | spa |
dc.relation.references | [UPME, 2022b] UPME: , 2022b; Resolución 0289 de 2022; https://gestornormativo. creg.gov.co/gestor/entorno/docs/resolucion_upme_0289_2022.htm; Último ac- ceso en 2024. | spa |
dc.relation.references | [UPME, 2022c] UPME: , 2022c; Resolución 0468 de 2022; https://gestornormativo. creg.gov.co/gestor/entorno/docs/resolucion_upme_0468_2022.htm; Último ac- ceso en 2024. | spa |
dc.relation.references | [Van de Graaf & Colgan, 2016] Van de Graaf, T. & Colgan, J.: , 2016; Global energy governance: a review and research agenda; Palgrave Communications; 2 (1): 1–12. | spa |
dc.relation.references | [Vo et al., 2023] Vo, T. Q. T.; Baiou, M.; Nguyen, V. H. & Weng, P.: , 2023; Improving subtour elimination constraint generation in branch-and-cut algorithms for the tsp with machine learning; en Learning and Intelligent Optimization (Editado por Sellmann, M. & Tierney, K.); Springer International Publishing, Cham; ISBN 978-3-031-44505-7; págs. 537–551. | spa |
dc.relation.references | [Vásquez Cordano & Zellou, 2020] Vásquez Cordano, A. L. & Zellou, A. M.: , 2020; Super cycles in natural gas prices and their impact on latin american energy and environmental policies; Resources Policy; 65: 101513; doi:https://doi.org/10.1016/ j.resourpol.2019.101513; URL https://www.sciencedirect.com/science/article/ pii/S0301420718302034. | spa |
dc.relation.references | [Wang et al., 2023] Wang, G.; Zhao, W.; Qiu, R.; Liao, Q.; Lin, Z.; Wang, C. & Zhang, H.: , 2023; Operational optimization of large-scale thermal constrained natural gas pipeline networks: A novel iterative decomposition approach; Energy; 282: 128856 | spa |
dc.relation.references | [Wang et al., 2007] Wang, H.; Murillo-Sanchez, C. E.; Zimmerman, R. D. & Thomas, R. J.: , 2007; On computational issues of market-based optimal power flow; IEEE Transactions on Power Systems; 22 (3): 1185–1193; doi:10.1109/TPWRS.2007. 901301 | spa |
dc.relation.references | [Wang & Zhou, 2023] Wang, L. & Zhou, B.: , 2023; Optimal planning of electric vehi- cle fast-charging stations considering uncertain charging demands via dantzig–wolfe decomposition; Sustainability; 15 (8): 6588. | spa |
dc.relation.references | [Wang et al., 2020a] Wang, Q.; Ma, Y.; Zhao, K. & Tian, Y.: , 2020a; A comprehensive survey of loss functions in machine learning; Annals of Data Science: 1–26 | spa |
dc.relation.references | [Wang et al., 2020b] Wang, Y.; Gao, S.; Zhou, M. & Yu, Y.: , 2020b; A multi-layered gravitational search algorithm for function optimization and real-world problems; IEEE/CAA Journal of Automatica Sinica; 8 (1): 94–109 | spa |
dc.relation.references | [Wolpert & Macready, 1997] Wolpert, D. H. & Macready, W. G.: , 1997; No free lunch theorems for optimization; IEEE transactions on evolutionary computation; 1 (1): 67–82. | spa |
dc.relation.references | [Wu et al., 2018] Wu, X.; Li, C.; He, Y. & Jia, W.: , 2018; Operation optimization of natural gas transmission pipelines based on stochastic optimization algorithms: a review; Mathematical Problems in Engineering; 2018 | spa |
dc.relation.references | XM, 2023] XM: , 2023; Informes mensuales de análisis del mercado; https://www.xm. com.co/nuestra-empresa/informes/informes-de-la-operacion-y-el-mercado/ informes-mensuales-de-analisis-del-mercado; Último acceso en 2024. | spa |
dc.relation.references | [Yang et al., 2021] Yang, L.; Meng, X. & Karniadakis, G. E.: , 2021; B-pinns: Bayesian physics-informed neural networks for forward and inverse pde problems with noisy data; Journal of Computational Physics; 425: 109913 | spa |
dc.relation.references | [Yang et al., 2019] Yang, W.; Wang, J.; Niu, T. & Du, P.: , 2019; A hybrid forecasting system based on a dual decomposition strategy and multi-objective optimization for electricity price forecasting; Applied energy; 235: 1205–1225. | spa |
dc.relation.references | [Yu et al., 2023] Yu, H.; Ma, W.; Li, R.; Qiu, Z.; Li, H.; Zhou, J. & Wu, K.: , 2023; Optimization of electric-gas integrated energy system based on reversible solid oxide cell considering gas composition; en 2023 International Conference on Smart Electrical Grid and Renewable Energy (SEGRE); IEEE; págs. 214–220. | spa |
dc.relation.references | [Yu et al., 2021] Yu, W.; Huang, W.; Wen, Y.; Li, Y.; Liu, H.; Wen, K.; Gong, J. & Lu, Y.: , 2021; An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis; Reliability Engineering & System Safety; 212: 107651. | spa |
dc.relation.references | [Zhang et al., 2023] Zhang, Z.; Sun, M.; Deng, R.; Kang, C. & Chow, M.-Y.: , 2023; Physics-constrained robustness evaluation of intelligent security assessment for power systems; IEEE Transactions on Power Systems; 38 (1): 872–884; doi: 10.1109/TPWRS.2022.3169139. | spa |
dc.relation.references | [Zhao et al., 2020] Zhao, Z.; Liu, S.; Zhou, M. & Abusorrah, A.: , 2020; Dual-objective mixed integer linear program and memetic algorithm for an industrial group scheduling problem; IEEE/CAA Journal of Automatica Sinica; 8 (6): 1199–1209. | spa |
dc.relation.references | [Zhou et al., 2023] Zhou, M.; Chen, M. & Low, S. H.: , 2023; Deepopf-ft: One deep neural network for multiple ac-opf problems with flexible topology; IEEE Transactions on Power Systems; 38 (1): 964–967; doi:10.1109/TPWRS.2022.3217407. | spa |
dc.relation.references | [Zimmerman & Murillo-Sánchez, 2020] Zimmerman, R. D. & Murillo-Sánchez, C. E.: , 2020; MATPOWER User’s Manual ; Zenodo; doi:10.5281/zenodo.4074122. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Optimización | spa |
dc.subject.proposal | Sistemas de Gas | spa |
dc.subject.proposal | Redes Neuronales | spa |
dc.subject.proposal | Programación No Lineal | spa |
dc.subject.proposal | Tiempo de Cómputo | spa |
dc.subject.proposal | Redes Informadas Físicamente | spa |
dc.subject.proposal | Optimization | eng |
dc.subject.proposal | Gas Systems | eng |
dc.subject.proposal | Neural Networks | eng |
dc.subject.proposal | Nonlinear Programming | eng |
dc.subject.proposal | Convergence | eng |
dc.subject.proposal | Computation time | eng |
dc.subject.proposal | Physic-informed networks | eng |
dc.subject.unesco | Modelos matemáticos | |
dc.subject.unesco | Sistemas de energía | |
dc.subject.unesco | Tecnologías sostenibles | |
dc.title | Physics-informed neural networks-based optimization for gas-powered energy systems | eng |
dc.title.translated | Optimización basada en redes neuronales informadas por la física para sistemas de energía a gas | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Desarrollo de una herramienta para la planeación a largo plazo de la operación del sistema de transporte de gas natural de Colombia | spa |
oaire.fundername | Minciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1081595697.2024.pdf
- Tamaño:
- 2.53 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: