Hardware-based complex natural resonances extraction techniques for portable ground penetrating radar operations

dc.contributor.advisorRomán Campos, Francisco
dc.contributor.authorGallego Garcés, Andrés Junior
dc.contributor.researchgroupGrupo de Investigación Emc-Unspa
dc.coverage.countryColombia
dc.date.accessioned2022-09-05T16:10:27Z
dc.date.available2022-09-05T16:10:27Z
dc.date.issued2022-08-19
dc.descriptionfotografía a color, gráficas, ilustraciones, tablasspa
dc.description.abstractHere, a contribution to the Improvised Explosive Devices remote detection in Colombia in terms of Ground Penetrating Radar signal analysis is presented. The Complex Natural Resonances Extraction Methods for characterizing buried objects are compared, and from this evaluation and analysis, a new method is proposed with an increased accuracy and hardware suitability factor. Finally, a hardware implementation of this method is tested in an ARM processor.eng
dc.description.abstractEn este libro se presenta una contribución a la detección remota de minas antipersonales en Colombia, en términos del análisis de señales de radar de penetración terrestre. Los métodos de extracción de resonancias naturales complejas para la caracterización de objetos enterrados son comparados, y a partir de esta evaluación y análisis, un nuevo método que muestra un aumento en la presición y en la implementabilidad en hardware es propuesto. Finalmente, este método es implementado en un procesador ARM.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.sponsorshipEsta investigación fue financiada parcialmente por el crédito condonable de Minciencias 727 de 2015.spa
dc.format.extentxi, 78 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82251
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesH. M. Jol, Ground penetrating radar theory and applications. elsevier, 2008.spa
dc.relation.referencesR. Persico, Introduction to ground penetrating radar: inverse scattering and data processing. John Wiley & Sons, 2014.spa
dc.relation.referencesRFSpace. TSA600 Ultra-Wideband PCB Tapered Slot Antenna. (2022, Feb 23). [Online]. Available: http://rfspace.com/RFSPACE/Antennasf iles/TSA600.pdfspa
dc.relation.referencesS. Lambot, E. C. Slob, I. van den Bosch, B. Stockbroeckx, and M. Vanclooster, “Modeling of ground-penetrating radar for accurate characterization of subsurface electric properties,” IEEE transactions on geoscience and remote sensing, vol. 42, no. 11, pp. 2555–2568, 2004.spa
dc.relation.referencesS. A. Guti´errez Duarte, “Application of time-frequency transformations in polarimetric ultra-wideband mimo-gpr signals for detection of colombian improvised explosive devices,” Departamento de Ingenier´ıa El´ectrica y Electr´onica, 2019.spa
dc.relation.referencesA. Gallego, F. Roman, E. Neira, F. Vega, and C. Kasmi, “Linear prediction matrix segmentation for matrix pencil method in backscattering signal scenarios,” in 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, 2021, pp. 1–3.spa
dc.relation.referencesD. Chaparro-Arce, A. Gallego, F. Albarracin-Vargas, C. Gutierrez, F. Vega, and C. Pedraza, “Matrix pencil method applied to the compression of audio data in naval operations,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2020, pp. 254–256.spa
dc.relation.referencesA. Rangel, A. Gallego, F. Vega, J. Becerra, and R. Campos, “Parametric macromodeling of the coupling between two nearby parabolic antennas using the cauchy method,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2020, pp. 64–65.spa
dc.relation.referencesC. E. Baum, A. E. Hopper, and H. N. Hambric, Unexploded Ordnance(UXO): the problem. SUMMA, 1999.spa
dc.relation.referencesC. N. de Memoria Hist´orica y Fundaci´on Prolongar, La guerra escondida. Minas antipersonal y remanentes de explosivos en Colombia. Bogot´a, Colombia: CNMH, 2017.spa
dc.relation.references“Estad´ısticas de asistencia integral a las v´ıctimas de map y muse,” Jan 2022. [Online]. Available: http://www.accioncontraminas.gov.co/Estadisticas/estadisticas-de-victimasspa
dc.relation.referencesK. M. Lowe, L. A. Wallis, C. Pardoe, B. Marwick, C. Clarkson, T. Manne, M. A. Smith, and R. Fullagar, “Ground-penetrating radar and burial practices in western a rnhem l and, a ustralia,” Archaeology in Oceania, vol. 49, no. 3, pp. 148–157, 2014.spa
dc.relation.referencesA. Benedetto and S. Pensa, “Indirect diagnosis of pavement structural damages using surface gpr reflection techniques,” Journal of Applied geophysics, vol. 62, no. 2, pp. 107–123, 2007.spa
dc.relation.referencesM. Kuloglu and C.-C. Chen, “Ground penetrating radar for tunnel detection,” in 2010 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2010, pp. 4314–4317.spa
dc.relation.referencesM. Manteghi, D. B. Cooper, and P. P. Vlachos, “Application of singularity expansion method for monitoring the deployment of arterial stents,” Microwave and Optical Technology Letters, vol. 54, no. 10, pp. 2241–2246, 2012.spa
dc.relation.referencesT. Kelly, M. Angel, D. O’Connor, C. Huff, L. Morris, and G. Wach, “A novel approach to 3d modelling ground-penetrating radar (gpr) data – a case study of a cemetery and applications for criminal investigation,” Forensic Science International, vol. 325, p. 110882, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0379073821002024spa
dc.relation.referencesM. Sato, J. Fujiwara, X. Feng, Z.-S. Zhou, and T. Kobayashi, “Development of a hand-held gpr md sensor system (alis),” in Detection and Remediation Technologies for Mines and Minelike Targets X, vol. 5794. SPIE, 2005, pp. 1000–1007.spa
dc.relation.referencesV. Kovalenko, Advanced GPR data processing algorithms for detection of anti-personnel landmines. TU Delft, Delft University of Technology, 2006.spa
dc.relation.referencesC. Rappaport, M. El-Shenawee, and H. Zhan, “Suppressing gpr clutter from randomly rough ground surfaces to enhance nonmetallic mine detection,” Subsurface Sensing Technologies and Applications, vol. 4, no. 4, pp. 311–326, 2003.spa
dc.relation.referencesJ. Sachs, Handbook of ultra-wideband short-range sensing: theory, sensors, applications. John Wiley & Sons, 2013.spa
dc.relation.referencesL. Van Kempen and H. Sahli, “Signal processing techniques for clutter parameters estimation and clutter removal in gpr data for landmine detection,” in Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No. 01TH8563). IEEE, 2001, pp. 158–161.spa
dc.relation.referencesD. Daniels, “Ground penetrating radar, ser,” IEE Radar, Sonar, Navigation and Avionics Series. London: The Institution of Electrical Engineers, vol. 15, 2004.spa
dc.relation.referencesS. Lambot, E. Slob, I. Van Den Bosch, B. Stockbroeckx, B. Scheers, and M. Vanclooster, “Estimating soil electric properties from monostatic ground-penetrating radar signal inversion in the frequency domain,” Water Resources Research, vol. 40, no. 4, 2004.spa
dc.relation.referencesS. Lambot, E. Slob, I. Van den Bosch, B. Stockbroeckx, B. Scheers, and M. Vanclooster, “Gpr design and modeling for identifying the shallow subsurface dielectric properties,” in Proceedings of the 2nd International Workshop onAdvanced Ground Penetrating Radar, 2003. IEEE, 2003, pp. 130–135.spa
dc.relation.referencesA. Gallego, E. Pineda, S. Gutierrez, and F. Rom´an, “Complex natural resonances extraction methods for ground penetrating radar operations,” Digital Signal Processing, 2021, manuscript Under Review.spa
dc.relation.referencesE. Kennaugh and D. Moffatt, “Transient and impulse response approximations,” Proceedings of the IEEE, vol. 53, no. 8, pp. 893–901, 1965.spa
dc.relation.referencesR. K. Mains, Complex natural resonances of an object in detection and discrimination. ElectroScience Laboratory, Department of Electrical Engineering, The Ohio . . . , 1974, vol. 74, no. 282.spa
dc.relation.referencesC. E. Baum, “On the singularity expansion method for the solution of electromagnetic interaction problems,” DTIC Document, Tech. Rep., 1971.spa
dc.relation.referencesA. Ramm, “Theoretical and practical aspects of singularity and eigenmode expansion methods,” IEEE Transactions on Antennas and Propagation, vol. 28, no. 6, pp. 897–901, 1980.spa
dc.relation.referencesF. Tesche, “On the analysis of scattering and antenna problems using the singularity expansion technique,” IEEE Transactions on Antennas and Propagation, vol. 21, no. 1, pp. 53–62, 1973.spa
dc.relation.referencesC. Baum, “On the use of contour integration for finding poles, zeros, saddles and other function values in the singularity expansion method,” Mathematics Notes, 1974.spa
dc.relation.referencesJ. M. Myers, S. S. Sandler, and T. T. Wu, “Electromagnetic resonances of a straight wire,” IEEE transactions on Antennas and Propagation, vol. 59, no. 1, pp. 129–134, 2010.spa
dc.relation.referencesC. Bouwkamp, “Hall´en’s theory for a straight, perfectly conducting wire, used as a transmitting or receiving aerial,” Physica, vol. 9, no. 7, pp. 609–631, 1942.spa
dc.relation.referencesC. E. Baum, “The singularity expansion method: Background and developments,” Electromagnetics, vol. 1, no. 4, pp. 351–360, 1981.spa
dc.relation.referencesC. Baum, E. Rothwell, K.-M. Chen, and D. Nyquist, “The singularity expansion method and its application to target\nidentification,” Proceedings of the IEEE, vol. 79, no. 10, pp. 1481–1492, 1991.spa
dc.relation.referencesC. L. Dolph, “the Singularity Expansion Method and Complex Singularities of Exterior Scalar and Vector Scattering in Acoustics & Electromagnetic Theory,” p. 77, 1979.spa
dc.relation.referencesW. Lee, “Identification of a target using its natural poles using both frequency and time domain response,” 2013.spa
dc.relation.referencesY. Hua and T. K. Sarkar, “Matrix Pencil Method for Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 5, pp. 814–824, 1990.spa
dc.relation.referencesM. A. Rahman and K. B. Yu, “Total least squares approach for frequency estimation using linear prediction,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 10, pp. 1440–1454, 1987.spa
dc.relation.referencesW. Lee, T. K. Sarkar, H. Moon, and M. Salazar-Palma, “Computation of the natural poles of an object in the frequency domain using the cauchy method,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1137–1140, 2012.spa
dc.relation.referencesL. C. Chan, Subsurface electromagnetic target characterization and identification. The Ohio State University, 1979.spa
dc.relation.referencesJ. Young, L. J. Peters, and C.-c. Chen, Chapter 5: Characteristic resonance identification techniques for buried targets seen by Ground Penetrating Radar. SUMMA, 1999.spa
dc.relation.referencesD. V. Giri and F. M. Tesche, “An overview of the natural frequencies of a straight wire by various methods,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 5859–5866, 2012.spa
dc.relation.referencesR. Prony, “Essai experimental et analytique sur les lois de la dilatabilite des fluides elastiques et sur celles de la force expansive de la vapeur de leau et de la vapeur de lalkool, r differentes temperatures,” Journal Polytechnique ou Bulletin du Travail fait r Lecole Centrale des Travaux Publics, Paris, Premier Cahier, pp. 24–76, 1795.spa
dc.relation.referencesD. Tufts and R. Kumaresan, “Singular value decomposition and improved frequency estimation using linear prediction,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 30, no. 4, pp. 671–675, 1982spa
dc.relation.referencesJ. Makhoul, “Linear Prediction: A Tutorial Review,” Proceedings of the IEEE, vol. 63, no. 4, pp. 561–580, 1975.spa
dc.relation.referencesG. H. Golub and C. F. Van Loan, “An Analysis of the Total Least Squares Problem,” pp. 883–893, 1980.spa
dc.relation.referencesT. K. Sarkar, F. Hu, Y. Hua, and M. Wicks, “A real-time signal processing technique for approximating a function by a sum of complex exponentials utilizing the matrix-pencil approach,” Digital Signal Processing, vol. 4, no. 2, pp. 127–140, 1994.spa
dc.relation.referencesT. K. Sarkar and O. Pereira, “Using the Matrix Pencil Method to Estimate the Parameters of a Sum of Complex Exponentials,” IEEE Antennas and Propagation Magazine, vol. 37, no. 1, pp. 48–55, 1995.spa
dc.relation.referencesA. Caboussat and G. K. Miers, “Numerical approximation of electromagnetic signals arising in the evaluation of geological formations,” 2009.spa
dc.relation.referencesD. Chaparro-Arce, S. Gutierrez, A. Gallego, C. Pedraza, F. Vega, and C. Gutierrez, “Locating ships using time reversal and matrix pencil method by their underwater acoustic signals,” Sensors, vol. 21, no. 15, p. 5065, 2021.spa
dc.relation.referencesT. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters of a sum of complex exponentials,” IEEE Antennas and Propagation Magazine, vol. 37, no. 1, pp. 48–55, 1995.spa
dc.relation.referencesA.-L. Cauchy, “Sur la formule de Lagrange relative `a l’interpolation,” in Cours d’analyse de l’ ´ Ecole Royale Polytechnique:. Cambridge: Cambridge University Press, 1821, pp. 525–529. [Online]. Available: https://www.cambridge.org/core/books/cours-danalysede- lecole-royale-polytechnique/ sur-la-formule-de-lagrange-relative-a-linterpolation/ BBE87600C81E0072348EA4676F1551CEspa
dc.relation.referencesJ. Yang and T. K. Sarkar, “Interpolation/extrapolation of radar cross-section (RCS) data in the frequency domain using the cauchy method,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 10, pp. 2844–2851, 2007.spa
dc.relation.referencesA. Gallego, F. Vega, and A. Rangel, “Hybrid method for the estimation of complex natural resonances using cauchy and vector fitting,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM). IEEE, 2020, pp. 69–71.spa
dc.relation.referencesA. P. Duffy, A. J. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S. Woolfson, “Feature selective validation (fsv) for validation of computational electromagnetics (cem). part i-the fsv method,” IEEE transactions on electromagnetic compatibility, vol. 48, no. 3, pp. 449–459, 2006.spa
dc.relation.referencesB. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Transactions on power delivery, vol. 14, no. 3, pp. 1052–1061, 1999.spa
dc.relation.referencesP. A. Businger and G. H. Golub, “Algorithm 358: singular value decomposition of a complex matrix [f1, 4, 5],” Communications of the ACM, vol. 12, no. 10, pp. 564–565, 1969.spa
dc.relation.referencesD. Chaparro-Arce, S. Gutierrez, A. Gallego, C. Pedraza, F. Vega, and C. Gutierrez, “Locating ships using time reversal and matrix pencil method by their underwater acoustic signals,” Sensors, vol. 21, no. 15, p. 5065, 2021.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.lembDetectores de metalesspa
dc.subject.lembMetal detectorseng
dc.subject.lembDetectorseng
dc.subject.lembDetectoresspa
dc.subject.proposalSingularity Expansion Methodeng
dc.subject.proposalCauchyeng
dc.subject.proposalSingular Value Decompositioneng
dc.subject.proposalLinear Prediction Matrixeng
dc.subject.proposalVector Fittingeng
dc.subject.proposalGround Penetrating Radareng
dc.subject.proposalImprovised Explosive Deviceeng
dc.subject.proposalLandmineeng
dc.subject.proposalARMeng
dc.subject.proposalprocessoreng
dc.subject.proposalComplex Natural Resonanceseng
dc.subject.proposalPoleseng
dc.subject.proposalSignal Processingeng
dc.titleHardware-based complex natural resonances extraction techniques for portable ground penetrating radar operationseng
dc.title.translatedTécnicas basadas en hardware de extracción de resonancias naturales complejas para operaciones de radar de penetración terrestrespa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023887295.2022.pdf
Tamaño:
28.64 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: