Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz

dc.contributor.advisorRuiz Colorado, Angela Adriana
dc.contributor.authorRomero Castaño, Juan Felipe
dc.contributor.researchgroupBioprocesos y Flujos Reactivosspa
dc.date.accessioned2023-09-11T17:43:00Z
dc.date.available2023-09-11T17:43:00Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl calentamiento global generado por la fuerte dependencia de los combustibles fósiles requiere de distintos tipos de soluciones, y entre las más prometedores se encuentra la obtención de productos químicos plataforma a partir de material residual lignocelulósico. En este trabajo se formula una ruta de producción sostenible del compuesto químico plataforma 5 – hidroximetilfurfural a partir de la biomasa lignocelulósica fibra de maíz. La ruta formulada consiste primero de un pretratamiento con líquido iónico en combinación con microondas, seguido de una hidrólisis enzimática para acceder a la glucosa estructural y finalmente una etapa de reacción y separación in situ en un sistema bifásico agua – orgánico conocida como extracción reactiva. Para concluir, se presenta el modelamiento y simulación de esta última etapa del proceso desarrollada en la literatura. (Texto tomado de la fuente)spa
dc.description.abstractGlobal warming generated by the strong dependence on fossil fuels requires different types of solutions, and one of the most promising is to obtain platform chemicals from residual lignocellulosic material. In this work, a route for the sustainable production of the chemical compound platform 5 – hydroxymethylfurfural is formulated from the lignocellulosic biomass of corn fiber. The formulated route consists first of a pretreatment with ionic liquid in combination with microwaves, followed by an enzymatic hydrolysis to access the structural glucose and finally a reaction and separation step in situ in a biphasic waterorganic system known as reactive extraction. To conclude, the modeling and simulation of this last stage of the process developed in the literature is presented.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.funderLínea de Investigación: Metabolitos de valor agregado de biomasas Grupo de Investigación: Bioprocesos y Flujos Reactivos - BIOFRUNspa
dc.description.researchareaMetabolitos de valor agregado de biomasasspa
dc.format.extent78 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84688
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesABENGOA. (2016). Estructura y función de la lignina. http://www.laenergiadelcambio.com/estructura-funcion-lignina/spa
dc.relation.referencesAcosta Pavas, J. C., Bonilla OSpina, N., Jaimes Cruz, L. J., Correa Cardona, H. J., Giraldo Mejía, Á. M., & Ruiz Colorado, A. A. (2021). Optimization of Liquid Hot Water Pretreatment on Sugarcane and Maralfalfa Grass for Glucose Production. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3946336spa
dc.relation.referencesAcosta Zamora, E. A. (2014). Identificación del mecanismo de solvatación de biomasa lignocelulósica con líquidos iónicos. https://repositorio.unal.edu.co/handle/unal/72478#.YnrFCXx5h5w.mendeleyspa
dc.relation.referencesAltway, S., Pujar, S. C., & de Haan, A. B. (2018). Liquid-liquid equilibria of ternary and quaternary systems involving 5-hydroxymethylfurfural, water, organic solvents, and salts at 313.15 K and atmospheric pressure. Fluid Phase Equilibria, 475, 100–110. https://doi.org/https://doi.org/10.1016/j.fluid.2018.07.034spa
dc.relation.referencesAltway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001spa
dc.relation.referencesAltway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001spa
dc.relation.referencesAtanda, L., Konarova, M., Ma, Q., Mukundan, S., Shrotri, A., & Beltramini, J. (2016). High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science & Technology, 6(16), 6257–6266. https://doi.org/10.1039/C6CY00820Hspa
dc.relation.referencesBarcelos, C. A., Oka, A. M., Yan, J., Das, L., Achinivu, E. C., Magurudeniya, H., Dong, J., Akdemir, S., Baral, N. R., Yan, C., Scown, C. D., Tanjore, D., Sun, N., Simmons, B. A., Gladden, J., & Sundstrom, E. (2021). High-Efficiency Conversion of Ionic LiquidPretreated Woody Biomass to Ethanol at the Pilot Scale. ACS Sustainable Chemistry & Engineering, 9(11), 4042–4053. https://doi.org/10.1021/acssuschemeng.0c07920spa
dc.relation.referencesCavalcanti, K. V. M., Follegatti-Romero, L. M., Dalmolin, I., & Follegatti-Romero, L. A. (2019). Liquid-liquid equilibrium for (water + 5-hydroxymethylfurfural + 1-pentanol/1hexanol/1-heptanol) systems at 298.15 K. The Journal of Chemicalspa
dc.relation.referencesEtecé. (2020). Celulosa - Concepto, historia, función, usos y propiedades. https://concepto.de/celulosa/spa
dc.relation.referencesChatel, G., & Varma, R. S. (2019). Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to Green Chemistry. Green Chemistry, 21(22), 6043–6050. https://doi.org/10.1039/C9GC02534Kspa
dc.relation.referencesChoudhary, V., Mushrif, S. H., Ho, C., Anderko, A., Nikolakis, V., Marinkovic, N. S., Frenkel, A. I., Sandler, S. I., & Vlachos, D. G. (2013). Insights into the Interplay of Lewis and Brønsted Acid Catalysts in Glucose and Fructose Conversion to 5(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of the American Chemical Society, 135(10), 3997–4006. https://doi.org/10.1021/ja3122763spa
dc.relation.referencesDas, L., Achinivu, E. C., Barcelos, C. A., Sundstrom, E., Amer, B., Baidoo, E. E. K., Simmons, B. A., Sun, N., & Gladden, J. M. (2021). Deconstruction of Woody Biomass via Protic and Aprotic Ionic Liquid Pretreatment for Ethanol Production. ACS Sustainable Chemistry and Engineering, 9(12), 4422–4432. https://doi.org/10.1021/ACSSUSCHEMENG.0C07925/SUPPL_FILE/SC0C07925_SI _001.PDFspa
dc.relation.referencesDedes, G., Karnaouri, A., Marianou, A. A., Kalogiannis, K. G., Michailof, C. M., Lappas, A. A., & Topakas, E. (2021). Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis. Biotechnology for Biofuels, 14(1), 172. https://doi.org/10.1186/s13068-021-02022-9spa
dc.relation.referencesDeuss, P., Barta, K., & de Vries, J. (2014). Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catalysis Science & Technology, 4, 1174–1196. https://doi.org/10.1039/c3cy01058aspa
dc.relation.referencesDutta, S., De, S., Alam, M. I., Abu-Omar, M. M., & Saha, B. (2012). Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. Journal of Catalysis, 288, 8–15. https://doi.org/10.1016/J.JCAT.2011.12.017spa
dc.relation.referencesFAOSTAT. (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCLspa
dc.relation.referencesFuertez, J., Acosta Pavas, J., & RUIZ, A. (2021). Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups. Dyna (Medellin, Colombia), 88, 168–177. https://doi.org/10.15446/dyna.v88n218.92055spa
dc.relation.referencesGuo, W., Zhang, Z., Hacking, J., Heeres, H. J., & Yue, J. (2021). Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling. Chemical Engineering Journal, 409, 128182. https://doi.org/https://doi.org/10.1016/j.cej.2020.128182spa
dc.relation.referencesParada, R. (2020). Hemicelulosa: clasificación, estructura, biosíntesis, funciones. https://www.lifeder.com/hemicelulosa/spa
dc.relation.referencesHideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, 2706–2711. https://doi.org/10.1016/j.biortech.2008.12.057spa
dc.relation.referencesHu, D., Zhang, M., Xu, H., Wang, Y., & Yan, K. (2021). Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 147, 111253. https://doi.org/10.1016/J.RSER.2021.111253spa
dc.relation.referencesIlić, N., Milić, M., Beluhan, S., & Dimitrijević-Branković, S. (2023). Cellulases: From Lignocellulosic Biomass to Improved Production. Energies, 16(8), 3598. https://doi.org/10.3390/en16083598spa
dc.relation.referencesKaur, D., Singla, G., Singh, U., & Krishania, M. (2020). Efficient process engineering for extraction of hemicellulose from corn fiber and its characterization. Carbohydrate Polymer Technologies and Applications, 1, 100011. https://doi.org/https://doi.org/10.1016/j.carpta.2020.100011spa
dc.relation.referencesLópez-Linares, J. C., Romero-García, J. M., Romero, I., Ruiz, E., & Castro, E. (2023). Development of a biorefinery from olive mill leaves: Comparison of different process configurations. Industrial Crops and Products, 200, 116813. https://doi.org/10.1016/J.INDCROP.2023.116813spa
dc.relation.referencesLuo, H., Gao, L., Xie, F., Shi, Y., Zhou, T., Guo, Y., Yang, R., & Bilal, M. (2022). A new lcysteine-assisted glycerol organosolv pretreatment for improved enzymatic hydrolysis of corn stover. Bioresource Technology, 363, 127975. https://doi.org/10.1016/J.BIORTECH.2022.127975spa
dc.relation.referencesLuterbacher, J. S., Rand, J. M., Alonso, D. M., Han, J., Youngquist, J. T., Maravelias, C. T., Pfleger, B. F., & Dumesic, J. A. (2014). Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone. Science, 343(6168), 277–280. https://doi.org/10.1126/science.1246748spa
dc.relation.referencesMegías-Sayago, C., Navarro-Jaén, S., Drault, F., & Ivanova, S. (2021). Recent Advances in the Brønsted/Lewis Acid Catalyzed Conversion of Glucose to HMF and Lactic Acid: Pathways toward Bio-Based Plastics. Catalysts, 11(11), 1395. https://doi.org/10.3390/catal11111395spa
dc.relation.referencesMenegazzo, F., Ghedini, E., & Signoretto, M. (2018). 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules, 23(9). https://doi.org/10.3390/MOLECULES23092201spa
dc.relation.referencesMohammad, S., Grundl, G., Müller, R., Kunz, W., Sadowski, G., & Held, C. (2016). Influence of electrolytes on liquid-liquid equilibria of water/1-butanol and on the partitioning of 5-hydroxymethylfurfural in water/1-butanol. Fluid Phase Equilibria, 428, 102–111. https://doi.org/https://doi.org/10.1016/j.fluid.2016.05.001spa
dc.relation.referencesMon Aung, E., Endo, T., Fujii, S., Kuroda, K., Ninomiya, K., & Takahashi, K. (2018). Efficient pretreatment of bagasse at high loading in an ionic liquid. Industrial Crops and Products, 119, 243–248. https://doi.org/10.1016/j.indcrop.2018.04.006spa
dc.relation.referencesPoddar, B., Nakhate, S., Gupta, R., Chavan, A., Singh, A., Khardenavis, A., & Purohit, H. (2021). A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-032488spa
dc.relation.referencesRincón Rincón, S. N. (2020). Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv. https://repositorio.unal.edu.co/handle/unal/78589spa
dc.relation.referencesSato, A., Widjaja, A., Asror, K., & Emilia, A. (2019). Influence of alkaline addition on the composition and yield on the hydrothermal treatment of rice straw. Malaysian Journal of Fundamental and Applied Sciences, 15, 537–542. https://doi.org/10.11113/mjfas.v15n4.1077spa
dc.relation.referencesSchmidt, L. M., Mthembu, L. D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., & Smirnova, I. (2017). Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Industrial Crops and Products, 99, 172–178. https://doi.org/10.1016/J.INDCROP.2017.02.010spa
dc.relation.referencesSCOPUS. (2022). Scopus - Document search. https://www-scopuscom.ezproxy.unal.edu.co/search/form.uri?display=basic#basicspa
dc.relation.referencesSingh, S. K. (2022). Ionic liquids and lignin interaction: An overview. Bioresource Technology Reports, 17. https://doi.org/10.1016/j.biteb.2022.100958spa
dc.relation.referencesSlak, J., Pomeroy, B., Kostyniuk, A., Grilc, M., & Likozar, B. (2022). A review of biorefining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural. Chemical Engineering Journal, 429, 132325. https://doi.org/10.1016/J.CEJ.2021.132325spa
dc.relation.referencesSorn, V., Chang, K. L., Phitsuwan, P., Ratanakhanokchai, K., & Dong, C. di. (2019). Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresource Technology, 293, 121929. https://doi.org/10.1016/J.BIORTECH.2019.121929spa
dc.relation.referencesSoukup-Carne, D., Fan, X., & Esteban, J. (2022). An overview and analysis of the thermodynamic and kinetic models used in the production of 5-hydroxymethylfurfural and furfural. Chemical Engineering Journal, 442, 136313. https://doi.org/10.1016/J.CEJ.2022.136313spa
dc.relation.referencesSouzanchi, S., Nazari, L., Venkateswara Rao, K. T., Yuan, Z., Tan, Z., & Charles Xu, C. (2021). Catalytic dehydration of glucose to 5-HMF using heterogeneous solid catalysts in a biphasic continuous-flow tubular reactor. Journal of Industrial and Engineering Chemistry, 101, 214–226. https://doi.org/https://doi.org/10.1016/j.jiec.2021.06.010spa
dc.relation.referencesTang, J., Zhu, L., Fu, X., Dai, J., Guo, X., & Hu, C. (2017). Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl– H2O/THF Biphasic System. ACS Catalysis, 7(1), 256–266. https://doi.org/10.1021/acscatal.6b02515spa
dc.relation.referencesUN. (2021). UN Comtrade. https://comtradeplus.un.org/spa
dc.relation.referencesvan Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499–1597. https://doi.org/10.1021/cr300182kspa
dc.relation.referencesWang, T., Glasper, J. A., & Shanks, B. H. (2015). Kinetics of glucose dehydration catalyzed by homogeneous Lewis acidic metal salts in water. Applied Catalysis A: General, 498, 214–221. https://doi.org/https://doi.org/10.1016/j.apcata.2015.03.037spa
dc.relation.referencesWanninayake, P., Rathnayake, M., Subasinghe, D., & Gunawardena, S. (2022). Conversion of rice straw into 5-hydroxymethylfurfural: review and comparative process evaluation. Biomass Conversion and Biorefinery, 12, 1–35. https://doi.org/10.1007/s13399-021-01351-xspa
dc.relation.referencesXu, H., Li, X., Hu, W., Lu, L., Chen, J., Zhu, Y., Zhou, H., & Si, C. (2022). Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives. Fuel Processing Technology, 234, 107338. https://doi.org/10.1016/J.FUPROC.2022.107338spa
dc.relation.referencesZhang, B., Zhan, B., & Bao, J. (2021). Reframing biorefinery processing chain of corn fiber for cellulosic ethanol production. Industrial Crops and Products, 170, 113791. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113791spa
dc.relation.referencesZhang, S., Sheng, K., Chen, X., Zhang, X., & Mosier, N. S. (2021). Conversion of glucose to 5-hydroxymethyl furfural in water-acetonitrile-dimethyl sulfoxide solvent with aluminum on activated carbon and maleic acid. Industrial Crops and Products, 174, 114220. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.114220spa
dc.relation.referencesZhang, T., Kumar, R., & Wyman, C. (2013). Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass. RSC Adv., 3, 9809–9819. https://doi.org/10.1039/C3RA41857Jspa
dc.relation.referencesZhang, Y., Guo, X., Xu, J., Wu, Y., & Lu, M. (2018). Liquid–Liquid Equilibrium for Ternary Systems, Water + 5-Hydroxymethylfurfural + (1-Butanol, Isobutanol, Methyl Isobutyl Ketone), at 313.15, 323.15, and 333.15 K. Journal of Chemical & Engineering Data, 63(8), 2775–2782. https://doi.org/10.1021/acs.jced.8b00120spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.lembBiomasa vegetalspa
dc.subject.lembPlant biomasseng
dc.subject.proposal5 – hidroximetilfurfuralspa
dc.subject.proposalbiomasa lignocelulósicaspa
dc.subject.proposalpretratamientospa
dc.subject.proposallíquido iónicospa
dc.subject.proposalextracción reactivaspa
dc.subject.proposalmodelamientospa
dc.subject.proposalsimulaciónspa
dc.subject.proposalHydroxymethylfurfuraleng
dc.subject.proposalLignocellulosic biomasseng
dc.subject.proposalPretreatmenteng
dc.subject.proposalPretreatmenteng
dc.subject.proposalIonic liquideng
dc.subject.proposalReactive extractioneng
dc.subject.proposalModelingeng
dc.subject.proposalSimulationeng
dc.titleFormulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maízspa
dc.title.translatedFormulation of an enzymatic chemical route for the production of 5 hydroxymethylfurfural in a sustainable way from corn fibereng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152460928.2023.pdf
Tamaño:
1.66 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: