Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz
dc.contributor.advisor | Ruiz Colorado, Angela Adriana | |
dc.contributor.author | Romero Castaño, Juan Felipe | |
dc.contributor.researchgroup | Bioprocesos y Flujos Reactivos | spa |
dc.date.accessioned | 2023-09-11T17:43:00Z | |
dc.date.available | 2023-09-11T17:43:00Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | El calentamiento global generado por la fuerte dependencia de los combustibles fósiles requiere de distintos tipos de soluciones, y entre las más prometedores se encuentra la obtención de productos químicos plataforma a partir de material residual lignocelulósico. En este trabajo se formula una ruta de producción sostenible del compuesto químico plataforma 5 – hidroximetilfurfural a partir de la biomasa lignocelulósica fibra de maíz. La ruta formulada consiste primero de un pretratamiento con líquido iónico en combinación con microondas, seguido de una hidrólisis enzimática para acceder a la glucosa estructural y finalmente una etapa de reacción y separación in situ en un sistema bifásico agua – orgánico conocida como extracción reactiva. Para concluir, se presenta el modelamiento y simulación de esta última etapa del proceso desarrollada en la literatura. (Texto tomado de la fuente) | spa |
dc.description.abstract | Global warming generated by the strong dependence on fossil fuels requires different types of solutions, and one of the most promising is to obtain platform chemicals from residual lignocellulosic material. In this work, a route for the sustainable production of the chemical compound platform 5 – hydroxymethylfurfural is formulated from the lignocellulosic biomass of corn fiber. The formulated route consists first of a pretreatment with ionic liquid in combination with microwaves, followed by an enzymatic hydrolysis to access the structural glucose and finally a reaction and separation step in situ in a biphasic waterorganic system known as reactive extraction. To conclude, the modeling and simulation of this last stage of the process developed in the literature is presented. | eng |
dc.description.curriculararea | Área curricular de Ingeniería Química e Ingeniería de Petróleos | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Química | spa |
dc.description.funder | Línea de Investigación: Metabolitos de valor agregado de biomasas Grupo de Investigación: Bioprocesos y Flujos Reactivos - BIOFRUN | spa |
dc.description.researcharea | Metabolitos de valor agregado de biomasas | spa |
dc.format.extent | 78 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84688 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Ingeniería Química | spa |
dc.relation.indexed | RedCol | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | ABENGOA. (2016). Estructura y función de la lignina. http://www.laenergiadelcambio.com/estructura-funcion-lignina/ | spa |
dc.relation.references | Acosta Pavas, J. C., Bonilla OSpina, N., Jaimes Cruz, L. J., Correa Cardona, H. J., Giraldo Mejía, Á. M., & Ruiz Colorado, A. A. (2021). Optimization of Liquid Hot Water Pretreatment on Sugarcane and Maralfalfa Grass for Glucose Production. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3946336 | spa |
dc.relation.references | Acosta Zamora, E. A. (2014). Identificación del mecanismo de solvatación de biomasa lignocelulósica con líquidos iónicos. https://repositorio.unal.edu.co/handle/unal/72478#.YnrFCXx5h5w.mendeley | spa |
dc.relation.references | Altway, S., Pujar, S. C., & de Haan, A. B. (2018). Liquid-liquid equilibria of ternary and quaternary systems involving 5-hydroxymethylfurfural, water, organic solvents, and salts at 313.15 K and atmospheric pressure. Fluid Phase Equilibria, 475, 100–110. https://doi.org/https://doi.org/10.1016/j.fluid.2018.07.034 | spa |
dc.relation.references | Altway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001 | spa |
dc.relation.references | Altway, S., Pujar, S. C., & de Haan, A. B. (2019). Effect of 1-ethyl-3-methylimidazolium tetrafluoroborate on the phase equilibria for systems containing 5hydroxymethylfurfural, water, organic solvent in the absence and presence of sodium chloride. The Journal of Chemical Thermodynamics, 132, 257–267. https://doi.org/https://doi.org/10.1016/j.jct.2019.01.001 | spa |
dc.relation.references | Atanda, L., Konarova, M., Ma, Q., Mukundan, S., Shrotri, A., & Beltramini, J. (2016). High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science & Technology, 6(16), 6257–6266. https://doi.org/10.1039/C6CY00820H | spa |
dc.relation.references | Barcelos, C. A., Oka, A. M., Yan, J., Das, L., Achinivu, E. C., Magurudeniya, H., Dong, J., Akdemir, S., Baral, N. R., Yan, C., Scown, C. D., Tanjore, D., Sun, N., Simmons, B. A., Gladden, J., & Sundstrom, E. (2021). High-Efficiency Conversion of Ionic LiquidPretreated Woody Biomass to Ethanol at the Pilot Scale. ACS Sustainable Chemistry & Engineering, 9(11), 4042–4053. https://doi.org/10.1021/acssuschemeng.0c07920 | spa |
dc.relation.references | Cavalcanti, K. V. M., Follegatti-Romero, L. M., Dalmolin, I., & Follegatti-Romero, L. A. (2019). Liquid-liquid equilibrium for (water + 5-hydroxymethylfurfural + 1-pentanol/1hexanol/1-heptanol) systems at 298.15 K. The Journal of Chemical | spa |
dc.relation.references | Etecé. (2020). Celulosa - Concepto, historia, función, usos y propiedades. https://concepto.de/celulosa/ | spa |
dc.relation.references | Chatel, G., & Varma, R. S. (2019). Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to Green Chemistry. Green Chemistry, 21(22), 6043–6050. https://doi.org/10.1039/C9GC02534K | spa |
dc.relation.references | Choudhary, V., Mushrif, S. H., Ho, C., Anderko, A., Nikolakis, V., Marinkovic, N. S., Frenkel, A. I., Sandler, S. I., & Vlachos, D. G. (2013). Insights into the Interplay of Lewis and Brønsted Acid Catalysts in Glucose and Fructose Conversion to 5(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of the American Chemical Society, 135(10), 3997–4006. https://doi.org/10.1021/ja3122763 | spa |
dc.relation.references | Das, L., Achinivu, E. C., Barcelos, C. A., Sundstrom, E., Amer, B., Baidoo, E. E. K., Simmons, B. A., Sun, N., & Gladden, J. M. (2021). Deconstruction of Woody Biomass via Protic and Aprotic Ionic Liquid Pretreatment for Ethanol Production. ACS Sustainable Chemistry and Engineering, 9(12), 4422–4432. https://doi.org/10.1021/ACSSUSCHEMENG.0C07925/SUPPL_FILE/SC0C07925_SI _001.PDF | spa |
dc.relation.references | Dedes, G., Karnaouri, A., Marianou, A. A., Kalogiannis, K. G., Michailof, C. M., Lappas, A. A., & Topakas, E. (2021). Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis. Biotechnology for Biofuels, 14(1), 172. https://doi.org/10.1186/s13068-021-02022-9 | spa |
dc.relation.references | Deuss, P., Barta, K., & de Vries, J. (2014). Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catalysis Science & Technology, 4, 1174–1196. https://doi.org/10.1039/c3cy01058a | spa |
dc.relation.references | Dutta, S., De, S., Alam, M. I., Abu-Omar, M. M., & Saha, B. (2012). Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. Journal of Catalysis, 288, 8–15. https://doi.org/10.1016/J.JCAT.2011.12.017 | spa |
dc.relation.references | FAOSTAT. (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL | spa |
dc.relation.references | Fuertez, J., Acosta Pavas, J., & RUIZ, A. (2021). Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups. Dyna (Medellin, Colombia), 88, 168–177. https://doi.org/10.15446/dyna.v88n218.92055 | spa |
dc.relation.references | Guo, W., Zhang, Z., Hacking, J., Heeres, H. J., & Yue, J. (2021). Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling. Chemical Engineering Journal, 409, 128182. https://doi.org/https://doi.org/10.1016/j.cej.2020.128182 | spa |
dc.relation.references | Parada, R. (2020). Hemicelulosa: clasificación, estructura, biosíntesis, funciones. https://www.lifeder.com/hemicelulosa/ | spa |
dc.relation.references | Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., & Sawayama, S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, 2706–2711. https://doi.org/10.1016/j.biortech.2008.12.057 | spa |
dc.relation.references | Hu, D., Zhang, M., Xu, H., Wang, Y., & Yan, K. (2021). Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 147, 111253. https://doi.org/10.1016/J.RSER.2021.111253 | spa |
dc.relation.references | Ilić, N., Milić, M., Beluhan, S., & Dimitrijević-Branković, S. (2023). Cellulases: From Lignocellulosic Biomass to Improved Production. Energies, 16(8), 3598. https://doi.org/10.3390/en16083598 | spa |
dc.relation.references | Kaur, D., Singla, G., Singh, U., & Krishania, M. (2020). Efficient process engineering for extraction of hemicellulose from corn fiber and its characterization. Carbohydrate Polymer Technologies and Applications, 1, 100011. https://doi.org/https://doi.org/10.1016/j.carpta.2020.100011 | spa |
dc.relation.references | López-Linares, J. C., Romero-García, J. M., Romero, I., Ruiz, E., & Castro, E. (2023). Development of a biorefinery from olive mill leaves: Comparison of different process configurations. Industrial Crops and Products, 200, 116813. https://doi.org/10.1016/J.INDCROP.2023.116813 | spa |
dc.relation.references | Luo, H., Gao, L., Xie, F., Shi, Y., Zhou, T., Guo, Y., Yang, R., & Bilal, M. (2022). A new lcysteine-assisted glycerol organosolv pretreatment for improved enzymatic hydrolysis of corn stover. Bioresource Technology, 363, 127975. https://doi.org/10.1016/J.BIORTECH.2022.127975 | spa |
dc.relation.references | Luterbacher, J. S., Rand, J. M., Alonso, D. M., Han, J., Youngquist, J. T., Maravelias, C. T., Pfleger, B. F., & Dumesic, J. A. (2014). Nonenzymatic Sugar Production from Biomass Using Biomass-Derived γ-Valerolactone. Science, 343(6168), 277–280. https://doi.org/10.1126/science.1246748 | spa |
dc.relation.references | Megías-Sayago, C., Navarro-Jaén, S., Drault, F., & Ivanova, S. (2021). Recent Advances in the Brønsted/Lewis Acid Catalyzed Conversion of Glucose to HMF and Lactic Acid: Pathways toward Bio-Based Plastics. Catalysts, 11(11), 1395. https://doi.org/10.3390/catal11111395 | spa |
dc.relation.references | Menegazzo, F., Ghedini, E., & Signoretto, M. (2018). 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules, 23(9). https://doi.org/10.3390/MOLECULES23092201 | spa |
dc.relation.references | Mohammad, S., Grundl, G., Müller, R., Kunz, W., Sadowski, G., & Held, C. (2016). Influence of electrolytes on liquid-liquid equilibria of water/1-butanol and on the partitioning of 5-hydroxymethylfurfural in water/1-butanol. Fluid Phase Equilibria, 428, 102–111. https://doi.org/https://doi.org/10.1016/j.fluid.2016.05.001 | spa |
dc.relation.references | Mon Aung, E., Endo, T., Fujii, S., Kuroda, K., Ninomiya, K., & Takahashi, K. (2018). Efficient pretreatment of bagasse at high loading in an ionic liquid. Industrial Crops and Products, 119, 243–248. https://doi.org/10.1016/j.indcrop.2018.04.006 | spa |
dc.relation.references | Poddar, B., Nakhate, S., Gupta, R., Chavan, A., Singh, A., Khardenavis, A., & Purohit, H. (2021). A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-032488 | spa |
dc.relation.references | Rincón Rincón, S. N. (2020). Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv. https://repositorio.unal.edu.co/handle/unal/78589 | spa |
dc.relation.references | Sato, A., Widjaja, A., Asror, K., & Emilia, A. (2019). Influence of alkaline addition on the composition and yield on the hydrothermal treatment of rice straw. Malaysian Journal of Fundamental and Applied Sciences, 15, 537–542. https://doi.org/10.11113/mjfas.v15n4.1077 | spa |
dc.relation.references | Schmidt, L. M., Mthembu, L. D., Reddy, P., Deenadayalu, N., Kaltschmitt, M., & Smirnova, I. (2017). Levulinic acid production integrated into a sugarcane bagasse based biorefinery using thermal-enzymatic pretreatment. Industrial Crops and Products, 99, 172–178. https://doi.org/10.1016/J.INDCROP.2017.02.010 | spa |
dc.relation.references | SCOPUS. (2022). Scopus - Document search. https://www-scopuscom.ezproxy.unal.edu.co/search/form.uri?display=basic#basic | spa |
dc.relation.references | Singh, S. K. (2022). Ionic liquids and lignin interaction: An overview. Bioresource Technology Reports, 17. https://doi.org/10.1016/j.biteb.2022.100958 | spa |
dc.relation.references | Slak, J., Pomeroy, B., Kostyniuk, A., Grilc, M., & Likozar, B. (2022). A review of biorefining process intensification in catalytic conversion reactions, separations and purifications of hydroxymethylfurfural (HMF) and furfural. Chemical Engineering Journal, 429, 132325. https://doi.org/10.1016/J.CEJ.2021.132325 | spa |
dc.relation.references | Sorn, V., Chang, K. L., Phitsuwan, P., Ratanakhanokchai, K., & Dong, C. di. (2019). Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresource Technology, 293, 121929. https://doi.org/10.1016/J.BIORTECH.2019.121929 | spa |
dc.relation.references | Soukup-Carne, D., Fan, X., & Esteban, J. (2022). An overview and analysis of the thermodynamic and kinetic models used in the production of 5-hydroxymethylfurfural and furfural. Chemical Engineering Journal, 442, 136313. https://doi.org/10.1016/J.CEJ.2022.136313 | spa |
dc.relation.references | Souzanchi, S., Nazari, L., Venkateswara Rao, K. T., Yuan, Z., Tan, Z., & Charles Xu, C. (2021). Catalytic dehydration of glucose to 5-HMF using heterogeneous solid catalysts in a biphasic continuous-flow tubular reactor. Journal of Industrial and Engineering Chemistry, 101, 214–226. https://doi.org/https://doi.org/10.1016/j.jiec.2021.06.010 | spa |
dc.relation.references | Tang, J., Zhu, L., Fu, X., Dai, J., Guo, X., & Hu, C. (2017). Insights into the Kinetics and Reaction Network of Aluminum Chloride-Catalyzed Conversion of Glucose in NaCl– H2O/THF Biphasic System. ACS Catalysis, 7(1), 256–266. https://doi.org/10.1021/acscatal.6b02515 | spa |
dc.relation.references | UN. (2021). UN Comtrade. https://comtradeplus.un.org/ | spa |
dc.relation.references | van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499–1597. https://doi.org/10.1021/cr300182k | spa |
dc.relation.references | Wang, T., Glasper, J. A., & Shanks, B. H. (2015). Kinetics of glucose dehydration catalyzed by homogeneous Lewis acidic metal salts in water. Applied Catalysis A: General, 498, 214–221. https://doi.org/https://doi.org/10.1016/j.apcata.2015.03.037 | spa |
dc.relation.references | Wanninayake, P., Rathnayake, M., Subasinghe, D., & Gunawardena, S. (2022). Conversion of rice straw into 5-hydroxymethylfurfural: review and comparative process evaluation. Biomass Conversion and Biorefinery, 12, 1–35. https://doi.org/10.1007/s13399-021-01351-x | spa |
dc.relation.references | Xu, H., Li, X., Hu, W., Lu, L., Chen, J., Zhu, Y., Zhou, H., & Si, C. (2022). Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives. Fuel Processing Technology, 234, 107338. https://doi.org/10.1016/J.FUPROC.2022.107338 | spa |
dc.relation.references | Zhang, B., Zhan, B., & Bao, J. (2021). Reframing biorefinery processing chain of corn fiber for cellulosic ethanol production. Industrial Crops and Products, 170, 113791. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.113791 | spa |
dc.relation.references | Zhang, S., Sheng, K., Chen, X., Zhang, X., & Mosier, N. S. (2021). Conversion of glucose to 5-hydroxymethyl furfural in water-acetonitrile-dimethyl sulfoxide solvent with aluminum on activated carbon and maleic acid. Industrial Crops and Products, 174, 114220. https://doi.org/https://doi.org/10.1016/j.indcrop.2021.114220 | spa |
dc.relation.references | Zhang, T., Kumar, R., & Wyman, C. (2013). Enhanced yields of furfural and other products by simultaneous solvent extraction during thermochemical treatment of cellulosic biomass. RSC Adv., 3, 9809–9819. https://doi.org/10.1039/C3RA41857J | spa |
dc.relation.references | Zhang, Y., Guo, X., Xu, J., Wu, Y., & Lu, M. (2018). Liquid–Liquid Equilibrium for Ternary Systems, Water + 5-Hydroxymethylfurfural + (1-Butanol, Isobutanol, Methyl Isobutyl Ketone), at 313.15, 323.15, and 333.15 K. Journal of Chemical & Engineering Data, 63(8), 2775–2782. https://doi.org/10.1021/acs.jced.8b00120 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::661 - Tecnología de químicos industriales | spa |
dc.subject.lemb | Biomasa vegetal | spa |
dc.subject.lemb | Plant biomass | eng |
dc.subject.proposal | 5 – hidroximetilfurfural | spa |
dc.subject.proposal | biomasa lignocelulósica | spa |
dc.subject.proposal | pretratamiento | spa |
dc.subject.proposal | líquido iónico | spa |
dc.subject.proposal | extracción reactiva | spa |
dc.subject.proposal | modelamiento | spa |
dc.subject.proposal | simulación | spa |
dc.subject.proposal | Hydroxymethylfurfural | eng |
dc.subject.proposal | Lignocellulosic biomass | eng |
dc.subject.proposal | Pretreatment | eng |
dc.subject.proposal | Pretreatment | eng |
dc.subject.proposal | Ionic liquid | eng |
dc.subject.proposal | Reactive extraction | eng |
dc.subject.proposal | Modeling | eng |
dc.subject.proposal | Simulation | eng |
dc.title | Formulación de una ruta químico enzimática para la producción de 5 – hidroximetilfurfural de manera sostenible a partir de fibra de maíz | spa |
dc.title.translated | Formulation of an enzymatic chemical route for the production of 5 hydroxymethylfurfural in a sustainable way from corn fiber | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1152460928.2023.pdf
- Tamaño:
- 1.66 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: