Estudio del metabolismo de la metandienona a través de un modelo in vitro de incubación con el hongo Cunninghamella elegans

dc.contributor.advisorChaves Silva, Diana Carolina
dc.contributor.advisorCárdenas Cuadros, Paola Andrea
dc.contributor.advisorMartínez Ramírez, Jorge Ariel
dc.contributor.authorToscano Bayona, Lucía
dc.contributor.researchgroupSustancias Psicoactivasspa
dc.date.accessioned2021-08-06T18:02:02Z
dc.date.available2021-08-06T18:02:02Z
dc.date.issued2021-05
dc.descriptionilustraciones, tablasspa
dc.description.abstractLa metandienona uno de los anabolizantes más reportado en los hallazgos analíticos adversos de los laboratorios de control al dopaje a nivel mundial. La molécula fue inicialmente usada para el tratamiento para el hipogonadismo, sin embargo, tiempo después su uso se expandió con el fin de obtener mayor masa muscular y un mejor rendimiento a nivel deportivo. Su metabolismo ha sido estudiado a través de diferentes modelos in vivo, con ratones y humanos e in vitro con fragmentos celulares del hígado, esto con el fin de establecer los metabolitos que indiquen su uso a corto y largo plazo que permitan su detección en las muestras de control al dopaje. Con este trabajo se busca estudiar el metabolismo de la metandienona a través de un modelo in vitro de biotransformación con el hongo Cunninghamella elegans, el cual ha sido utilizado con gran variedad de moléculas debido a que su sistema enzimático es similar al de los mamíferos. Con el desarrollo del modelo se proponen cuatro metabolitos monohidroxilados en las posiciones 6,7,14,15, esto se realizó a través de la técnica de cromatografía de gases acoplada a espectrometría de masas GC-MS/EI, se plantearon las posibles rutas de fragmentación y se compararon con los reportados para otros modelos de biotransformación.spa
dc.description.abstractMethandienone is one of the most reported anabolics in the adverse analytical findings of doping control laboratories worldwide. The molecule was initially used for the treatment of hypogonadism, however, later its use expanded to obtain greater muscle mass and better performance at the sports level. Its metabolism has been studied through different in vivo models, with mice and humans and in vitro with liver cell fragments, this to establish the metabolites that indicate its use in the short and long term that allow its detection in the samples. doping control. This work seeks to study the metabolism of methandienone through an in vitro model of biotransformation with the fungus Cunninghamella elegans, which has been used with a great variety of molecules because its enzymatic system is like mammals. With the development of the model, four monohydroxylated metabolites were identified at positions 6,7,14,15, this was done through the gas chromatography technique coupled to mass spectrometry (GC-MS / EI), the possible routes of fragmentation and were compared with those reported for other biotransformation models.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Toxicologíaspa
dc.description.researchareaComportamiento de variables toxicológicas y de salud relacionadas con el consumo de sustancias psicoactivas.spa
dc.format.extent77 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79894
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Toxicologíaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Toxicologíaspa
dc.relation.references1. Barceloux DG. Anabolic-Androgenic Steroids. In: Medical Toxicology of Drug Abuse. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012. p. 275–94.spa
dc.relation.references2. Aguilar M, Muñoz-Guerra J, Plata M del M, Del Coso J. Thirteen years of the fight against doping in figures. Drug Test Anal. 2017;9(6):866–9.spa
dc.relation.references3. Schänzer W, Geyer H, Donike M. Metabolism of metandienone in man: Identification and synthesis of conjugated excreted urinary metabolites, determination of excretion rates and gas chromatographic-mass spectrometric identification of bis-hydroxylated metabolites. J Steroid Biochem Mol Biol. 1991 Apr;38(4):441–64.spa
dc.relation.references4. Hagedorn HW, Schulz R, Friedrich A. Detection of methandienone (methandrostenolone) and metabolites in horse urine by gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl. 1992;577(2):195–203.spa
dc.relation.references5. Lootens L, Meuleman P, Pozo OJ, Van Eenoo P, Leroux-Roels G, Delbeke FT. uPA+/+-SCID Mouse with Humanized Liver as a Model for In Vivo Metabolism of Exogenous Steroids: Methandienone as a Case Study. Clin Chem. 2009;55(10):1783–93.spa
dc.relation.references6. Khan NT, Zafar S, Noreen S, Al Majid AM, Al Othman ZA, Al-Resayes SI, et al. Biotransformation of dianabol with the filamentous fungi and β-glucuronidase inhibitory activity of resulting metabolites. Steroids. 2014;85:65–72.spa
dc.relation.references7. Kicman AT. Pharmacology of anabolic steroids. Vol. 154, British Journal of Pharmacology. Wiley/Blackwell (10.1111); 2008. p. 502–21.spa
dc.relation.references8. Morley JE. Anabolic Steroids and Frailty. J Am Med Dir Assoc. 2010 Oct;11(8):533–6.spa
dc.relation.references9. Barceloux DG. MEDICAL TOXICOLOGY OF DRUG ABUSE. John Wiley & Sons, Inc.; 2012. 1041 p.spa
dc.relation.references10. Kicman AT, Gower DB. Anabolic steroids in sport: biochemical, clinical and analytical perspectives. Ann Clin Biochem Int J Lab Med. 2003;40(4):321–56.spa
dc.relation.references11. Link AF, Chemistry B. Drug Metabolism. Encycl Syst Biol. 2013;(March):618–618.spa
dc.relation.references12. Repetto Jiménez M, Repetto Kuhn G. Toxicología Fundamental. Cuarta Edi. Sevilla: Díaz de Santos; 2009. 629 p.spa
dc.relation.references13. Gallego Fernández A, de Sande García MA, Marín Fernández AM, Blanco Ramos S, González Galán MJ. Aspectos fundamentales del citocromo P450. Fundación Tejerina. 2011.spa
dc.relation.references14. Asha S, Vidyavathi M. Cunninghamella – A microbial model for drug metabolism studies – A review. Biotechnol Adv. 2009 Jan;27(1):16–29.spa
dc.relation.references15. Curtis D. Klaassen. Casarett and Doull’s Toxicology: The Basic Science of Poisons. Eighth Edi. Klaassen CD, editor. McGraw-Hill Education; 2013. 1454 p.spa
dc.relation.references16. Schänzer W. Metabolism of anabolic androgenic steroids. Clin Chem. 1996;42(7):1001–20.spa
dc.relation.references17. Hofmann FB, Beavo J a, Busch A, Ganten D, Michel MC, Page CP, et al. Doping in Sports. Thieme D, Hemmersbach P, editors. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. 274 p. (Handbook of Experimental Pharmacology; vol. 195).spa
dc.relation.references18. Baggish AL, Weiner RB, Kanayama G, Hudson JI, Lu MT, Hoffmann U, et al. Cardiovascular Toxicity of Illicit Anabolic-Androgenic Steroid Use. Circulation. 2017 May 23;135(21):1991–2002.spa
dc.relation.references19. White M, Brennan E, Mi Ren KY, Shi M, Thakrar A. Anabolic Androgenic Steroid Use as a Cause of Fulminant Heart Failure. Can J Cardiol. 2018;34(10):1369.spa
dc.relation.references20. Montisci M, El Mazloum R, Cecchetto G, Terranova C, Ferrara SD, Thiene G, et al. Anabolic androgenic steroids abuse and cardiac death in athletes: Morphological and toxicological findings in four fatal cases. Forensic Sci Int. 2012;217(1–3):12–7.spa
dc.relation.references21. Rocha M, Aguiar F, Ramos H. O uso de esteroides androgénicos anabolizantes e outros suplementos ergogénicos – uma epidemia silenciosa. Rev Port Endocrinol Diabetes e Metab. 2014;9(2):98–105.spa
dc.relation.references22. Hartgens F, Kuipers H. Effects of Androgenic-Anabolic Steroids in Athletes. Sport Med. 2004;34(8):513–54. 23. Hall RCW, Hall RCW. Abuse of Supraphysiologic Doses of Anabolic Steroids. South Med J. 2005;98(5):550–6.spa
dc.relation.references24. Christou MA, Christou PA, Markozannes G, Tsatsoulis A, Mastorakos G, Tigas S. Effects of Anabolic Androgenic Steroids on the Reproductive System of Athletes and Recreational Users: A Systematic Review and Meta-Analysis. Vol. 47, Sports Medicine. 2017. p. 1869–83.spa
dc.relation.references25. Nieschlag E, Vorona E. Mechanisms in Endocrinology: Medical consequences of doping with anabolic androgenic steroids: Effects on reproductive functions. Eur J Endocrinol. 2015;173(2):R47–58.spa
dc.relation.references26. Nieschlag E, Vorona E. Doping with anabolic androgenic steroids (AAS): Adverse effects on non-reproductive organs and functions. Vol. 16, Reviews in Endocrine and Metabolic Disorders. 2015. p. 199–211.spa
dc.relation.references27. Schänzer W, Opfermann G, Donike M. 17-Epimerization of 17α-methyl anabolic steroids in humans: metabolism and synthesis of 17α-hydroxy-17β-methyl steroids. Steroids. 1992;57(11):537–50.spa
dc.relation.references28. Schänzer W, Delahaut P, Geyer H, Machnik M, Horning S. Long-term detection and identification of metandienone and stanozolol abuse in athletes by gas chromatography-high-resolution mass spectrometry. J Chromatogr B Biomed Appl. 1996;687(1):93–108.spa
dc.relation.references29. Kanayama G, Pope HG. History and epidemiology of anabolic androgens in athletes and non-athletes. Mol Cell Endocrinol. 2018;464.spa
dc.relation.references30. Barrett-Connor EL. Testosterone and risk factors for cardiovascular disease in men. Diabete Metab. 1995;21(3):156–61. 31. U.S. DEPARTMENT OF JUSTICE • DRUG ENFORCEMENT ADMINISTRATION. Diversion Control Division [Internet]. [cited 2020 Sep 23]. Available from: https://www.deadiversion.usdoj.gov/pubs/brochures/steroids/public/spa
dc.relation.references32. Goverment of Canada. Controlled Drugs and Substances Act [Internet]. 1996. Available from: http://laws-lois.justice.gc.ca/eng/acts/C-38.8/spa
dc.relation.references33. Advisory Council on the Misuse of Drugs. Consideration of the Anabolic Steroids. 2010; Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/119132/anabolic-steroids.pdfspa
dc.relation.references34. Australian Institute of Criminology. Illicict drugs and alcohol [Internet]. 2006 [cited 2020 Oct 2]. Available from: https://web.archive.org/web/20070405033442/http://www.aic.gov.au/research/drugs/types/steroids.htmlspa
dc.relation.references35. Ministério da Saúde. Regulamento Técnico sobre substâncias e medicamentos sujeitos a controle especial [Internet]. Portaria no 344. 1998 [cited 2020 Sep 27]. Available from: http://bvsms.saude.gov.br/bvs/saudelegis/svs/1998/prt0344_12_05_1998_rep.htmlspa
dc.relation.references36. WADA. International Standard for Laboratories. [Internet]. Canada; 2019 [cited 2020 Nov 5]. Available from: https://www.wada-ama.org/sites/default/files/resources/files/isl_nov2019.pdfspa
dc.relation.references37. WADA. WADA Technical Document – TD2019MRPL. 2019.spa
dc.relation.references38. Geyer H, Schänzer W, Thevis M. Anabolic agents: Recent strategies for their detection and protection from inadvertent doping. Br J Sports Med. 2014;48(10):820–6.spa
dc.relation.references39. Schänzer W, Geyer H, Fußhöller G, Halatcheva N, Kohler M, Parr MK, et al. Mass spectrometric identification and characterization of a new long-term metabolite of metandienone in human urine. Rapid Commun Mass Spectrom. 2006;20(15):2252–8.spa
dc.relation.references40. Piska K, |elaszczyk D, Jamrozik M, Kubowicz-Kwa|ny P, P|kala E. Cunninghamella Biotransformation - Similarities to Human Drug Metabolism and Its Relevance for the Drug Discovery Process. Curr Drug Metab. 2016 Jan;17(2):107–17.spa
dc.relation.references41. Ahmad MS, Zafar S, Bibi M, Bano S, Atia-tul-Wahab, Atta-Ur-Rahman, et al. Biotransformation of androgenic steroid mesterolone with Cunninghamella blakesleeana and Macrophomina phaseolina. Steroids. 2014;82:53–9.spa
dc.relation.references42. Choudhary MI, Khan NT, Musharraf SG, Anjum S, Atta-ur-Rahman. Biotransformation of adrenosterone by filamentous fungus, Cunninghamella elegans. Steroids. 2007;72(14):923–9.spa
dc.relation.references43. Siddiqui M, Ahmad MS, Wahab A-T, Yousuf S, Fatima N, Shaikh NN, et al. Biotransformation of a potent anabolic steroid, mibolerone, with Cunninghamella blakesleeana, C. echinulata, and Macrophomina phaseolina, and biological activity evaluation of its metabolites. Shahid M, editor. PLoS One. 2017;12(2).spa
dc.relation.references44. Ma B, Huang H, Chen X, Sun Y, Lin L, Zhong D. Biotransformation of metoprolol by the fungus Cunninghamella blakesleeana. Acta Pharmacol Sin. 2007 Jul 1;28(7):1067–74.spa
dc.relation.references45. Åberg AT, Löfgren H, Bondesson U, Hedeland M. Structural elucidation of N -oxidized clemastine metabolites by liquid chromatography/tandem mass spectrometry and the use of Cunninghamella elegans to facilitate drug metabolite identification. Rapid Commun Mass Spectrom. 2010;24(10):1447–56.spa
dc.relation.references46. Zhong D-FF, Sun L, Liu L, Huang H-HH. Microbial transformation of naproxen by Cunninghamella species. Acta Pharmacol Sin. 2003 May;24(5):442–7.spa
dc.relation.references47. Dumasia MC. In vivo biotransformation of 17α-methyltestosterone in the horse revisited: identification of 17-hydroxymethyl metabolites in equine urine by capillary gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2003 Feb 28;17(4):320–9.spa
dc.relation.references48. Ferris JP, Fasco MJ, Stylianopoulou FL, Jerina DM, Daly JW, Jeffrey AM. Monooxygenase activity in Cunninghamella bainieri: Evidence for a fungal system similar to liver microsomes. Arch Biochem Biophys. 1973;156(1):97–103.spa
dc.relation.references49. Zhang D, Yang Y, Leakey JE., Cerniglia CE. Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett. 1996 May 1;138(2–3):221–6.spa
dc.relation.references50. Bhosale S, Saratale G, Govindwar S. Biotransformation enzymes in Cunninghamella blakesleeana (NCIM-687). J Basic Microbiol. 2006 Dec 1;46(6):444–8.spa
dc.relation.references51. Smith R, Rosazza J. Microbial Models Aromatic of Mammalian Hydroxylation. Arch Biochem Biophys. 1974;161:551–8.spa
dc.relation.references52. Summary E, Report S, Report TA, Analysis ABPR. Anti-Doping Testing Figures Executive Summary. 9:10–36.spa
dc.relation.references53. World Anti-doping Agency. 2016 Anti-Doping Testing Figures Laboratory Report [Internet]. 2016. Available from: https://www.wada-ama.org/sites/default/files/resources/files/2018_testing_figures_report.pdfspa
dc.relation.references54. Kam PCA, Yarrow M. Anabolic steroid abuse: Physiological and anaesthetic considerations. Vol. 60, Anaesthesia. 2005. p. 685–92.spa
dc.relation.references55. Neri M, Bello S, Bonsignore A, Cantatore S, Riezzo I, Turillazzi E, et al. Anabolic Androgenic Steroids Abuse and Liver Toxicity. Mini-Reviews Med Chem. 2011;11(5):430–7.spa
dc.relation.references56. Awai HI, Yu EL, Ellis LS, Schwimmer JB. Liver Toxicity of Anabolic Androgenic Steroid Use in an Adolescent With Nonalcoholic Fatty Liver Disease. J Pediatr Gastroenterol Nutr. 2014;59(3):e32–3.spa
dc.relation.references57. Rockhold RW. Cardiovascular toxicity of anabolic steroids. AnnuRevPharmacolToxicol. 1993;33:497–520.spa
dc.relation.references58. Santora LJ, Marin J, Vangrow J, Minegar C, Robinson M, Mora J, et al. Coronary calcification in body builders using anabolic steroids. Prev Cardiol. 2006;9(4):198–201.spa
dc.relation.references59. Watanabe S, Kuzhiumparambil U, Winiarski Z, Fu S. Data on individual metabolites of synthetic cannabinoids JWH-018, JWH-073 and AM2201 by Cunninghamella elegans. Data Br. 2016 Jun;7:332–40.spa
dc.relation.references60. Martínez-Ramírez JA, Walther G, Peters FT. Studies on drug metabolism by fungi colonizing decomposing human cadavers. Part II: biotransformation of five model drugs by fungi isolated from post-mortem material. Drug Test Anal. 2015 Apr;7(4):265–79.spa
dc.relation.references61. Rydevik A, Lagojda A, Thevis M, Bondesson U, Hedeland M. Isolation and characterization of a β-glucuronide of hydroxylated SARM S1 produced using a combination of biotransformation and chemical oxidation. J Pharm Biomed Anal. 2014 Sep;98:36–9.spa
dc.relation.references62. Martínez-Ramírez JA, Voigt K, Peters FT. Studies on the metabolism of five model drugs by fungi colonizing cadavers using LC-ESI-MS/MS and GC-MS analysis. Anal Bioanal Chem. 2012;404(5):1339–59.spa
dc.relation.references63. Atlas RM. Handbook of Microbiological Media: Second Edition [Internet]. CRC-Press; 1996. Available from: https://books.google.com.co/books?id=u0HDQgAACAAJspa
dc.relation.references64. Martínez-Ramírez JA, Strien J, Walther G, Peters FT. Search for fungi-specific metabolites of four model drugs in postmortem blood as potential indicators of postmortem fungal metabolism. Forensic Sci Int. 2016spa
dc.relation.references65. Baydoun E, Karam M, Atia-tul-Wahab, Khan MSA, Ahmad MS, Samreen, et al. Microbial transformation of nandrolone with Cunninghamella echinulata and Cunninghamella blakesleeana and evaluation of leishmaniacidal activity of transformed products. Steroids. 2014;88:95–100.spa
dc.relation.references66. Rydevik A, Thevis M, Krug O, Bondesson U, Hedeland M. The fungus Cunninghamella elegans can produce human and equine metabolites of selective androgen receptor modulators (SARMs). Xenobiotica. 2013;43(5):409–20.spa
dc.relation.references67. Andrea E, Páez S. Estudio del metabolismo in vitro de catinonas sintéticas a través de hongos del género Cunninghamella. Universidad Nacional de Colombia; 2019.spa
dc.relation.references68. Martinez-Brito D, de la Torre X, Parr MK, Botrè F. Mass spectrometric analysis of 7-oxygenated androst-5-ene structures. Influence in trimethylsilyl derivative formation. Rapid Commun Mass Spectrom. 2020;34(17).spa
dc.relation.references69. Schänzer W, Donike M. Metabolism of anabolic steroids in man : synthesis and use of reference substances for identification of anabolic steroid metabolites. Anal Chim Acta. 1993;275:23–48.spa
dc.relation.references70. Segura J, Ventura R, Jurado C. Derivatization procedures for gas chromatographic-mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. J Chromatogr B Biomed Appl. 1998;713(1):61–90.spa
dc.relation.references71. Jürgen H G. Mass Spectrometry. Third Edit. Switzerland: Springer International Publishing; 2017. 986 p.spa
dc.relation.references72. WADA. WADA Technical Document - TD2021EAAS. Measurement and Reporting of Endogenous Anabolic Androgenic Steroid ( EAAS ) Markers of the Urinary Steroid Profile. 2021. p. 1–11.spa
dc.relation.references73. Rydevik A, Bondesson U, Hedeland M. Structural elucidation of phase I and II metabolites of bupivacaine in horse urine and fungi of the Cunninghamella species using liquid chromatography/multi-stage mass spectrometry. Rapid Commun Mass Spectrom. 2012;26(11):1338–46.spa
dc.relation.references74. Mei J, Wang L, Wang S, Zhan J. Synthesis of two new hydroxylated derivatives of spironolactone by microbial transformation. Bioorg Med Chem Lett. 2014 Jul;24(14):3023–5.spa
dc.relation.references75. Zafar S, Yousuf S, Kayani HA, Saifullah S, Khan S, Al-Majid AM, et al. Biotransformation of oral contraceptive ethynodiol diacetate with microbial and plant cell cultures. Chem Cent J. 2012;6(1):452.spa
dc.relation.references76. Hooijerink D, Schilt R, Hoogenboom R, Huveneers-Oorsprong M. Identification of metabolites of the anabolic steroid methandienone formed by bovine hepatocytes in vitro†. Analyst. 1998;123(12):2637–41.spa
dc.relation.references77. Hu S hui, Genain G, Azerad R. Microbial transformation of steroids: Contribution to 14α-hydroxylations. Steroids. 1995;60(4):337–52.spa
dc.relation.references78. Rydevik A, Bondesson U, Thevis M, Hedeland M. Mass spectrometric characterization of glucuronides formed by a new concept, combining Cunninghamella elegans with TEMPO. J Pharm Biomed Anal. 2013;84:278–84.spa
dc.relation.references79. Rydevik A, Hansson A, Hellqvist A, Bondesson U, Hedeland M. A novel trapping system for the detection of reactive drug metabolites using the fungus Cunninghamella elegans and high resolution mass spectrometry. Drug Test Anal. 2015 Jul;7(7):626–33.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.decsDoping en los Deportes
dc.subject.decsDoping in Sports
dc.subject.proposalmetandienonaspa
dc.subject.proposalBiotransformaciónspa
dc.subject.proposalmetabolismospa
dc.subject.proposalesteroides anabolizantesspa
dc.subject.proposalMetabolismeng
dc.subject.proposalMethandienoneeng
dc.subject.proposalCunninghamella eleganseng
dc.subject.proposalAnabolic steroidseng
dc.subject.proposalBiotransformationeng
dc.titleEstudio del metabolismo de la metandienona a través de un modelo in vitro de incubación con el hongo Cunninghamella elegansspa
dc.title.translatedMethandienone metabolism study through an in vitro incubation model with the fungus Cunninghamella eleganseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceGeneral
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio del metabolismo de la metandienona a través de un modelo in vitro de incubación con el hongo Cunninghamella elegansspa
oaire.fundernameConvocatoria Invitación a presentar proyectos de investigación Ministerio del Deporte y Universidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032432126.2021.pdf
Tamaño:
4.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Toxicología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: