Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental

dc.contributor.advisorMonsalve Mejía, Gaspar
dc.contributor.authorMolina Salazar, David Leonardo
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001841272spa
dc.contributor.researchgroupGrupo de Estudios en Geología y Geofísica Egeospa
dc.contributor.researchgroupGrupo de Investigación en Geotecnia Gigunspa
dc.date.accessioned2024-10-25T13:26:12Z
dc.date.available2024-10-25T13:26:12Z
dc.date.issued2024-10-25
dc.descriptionIlustraciones, mapasspa
dc.description.abstractEste estudio aborda cómo la litología, la pendiente y la rigidez del suelo influyen en la polarización de las ondas sísmicas en el Valle de Aburrá. A través de un análisis que combina registros sísmicos, análisis espectrales y matrices de covarianza, se ha logrado una cuantificación de la amplificación sísmica en laderas y una correlación detallada entre las frecuencias de vibración natural del suelo y las características topográficas. El estudio revela que la litología y la pendiente del terreno son factores decisivos en la polarización sísmica, con una tendencia de alineación con la pendiente en laderas pronunciadas y una influencia significativa de la geología subyacente en pendientes más suaves. Además, la rigidez del suelo emerge como un elemento clave, modificando la polarización de las ondas en función de las características topográficas. La investigación aporta a la comprensión teórica de la interacción entre geología, topografía y respuesta sísmica, abriendo caminos para modelos predictivos en ingeniería sísmica y mitigación de riesgos. Los hallazgos subrayan la importancia de considerar de manera integrada la configuración topográfica y la rigidez del suelo para una evaluación precisa de la respuesta sísmica. Este trabajo no solo contribuye al conocimiento en geotecnia y sismología, sino que también proporciona herramientas prácticas para mejorar la prevención y mitigación de desastres naturales, destacando la necesidad de incorporar estos conocimientos en la práctica profesional y la formulación de políticas públicas. (Texto tomado de la fuente)spa
dc.description.abstractThis study addresses how lithology, slope, and soil rigidity influence the polarization of seismic waves in the Valle de Aburrá. Through exhaustive analysis combining seismic records, spectral analyses, and covariance matrices, precise quantification of seismic amplification in slopes and detailed correlation between the natural vibration frequencies of the soil and topographical characteristics have been achieved. The study reveals that lithology and terrain slope are decisive factors in seismic wave polarization, showing a tendency to align with the slope in steep terrains and significant influence from the underlying geology in gentler slopes. Furthermore, soil rigidity emerges as a key element, altering wave polarization depending on topographical features. The research contributes to the theoretical understanding of the interaction between geology, topography, and seismic response, paving the way for predictive models in seismic engineering and risk mitigation. The findings underscore the importance of integrating topographical configuration and soil rigidity for an accurate assessment of seismic response. This work not only contributes to the knowledge in geotechnics and seismology but also provides practical tools for improving the prevention and mitigation of natural disasters, highlighting the need to incorporate this knowledge into professional practice and public policy formulation.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Civilspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.description.researchareaIngeniería Sísmicaspa
dc.description.researchareaIngeniería Geofísicaspa
dc.format.extent1 recursos en línea (125 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87060
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAllen, R. V. (1978). Automatic earthquake recognition and timing from single traces.spa
dc.relation.referencesAmato, A., Azzara, R., Chiarabba, C., Cimini, G. B., Cocco, M., Di Bona, M., Margheriti, L., Mazza, S., Mele, F., Selvaggi, G., Basili, A., Boschi, E., Courboulex, F., Deschamps, A., Gaffet, S., Bittarelli, G., Chiaraluce, L., Piccinini, D., & Ripepe, M. (1998). The 1997 Umbria‐Marche, Italy, Earthquake Sequence: A first look at the main shocks and aftershocks. Geophysical Research Letters, 25(15), 2861–2864. https://doi.org/10.1029/98GL51842spa
dc.relation.referencesAnderson, S., & Nehorai, A. (1996). Analysis of a polarized seismic wave model. IEEE Transactions on Signal Processing, 44(2), 379–386. https://doi.org/10.1109/78.485933spa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2006). MICROZONIFICACIÓN SÍSMICA DETALLADA DE LOS MUNICIPIOS DE BARBOSA, GIRARDOTA, COPACABANA, SABANETA, LA ESTRELLA, CALDAS Y ENVIGADO.spa
dc.relation.referencesBaer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437–1445. https://doi.org/10.1785/BSSA0770041437spa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá. (2006). MICROZONIFICACIÓN SÍSMICA DETALLADA DE LOS MUNICIPIOS DE BARBOSA, GIRARDOTA, COPACABANA, SABANETA, LA ESTRELLA, CALDAS Y ENVIGADO.spa
dc.relation.referencesBaer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437–1445. https://doi.org/10.1785/BSSA0770041437spa
dc.relation.referencesBeyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530spa
dc.relation.referencesBingham, C., Godfrey, M., & Tukey, J. (1967). Modern techniques of power spectrum estimation. IEEE Transactions on Audio and Electroacoustics, 15(2), 56–66. https://doi.org/10.1109/TAU.1967.1161895spa
dc.relation.referencesBingham, C., Godfrey, M., & Tukey, J. (1967). Modern techniques of power spectrum estimation. IEEE Transactions on Audio and Electroacoustics, 15(2), 56–66. https://doi.org/10.1109/TAU.1967.1161895spa
dc.relation.referencesBloomfield, P. (2004). Fourier analysis of time series: an introduction. John Wiley & Sons.spa
dc.relation.referencesBulletin of the Seismological Society of America, 68(5), 1521–1532. https://doi.org/10.1785/BSSA0680051521spa
dc.relation.referencesBurjanek, J., Fäh, D., Pischiutta, M., Rovelli, A., & Calderoni, G. (2014). Site effects at sites with pronounced topography: overview & recommendations.spa
dc.relation.referencesCarpenter, N. S., Wang, Z., Woolery, E. W., & Rong, M. (2018). Estimating Site Response with Recordings from Deep Boreholes and HVSR: Examples from the Mississippi Embayment of the Central United States. Bulletin of the Seismological Society of America, 108(3A), 1199–1209. https://doi.org/10.1785/0120170156spa
dc.relation.referencesCaserta, A., Bellucci, F., Cultrera, G., Donati, S., Marra, F., Mele, G., Palombo, B., & Rovelli, A. (2000). Study of site effects in the area of Nocera Umbra (Central Italy) during the 1997 Umbria-Marche seismic sequence. Journal of Seismology, 4, 555– 565.spa
dc.relation.referencesCochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W., Maling, G. C., Nelson, D. E., Rader, C. M., & Welch, P. D. (1967). What is the fast Fourier transform? Proceedings of the IEEE, 55(10), 1664–1674. https://doi.org/10.1109/PROC.1967.5957spa
dc.relation.referencesDe Medellín, M. (1999). Instrumentación y microzonificación sísmica del área urbana de Medellín.spa
dc.relation.referencesDi Alessandro, C., Bonilla, L. F., Boore, D. M., Rovelli, A., & Scotti, O. (2012).spa
dc.relation.referencesDi Giulio, G., Cara, F., Rovelli, A., Lombardo, G., & Rigano, R. (2009). Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy. Journal of Geophysical Research: Solid Earth, 114(B10). https://doi.org/10.1029/2009JB006393spa
dc.relation.referencesEarle, P. S., & Shearer, P. M. (1994). Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America, 84(2), 366–376. https://doi.org/10.1785/BSSA0840020366spa
dc.relation.referencesHafez, A. G., Khan, M. T. A., & Kohda, T. (2010). Clear P-wave arrival of weak events and automatic onset determination using wavelet filter banks. Digital Signal Processing, 20(3), 715–723. https://doi.org/10.1016/j.dsp.2009.10.002spa
dc.relation.referencesHafez, A. G., Khan, T. A., & Kohda, T. (2009). Earthquake onset detection using spectro- ratio on multi-threshold time–frequency sub-band. Digital Signal Processing, 19(1), 118–126. https://doi.org/10.1016/j.dsp.2008.08.003spa
dc.relation.referencesHoz Lozano, E. C. de la. (2018). Subspace Detection de la Microsismicidad en el Mar de Mármara.spa
dc.relation.referencesJurkevics, A. (1988). Polarization analysis of three-component array data. Bulletin of the Seismological Society of America, 78(5), 1725–1743.spa
dc.relation.referencesKonno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241. https://doi.org/10.1785/BSSA0880010228spa
dc.relation.referencesLa Rocca, M. (2004). Seismic Signals Associated with Landslides and with a Tsunami at Stromboli Volcano, Italy. Bulletin of the Seismological Society of America, 94(5), 1850–1867. https://doi.org/10.1785/012003238spa
dc.relation.referencesMerchant, F. A., Shah, S. K., & Castleman, K. R. (2023). Object Measurement. In Microscope Image Processing (pp. 153–175). Elsevier. https://doi.org/10.1016/B978- 0-12-821049-9.00017-4spa
dc.relation.referencesNakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1).spa
dc.relation.referencesNakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. Proceedings of the 12th World Conference on Earthquake Engineering, 2656, 1–8.spa
dc.relation.referencesPischiutta, M. (2010). The polarization of horizontal ground motion: an analysis of possible causes.spa
dc.relation.referencesPischiutta, M., Salvini, F., Fletcher, J., Rovelli, A., & Ben-Zion, Y. (2012). Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: dominant fault-high-angle polarization and fault-induced cracks. Geophysical Journal International, 188(3), 1255–1272. https://doi.org/10.1111/j.1365-246X.2011.05319.xspa
dc.relation.referencesPosada, G., Monsalve, G., Hoyos, C. D., Pérez-Hincapié, A. M., & Trujillo-Cadavid, J. C. (2022). Ground accelerations and empirical site classification through H/V response spectral ratio (HVRSR) using historical records from the strong motion network of the Aburrá Valley, Colombia. Soil Dynamics and Earthquake Engineering, 152, 107063. https://doi.org/10.1016/j.soildyn.2021.107063spa
dc.relation.referencesPredominant-Period Site Classification for Response Spectra Prediction Equations in Italy. Bulletin of the Seismological Society of America, 102(2), 680–695. https://doi.org/10.1785/0120110084spa
dc.relation.referencesRigano, R., Cara, F., Lombardo, G., & Rovelli, A. (2008). Evidence for ground motion polarization on fault zones of Mount Etna volcano. Journal of Geophysical Research: Solid Earth, 113(B10). https://doi.org/10.1029/2007JB005574spa
dc.relation.referencesSIATA. (2023). Generalidades de la Información Red Acelerográfica del Valle de Aburrá.spa
dc.relation.referencesSIMPAD, & Minas, U. N. de C. (1999). Instrumentación y microzonificación sísmica del área urbana de Medellín.spa
dc.relation.referencesSpudich, P., Hellweg, M., & Lee, W. H. K. (1996). Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions. Bulletin of the Seismological Society of America, 86(1B), S193–S208. https://doi.org/10.1785/BSSA08601BS193spa
dc.relation.referencesTrifunac, M. D. (1994). Fourier amplitude spectra of strong motion acceleration: Extension to high and low frequencies. Earthquake Engineering & Structural Dynamics, 23(4), 389–411. https://doi.org/10.1002/eqe.4290230404spa
dc.relation.referencesWelch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. https://doi.org/10.1109/TAU.1967.1161901spa
dc.relation.referencesYazdi, M., Motamed, R., & Anderson, J. G. (2022). A New Set of Automated Methodologies for Estimating Site Fundamental Frequency and Its Uncertainty Using Horizontal-to-Vertical Spectral Ratio Curves. Seismological Research Letters, 93(3), 1721–1736. https://doi.org/10.1785/0220210078spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc550 - Ciencias de la tierra::552 - Petrologíaspa
dc.subject.lembPetrología
dc.subject.lembOndas sismicas
dc.subject.lembAnálisis espectral
dc.subject.lembAnálisis de Fourier
dc.subject.proposalHSVR
dc.subject.proposalSSR
dc.subject.proposalMatriz de Covarianzaspa
dc.subject.proposalPolarización de Ondas Sísmicasspa
dc.subject.proposalH/V Spectral Ratio (HSVR)eng
dc.subject.proposalStandard Spectral Ratio (SSR)eng
dc.subject.proposalCovariance Matrixeng
dc.subject.proposalSeismic Wave Polarizationeng
dc.subject.wikidataanálisis de covarianza
dc.titleExploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambientalspa
dc.title.translatedExploration of the Seismic Effect Associated with Wave Polarization in the Instrumented Slopes of Valle de Aburrá, Utilizing Spectral Analysis of Seismic Events and Ambient Noiseeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1090520236.pdf
Tamaño:
2.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: