Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental
dc.contributor.advisor | Monsalve Mejía, Gaspar | |
dc.contributor.author | Molina Salazar, David Leonardo | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001841272 | spa |
dc.contributor.researchgroup | Grupo de Estudios en Geología y Geofísica Egeo | spa |
dc.contributor.researchgroup | Grupo de Investigación en Geotecnia Gigun | spa |
dc.date.accessioned | 2024-10-25T13:26:12Z | |
dc.date.available | 2024-10-25T13:26:12Z | |
dc.date.issued | 2024-10-25 | |
dc.description | Ilustraciones, mapas | spa |
dc.description.abstract | Este estudio aborda cómo la litología, la pendiente y la rigidez del suelo influyen en la polarización de las ondas sísmicas en el Valle de Aburrá. A través de un análisis que combina registros sísmicos, análisis espectrales y matrices de covarianza, se ha logrado una cuantificación de la amplificación sísmica en laderas y una correlación detallada entre las frecuencias de vibración natural del suelo y las características topográficas. El estudio revela que la litología y la pendiente del terreno son factores decisivos en la polarización sísmica, con una tendencia de alineación con la pendiente en laderas pronunciadas y una influencia significativa de la geología subyacente en pendientes más suaves. Además, la rigidez del suelo emerge como un elemento clave, modificando la polarización de las ondas en función de las características topográficas. La investigación aporta a la comprensión teórica de la interacción entre geología, topografía y respuesta sísmica, abriendo caminos para modelos predictivos en ingeniería sísmica y mitigación de riesgos. Los hallazgos subrayan la importancia de considerar de manera integrada la configuración topográfica y la rigidez del suelo para una evaluación precisa de la respuesta sísmica. Este trabajo no solo contribuye al conocimiento en geotecnia y sismología, sino que también proporciona herramientas prácticas para mejorar la prevención y mitigación de desastres naturales, destacando la necesidad de incorporar estos conocimientos en la práctica profesional y la formulación de políticas públicas. (Texto tomado de la fuente) | spa |
dc.description.abstract | This study addresses how lithology, slope, and soil rigidity influence the polarization of seismic waves in the Valle de Aburrá. Through exhaustive analysis combining seismic records, spectral analyses, and covariance matrices, precise quantification of seismic amplification in slopes and detailed correlation between the natural vibration frequencies of the soil and topographical characteristics have been achieved. The study reveals that lithology and terrain slope are decisive factors in seismic wave polarization, showing a tendency to align with the slope in steep terrains and significant influence from the underlying geology in gentler slopes. Furthermore, soil rigidity emerges as a key element, altering wave polarization depending on topographical features. The research contributes to the theoretical understanding of the interaction between geology, topography, and seismic response, paving the way for predictive models in seismic engineering and risk mitigation. The findings underscore the importance of integrating topographical configuration and soil rigidity for an accurate assessment of seismic response. This work not only contributes to the knowledge in geotechnics and seismology but also provides practical tools for improving the prevention and mitigation of natural disasters, highlighting the need to incorporate this knowledge into professional practice and public policy formulation. | eng |
dc.description.curriculararea | Área Curricular de Ingeniería Civil | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Geotecnia | spa |
dc.description.researcharea | Ingeniería Sísmica | spa |
dc.description.researcharea | Ingeniería Geofísica | spa |
dc.format.extent | 1 recursos en línea (125 páginas) | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87060 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Geotecnia | spa |
dc.relation.references | Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. | spa |
dc.relation.references | Amato, A., Azzara, R., Chiarabba, C., Cimini, G. B., Cocco, M., Di Bona, M., Margheriti, L., Mazza, S., Mele, F., Selvaggi, G., Basili, A., Boschi, E., Courboulex, F., Deschamps, A., Gaffet, S., Bittarelli, G., Chiaraluce, L., Piccinini, D., & Ripepe, M. (1998). The 1997 Umbria‐Marche, Italy, Earthquake Sequence: A first look at the main shocks and aftershocks. Geophysical Research Letters, 25(15), 2861–2864. https://doi.org/10.1029/98GL51842 | spa |
dc.relation.references | Anderson, S., & Nehorai, A. (1996). Analysis of a polarized seismic wave model. IEEE Transactions on Signal Processing, 44(2), 379–386. https://doi.org/10.1109/78.485933 | spa |
dc.relation.references | Área Metropolitana del Valle de Aburrá. (2006). MICROZONIFICACIÓN SÍSMICA DETALLADA DE LOS MUNICIPIOS DE BARBOSA, GIRARDOTA, COPACABANA, SABANETA, LA ESTRELLA, CALDAS Y ENVIGADO. | spa |
dc.relation.references | Baer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437–1445. https://doi.org/10.1785/BSSA0770041437 | spa |
dc.relation.references | Área Metropolitana del Valle de Aburrá. (2006). MICROZONIFICACIÓN SÍSMICA DETALLADA DE LOS MUNICIPIOS DE BARBOSA, GIRARDOTA, COPACABANA, SABANETA, LA ESTRELLA, CALDAS Y ENVIGADO. | spa |
dc.relation.references | Baer, M., & Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437–1445. https://doi.org/10.1785/BSSA0770041437 | spa |
dc.relation.references | Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J. (2010). ObsPy: A Python Toolbox for Seismology. Seismological Research Letters, 81(3), 530–533. https://doi.org/10.1785/gssrl.81.3.530 | spa |
dc.relation.references | Bingham, C., Godfrey, M., & Tukey, J. (1967). Modern techniques of power spectrum estimation. IEEE Transactions on Audio and Electroacoustics, 15(2), 56–66. https://doi.org/10.1109/TAU.1967.1161895 | spa |
dc.relation.references | Bingham, C., Godfrey, M., & Tukey, J. (1967). Modern techniques of power spectrum estimation. IEEE Transactions on Audio and Electroacoustics, 15(2), 56–66. https://doi.org/10.1109/TAU.1967.1161895 | spa |
dc.relation.references | Bloomfield, P. (2004). Fourier analysis of time series: an introduction. John Wiley & Sons. | spa |
dc.relation.references | Bulletin of the Seismological Society of America, 68(5), 1521–1532. https://doi.org/10.1785/BSSA0680051521 | spa |
dc.relation.references | Burjanek, J., Fäh, D., Pischiutta, M., Rovelli, A., & Calderoni, G. (2014). Site effects at sites with pronounced topography: overview & recommendations. | spa |
dc.relation.references | Carpenter, N. S., Wang, Z., Woolery, E. W., & Rong, M. (2018). Estimating Site Response with Recordings from Deep Boreholes and HVSR: Examples from the Mississippi Embayment of the Central United States. Bulletin of the Seismological Society of America, 108(3A), 1199–1209. https://doi.org/10.1785/0120170156 | spa |
dc.relation.references | Caserta, A., Bellucci, F., Cultrera, G., Donati, S., Marra, F., Mele, G., Palombo, B., & Rovelli, A. (2000). Study of site effects in the area of Nocera Umbra (Central Italy) during the 1997 Umbria-Marche seismic sequence. Journal of Seismology, 4, 555– 565. | spa |
dc.relation.references | Cochran, W. T., Cooley, J. W., Favin, D. L., Helms, H. D., Kaenel, R. A., Lang, W. W., Maling, G. C., Nelson, D. E., Rader, C. M., & Welch, P. D. (1967). What is the fast Fourier transform? Proceedings of the IEEE, 55(10), 1664–1674. https://doi.org/10.1109/PROC.1967.5957 | spa |
dc.relation.references | De Medellín, M. (1999). Instrumentación y microzonificación sísmica del área urbana de Medellín. | spa |
dc.relation.references | Di Alessandro, C., Bonilla, L. F., Boore, D. M., Rovelli, A., & Scotti, O. (2012). | spa |
dc.relation.references | Di Giulio, G., Cara, F., Rovelli, A., Lombardo, G., & Rigano, R. (2009). Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy. Journal of Geophysical Research: Solid Earth, 114(B10). https://doi.org/10.1029/2009JB006393 | spa |
dc.relation.references | Earle, P. S., & Shearer, P. M. (1994). Characterization of global seismograms using an automatic-picking algorithm. Bulletin of the Seismological Society of America, 84(2), 366–376. https://doi.org/10.1785/BSSA0840020366 | spa |
dc.relation.references | Hafez, A. G., Khan, M. T. A., & Kohda, T. (2010). Clear P-wave arrival of weak events and automatic onset determination using wavelet filter banks. Digital Signal Processing, 20(3), 715–723. https://doi.org/10.1016/j.dsp.2009.10.002 | spa |
dc.relation.references | Hafez, A. G., Khan, T. A., & Kohda, T. (2009). Earthquake onset detection using spectro- ratio on multi-threshold time–frequency sub-band. Digital Signal Processing, 19(1), 118–126. https://doi.org/10.1016/j.dsp.2008.08.003 | spa |
dc.relation.references | Hoz Lozano, E. C. de la. (2018). Subspace Detection de la Microsismicidad en el Mar de Mármara. | spa |
dc.relation.references | Jurkevics, A. (1988). Polarization analysis of three-component array data. Bulletin of the Seismological Society of America, 78(5), 1725–1743. | spa |
dc.relation.references | Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241. https://doi.org/10.1785/BSSA0880010228 | spa |
dc.relation.references | La Rocca, M. (2004). Seismic Signals Associated with Landslides and with a Tsunami at Stromboli Volcano, Italy. Bulletin of the Seismological Society of America, 94(5), 1850–1867. https://doi.org/10.1785/012003238 | spa |
dc.relation.references | Merchant, F. A., Shah, S. K., & Castleman, K. R. (2023). Object Measurement. In Microscope Image Processing (pp. 153–175). Elsevier. https://doi.org/10.1016/B978- 0-12-821049-9.00017-4 | spa |
dc.relation.references | Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1). | spa |
dc.relation.references | Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. Proceedings of the 12th World Conference on Earthquake Engineering, 2656, 1–8. | spa |
dc.relation.references | Pischiutta, M. (2010). The polarization of horizontal ground motion: an analysis of possible causes. | spa |
dc.relation.references | Pischiutta, M., Salvini, F., Fletcher, J., Rovelli, A., & Ben-Zion, Y. (2012). Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: dominant fault-high-angle polarization and fault-induced cracks. Geophysical Journal International, 188(3), 1255–1272. https://doi.org/10.1111/j.1365-246X.2011.05319.x | spa |
dc.relation.references | Posada, G., Monsalve, G., Hoyos, C. D., Pérez-Hincapié, A. M., & Trujillo-Cadavid, J. C. (2022). Ground accelerations and empirical site classification through H/V response spectral ratio (HVRSR) using historical records from the strong motion network of the Aburrá Valley, Colombia. Soil Dynamics and Earthquake Engineering, 152, 107063. https://doi.org/10.1016/j.soildyn.2021.107063 | spa |
dc.relation.references | Predominant-Period Site Classification for Response Spectra Prediction Equations in Italy. Bulletin of the Seismological Society of America, 102(2), 680–695. https://doi.org/10.1785/0120110084 | spa |
dc.relation.references | Rigano, R., Cara, F., Lombardo, G., & Rovelli, A. (2008). Evidence for ground motion polarization on fault zones of Mount Etna volcano. Journal of Geophysical Research: Solid Earth, 113(B10). https://doi.org/10.1029/2007JB005574 | spa |
dc.relation.references | SIATA. (2023). Generalidades de la Información Red Acelerográfica del Valle de Aburrá. | spa |
dc.relation.references | SIMPAD, & Minas, U. N. de C. (1999). Instrumentación y microzonificación sísmica del área urbana de Medellín. | spa |
dc.relation.references | Spudich, P., Hellweg, M., & Lee, W. H. K. (1996). Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions. Bulletin of the Seismological Society of America, 86(1B), S193–S208. https://doi.org/10.1785/BSSA08601BS193 | spa |
dc.relation.references | Trifunac, M. D. (1994). Fourier amplitude spectra of strong motion acceleration: Extension to high and low frequencies. Earthquake Engineering & Structural Dynamics, 23(4), 389–411. https://doi.org/10.1002/eqe.4290230404 | spa |
dc.relation.references | Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70–73. https://doi.org/10.1109/TAU.1967.1161901 | spa |
dc.relation.references | Yazdi, M., Motamed, R., & Anderson, J. G. (2022). A New Set of Automated Methodologies for Estimating Site Fundamental Frequency and Its Uncertainty Using Horizontal-to-Vertical Spectral Ratio Curves. Seismological Research Letters, 93(3), 1721–1736. https://doi.org/10.1785/0220210078 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.ddc | 550 - Ciencias de la tierra::552 - Petrología | spa |
dc.subject.lemb | Petrología | |
dc.subject.lemb | Ondas sismicas | |
dc.subject.lemb | Análisis espectral | |
dc.subject.lemb | Análisis de Fourier | |
dc.subject.proposal | HSVR | |
dc.subject.proposal | SSR | |
dc.subject.proposal | Matriz de Covarianza | spa |
dc.subject.proposal | Polarización de Ondas Sísmicas | spa |
dc.subject.proposal | H/V Spectral Ratio (HSVR) | eng |
dc.subject.proposal | Standard Spectral Ratio (SSR) | eng |
dc.subject.proposal | Covariance Matrix | eng |
dc.subject.proposal | Seismic Wave Polarization | eng |
dc.subject.wikidata | análisis de covarianza | |
dc.title | Exploración del efecto sísmico asociado a la polarización de ondas en las laderas instrumentadas del Valle de Aburrá, utilizando análisis espectral de eventos sísmicos y ruido ambiental | spa |
dc.title.translated | Exploration of the Seismic Effect Associated with Wave Polarization in the Instrumented Slopes of Valle de Aburrá, Utilizing Spectral Analysis of Seismic Events and Ambient Noise | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1090520236.pdf
- Tamaño:
- 2.87 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Geotecnia
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: