Hot corrosion resistance of dense Ceria-Yttria Stabilized Zirconia/Yttria stabilized Zirconia Bilayer coatings deposited by atmospheric plasma spray

dc.contributor.advisorToro, Alejandrospa
dc.contributor.advisorAlvarado-Orozco, Juan Manuelspa
dc.contributor.authorDe la Roche-Yepes, Jhonattanspa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupGrupo de Tribología y Superficiesspa
dc.date.accessioned2020-06-01T16:54:03Zspa
dc.date.available2020-06-01T16:54:03Zspa
dc.date.issued2020-03-12spa
dc.description.abstractHot Corrosion Resistance of Dense Ceria-Yttria Stabilized Zirconia/Yttria Stabilized Zirconia Bilayer Coatings Deposited by Atmospheric Plasma Spray. In this work, the hot corrosion (HC) resistance in thermal barrier coatings (TBC) of dense Ceria-Yttria Stabilized Zirconia (D-CYSZ)/ Yttria Stabilized Zirconia (YSZ) deposited using atmospheric plasma spray technique on Inconel 625 substrates was evaluated, varying the layer thickness of CYSZ (0, 50, 100 and 150 um) maintaining a total coating system thickness of 300 um. Initially, HC tests were carried out on 7YSZ commercial powders (Metco 204 NS-G) in order to find proper conditions for HC on the deposited coatings. It was found that the mixture of 32 wt.% Na2SO4 + 68 wt.% V2O5, 1 wt.% salt concentration and 900°C are the most aggressive conditions for HC of YSZ. Microstructural characterization of the bilayer systems D-CYSZ/YSZ was carried out. D-CYSZ layer presented a DVC type microstructure (Dense Vertically Cracked) with a crack density of 4.32, 3.87 and 3.19 cracks/mm for the layer thicknesses of 50, 100 and 150 um respectively. YSZ layers presented a porosity of 16% with large, medium and small globular porosity, as well as inter- and intra-splat cracks. Thermal shock resistance test of the bilayer systems was carried out, showing delamination of the D-CYSZ layer after 359 cycles. However, all the bilayer systems tested exceeded the 600 cycles without presenting delamination of the system at the BC/TC interface above 20%, preserving the thermal protection of the substrate after these cycles. Finally, HC test showed that although the dense layers presented vertical cracks, they gave the projection against molten salt attack, since the YSZ system (without D-CYSZ) presented severe changes in its microstructure under the HC test parameters found in the work (HCstandard). In addition, under most aggressive conditions (varying concentration and cycles) D-CYSZ layer acted as a barrier and protect the subsequent layers, since YSZ system showed delamination and higher cohesive weakness than the systems with D-CYSZ layer.spa
dc.description.abstractResistencia a la Corrosión en Caliente de Recubrimientos de Circonia estabilizada con Itria y Ceria densa/Circonia estabilizada con Itria Depositados por Aspersión Térmica por Plasma Atmosférico. En este trabajo, se evaluó la resistencia a la corrosión en caliente (HC) en recubrimientos barrera térmica (TBC) de circonia estabilizada con ceria e itria densa (D-CYSZ)/circonia estabilizada con itria (YSZ) depositadas con la técnica de aspersión térmica por plasma atmosférico (APS) sobre sustratos de Inconel 625, variando el espesor de capa de D-CYSZ (0, 50, 100 y 150 um) manteniendo un espesor total del sistema de 300 um. Inicialmente, se realizó pruebas HC en polvos comerciales de 7YSZ (Metco 204 NS-G) con el fin de hallar las condiciones para las pruebas en los recubrimientos. Se encontró que la mezcla 0.32 wt.% Na2SO4 + 0.68 wt.% V2O5, 1 wt.% de concentración de sal y 900°C son las condiciones más agresivas para pruebas HC en YSZ. Se realizó la caracterización microestructural de los sistemas bicapa D-CYSZ/YSZ. La capa de D-CYSZ presentó una microestructura tipo DVC (Dense Vertically Cracked) con densidad de grietas de 4.32, 3.87 y 3.19 grietas/mm para las capas de 50, 100 y 150 um respectivamente. Las capas de YSZ presentaron la microestructura típica de un sistema TBC, con una porosidad del 16% con poros globulares de gran, mediano y pequeño tamaño, así como grietas inter e intra splat. Se evaluó la resistencia termo-mecánica de los sistemas bicapa, donde presentaron desprendimiento de la capa de D-CYSZ a partir del ciclo 359. Sin embargo, todos los sistemas TBC evaluados superaron los 600 ciclos sin presentar delaminación del recubrimiento en la intercara BC/TC por encima del 20%, preservando la protección del sustrato después de esos ciclos. Finalmente, las pruebas HC mostraton que aunque las capas densas presentaron grietas verticales, estas dieron protección ante el ataque por sales, ya que el sistema YSZ presentó cambios severos en su microestructura bajo las condiciones HC halladas en el trabajo (HC-standard). Además, en condiciones más agresivas (variando la concentración y en ciclos) el sistema YSZ presentó delaminación y mayor debilidad cohesiva que los sistemas con capa D-CYSZ.spa
dc.description.degreelevelDoctoradospa
dc.description.projectDesarrollo e implementación de procesos de reparación y protección de componentes críticos sometidos a daño superficial en centrales de generación térmica e hidráulica mediante tecnologías de aspersión térmica y soldadura.spa
dc.description.sponsorshipEmpresas Publicas de Medellínspa
dc.format.extent116spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77579
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.references[1] Revista Dinero. ¿Qué tan competitiva es la energía colombiana?, 2015.spa
dc.relation.references[2] David R Clarke and Simon R Phillpot. Thermal barrier coating materials. Materials Today, 8(6):22–29, 2005.spa
dc.relation.references[3] Canan U Hardwicke and Yuk-Chiu Lau. Advances in thermal spray coatings for gas turbines and energy generation: a review. Journal of Thermal Spray Technology, 22(5):564–576, 2013.spa
dc.relation.references[4] David R Clarke, Matthias Oechsner, and Nitin P Padture. Thermal-barrier coatings for more efficient gas-turbine engines. MRS bulletin, 37(10):891–898, 2012.spa
dc.relation.references[5] Nitin P Padture, Maurice Gell, and Eric H Jordan. Thermal barrier coatings for gasturbine engine applications. Science, 296(5566):280–284, 2002.spa
dc.relation.references[6] Nitin P Padture. Advanced structural ceramics in aerospace propulsion. Nature materials, 15(8):804–809, 2016.spa
dc.relation.references[7] Wei Pan, Simon R Phillpot, Chunlei Wan, Aleksandr Chernatynskiy, and Zhixue Qu. Low thermal conductivity oxides. MRS bulletin, 37(10):917–922, 2012.spa
dc.relation.references[8] LB Chen. Yttria-stabilized zirconia thermal barrier coatings—a review. Surface Review and Letters, 13(05):535–544, 2006.spa
dc.relation.references[9] Narender Reddy and Ashutosh S Gandhi. Molten salt attack on t’ yttria-stabilised zirconia by dissolution and precipitation. Journal of the European Ceramic Society, 33(10):1867–1874, 2013.spa
dc.relation.references[10] Robert L Jones. Some aspects of the hot corrosion of thermal barrier coatings. Journal of Thermal Spray Technology, 6(1):77–84, 1997.spa
dc.relation.references[11] Imran Nazir Qureshi, Muhammad Shahid, and A Nusair Khan. Hot Corrosion of Yttria- Stabilized Zirconia Coating, in a Mixture of Sodium Sulfate and Vanadium Oxide at 950 °C. Journal of Thermal Spray Technology, 25(3):567–579, 2016.spa
dc.relation.references[12] Mohammadreza Daroonparvar, Muhamad Azizi Mat Yajid, Noordin Mohd Yusof, Hamid Reza Bakhsheshi-Rad, Esah Hamzah, and Mohsen Nazoktabar. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones. Journal of Rare Earths, 32(10):989–1002, 2014.spa
dc.relation.references[13] Tao Liu, Shu-Wei Yao, Li-Shuang Wang, Guan-Jun Yang, Cheng-Xin Li, and Chang- Jiu Li. Plasma-sprayed thermal barrier coatings with enhanced splat bonding for CMAS and corrosion protection. Journal of Thermal Spray Technology, 25(1-2):213– 221, 2016.spa
dc.relation.references[14] Pablo Carpio, M Dolores Salvador, Amparo Borrell, Lucia Navarro, and Enrique Sánchez. Molten salt attack on multilayer and functionally-graded YSZ coatings. Ceramics International, 44(11):12634–12641, 2018.spa
dc.relation.references[15] M Mohammadi, A Kobayashi, S Javadpour, and SAJ Jahromi. Evaluation of hot corrosion behaviors of Al2O3-YSZ composite TBC on gradient MCrAlY coatings in the presence of Na2SO4-NaVO3 salt. Vacuum, 167:547–553, 2019.spa
dc.relation.references[16] MH Habibi, Li Wang, and SM Guo. Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7+ YSZ composite thermal barrier coatings in Na2SO4+ V2O5 at 1050 °C. Journal of the European Ceramic Society, 32(8):1635–1642, 2012.spa
dc.relation.references[17] Yasin Ozgurluk, Kadir Mert Doleker, and Abdullah Cahit Karaoglanli. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt. Applied Surface Science, 438:96–113, 2018.spa
dc.relation.references[18] Yichuan Yin, Wen Ma, Xilong Jin, Xiaoying Li, Yu Bai, Ruiling Jia, and Hongying Dong. Hot corrosion behavior of the La2(Zr0:7Ce0:3)2O7 ceramic in molten V2O5 and a Na2SO4+ V2O5 salt mixture. Journal of Alloys and Compounds, 689:123–129, 2016.spa
dc.relation.references[19] Mohammad Reza Loghman-Estarki, Mehrdad Nejati, Hossein Edris, Reza Shoja Razavi, Hossein Jamali, and Amir Hossein Pakseresht. Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt. Journal of the European Ceramic Society, 35(2):693–702, 2015.spa
dc.relation.references[20] MH Habibi, Shizhong Yang, and SM Guo. Phase stability and hot corrosion behavior of ZrO2–Ta2O5 compound in Na2SO4-V2O5 mixtures at elevated temperatures. Ceramics International, 40(3):4077–4083, 2014.spa
dc.relation.references[21] MH Habibi, Li Wang, Jiandong Liang, and SM Guo. An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4+V2O5 salt at 1100 °C. Corrosion Science, 75:409– 414, 2013.spa
dc.relation.references[22] SY Park, JH Kim, MC Kim, HS Song, and CG Park. Microscopic observation of degradation behavior in Yttria and Ceria stabilized zirconia thermal barrier coatings under hot corrosion. Surface and Coatings Technology, 190(2):357–365, 2005.spa
dc.relation.references[23] YS Hwang and RA Rapp. Thermochemistry and solubilities of oxides in sodium sulfate-vanadate solutions. Corrosion, 45(11):933–937, 1989.spa
dc.relation.references[24] XQ Cao, R Vassen, and D Stoever. Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 24(1):1–10, 2004.spa
dc.relation.references[25] Joseph R Davis. Handbook of thermal spray technology. ASM international, 2004.spa
dc.relation.references[26] Klaus Erich Schneider, Vladimir Belashchenko, Marian Dratwinski, Stephan Siegmann, and Alexander Zagorski. Thermal spraying for power generation components. John Wiley & Sons, 2006.spa
dc.relation.references[27] P Fauchais, J Heberlein, and M Boulos. Thermal spray thermal spray fundamentals. Springer, Berlin, 2014.spa
dc.relation.references[28] Lech Pawlowski. The science and engineering of thermal spray coatings. John Wiley & Sons, 2008.spa
dc.relation.references[29] Darío Fernando Zambrano Mera. Estudio calorimétrico mediante análisis por DSC y TGA de la degradación de recubrimientos de YSZ depositados por Air Plasma Spray, 2015.spa
dc.relation.references[30] University of Stony Brook, Materials science engineering data: pictures, micrographs, spectra. http://www.matscieng.sunysb.edu/pictures/srini/300c2d.jpg.spa
dc.relation.references[31] Gopal Dwivedi, Toshio Nakamura, and Sanjay Sampath. Controlled introduction of anelasticity in plasma-sprayed ceramics. Journal of the American Ceramic Society, 94:s104–s111, 2011.spa
dc.relation.references[32] R Darolia. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. International materials reviews, 58(6):315–348, 2013.spa
dc.relation.references[33] Sanjay Sampath, Uwe Schulz, Maria Ophelia Jarligo, and Seiji Kuroda. Processing science of advanced thermal-barrier systems. MRS bulletin, 37(10):903–910, 2012.spa
dc.relation.references[34] Sudhangshu Bose. High temperature coatings. Butterworth-Heinemann, 2011.spa
dc.relation.references[35] Roger C Reed. The superalloys: fundamentals and applications. Cambridge university press, 2008.spa
dc.relation.references[36] Alvarado Orozco, Juan Manuel. Kinetics Study and Characterization of Thermally Grown Oxide on Commercial -(Ni,Pt)Al Bond Coats used in Thermal Barrier Coating Systems for Gas Turbine Engine Applications, 2012.spa
dc.relation.references[37] Nageswara Rao Muktinutalapati. Materials for gas turbines–an overview. In Advances in Gas Turbine Technology, page 303. InTech, 2011.spa
dc.relation.references[38] Meherwan P Boyce. Gas turbine engineering handbook. Elsevier, 2011.spa
dc.relation.references[39] Brian Gleeson. Thermal barrier coatings for aeroengine applications. Journal of propulsion and power, 22(2):375–383, 2006.spa
dc.relation.references[40] Adriaan Thomas Jacques Verbeek. Plasma sprayed thermal barrier coatings: production, characterization and testing. Technische Universiteit Eindhoven, 1992.spa
dc.relation.references[41] Carlos G Levi. Emerging materials and processes for thermal barrier systems. Current Opinion in Solid State and Materials Science, 8(1):77–91, 2004.spa
dc.relation.references[42] Paolo Francesco Manicone, Pierfrancesco Rossi Iommetti, and Luca Raffaelli. An overview of zirconia ceramics: basic properties and clinical applications. Journal of dentistry, 35(11):819–826, 2007.spa
dc.relation.references[43] Anthony G Evans, David R Clarke, and Carlos G Levi. The influence of oxides on the performance of advanced gas turbines. Journal of the European Ceramic Society, 28(7):1405–1419, 2008.spa
dc.relation.references[44] Giovanni Di Girolamo, Caterina Blasi, Monica Schioppa, and Leander Tapfer. Structure and thermal properties of heat treated plasma sprayed ceria–yttria co-stabilized zirconia coatings. Ceramics International, 36(3):961–968, 2010.spa
dc.relation.references[45] CH Lee, HK Kim, HS Choi, and HS Ahn. Phase transformation and bond coat oxidation behavior of plasma-sprayed zirconia thermal barrier coating. Surface and Coatings Technology, 124(1):1–12, 2000.spa
dc.relation.references[46] Andrés González, John Henao, Andrés Felipe Díaz, Esperanza López, and Fabio Vargas. Influencia de los parámetros de proyección térmica en la microestructura de los recubrimientos de circona-alúmina y circonaceria usados como barreras térmicas. Revista Latinoamericana de Metalurgia y Materiales, 33(2):272–281, 2013.spa
dc.relation.references[47] Hanshin Choi, Hyungjun Kim, and Changhee Lee. Phase evolutions of plasma sprayed ceria and yttria stabilized zirconia thermal barrier coating. Journal of materials science letters, 21(17):1359–1361, 2002.spa
dc.relation.references[48] GM Ingo, E Paparazzo, O Bagnarelli, and N Zacchetti. XPS studies on cerium, zirconium and yttrium valence states in plasma-sprayed coatings. Surface and Interface Analysis, 16(1-12):515–519, 1990.spa
dc.relation.references[49] Bin Ma, Yao Li, and Ke Su. Characterization of ceria–yttria stabilized zirconia plasmasprayed coatings. Applied Surface Science, 255(16):7234–7237, 2009.spa
dc.relation.references[50] Anthony Glyn Evans, DR Mumm, JW Hutchinson, GH Meier, and FS Pettit. Mechanisms controlling the durability of thermal barrier coatings. Progress in materials science, 46(5):505–553, 2001.spa
dc.relation.references[51] Gregoire Witz, Valery Shklover, Walter Steurer, Sharath Bachegowda, and Hans- Peter Bossmann. Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by rietveld refinement of x-ray powder diffraction patterns. Journal of the American Ceramic Society, 90(9):2935–2940, 2007.spa
dc.relation.references[52] F Cernuschi, L Lorenzoni, S Ahmaniemi, P Vuoristo, and T Mäntylä. Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements. Journal of the European Ceramic Society, 25(4):393–400, 2005.spa
dc.relation.references[53] Branko N. Popov. Corrosion Engineering -Principles and Solved Problems. Elsevier, 2015.spa
dc.relation.references[54] Robert A Rapp. Hot corrosion of materials: a fluxing mechanism? Corrosion science, 44(2):209–221, 2002.spa
dc.relation.references[55] Neil Birks, Gerald H Meier, and Frederick S Pettit. Introduction to the high temperature oxidation of metals. Cambridge University Press, 2006.spa
dc.relation.references[56] Isidor Zaplatynsky. Reactions of yttria-stabilized zirconia with oxides and sulfates of various elements. Technical report, NASA, 1978.spa
dc.relation.references[57] Douglas W McKee and Paul A Siemers. Resistance of thermal barrier ceramic coatings to hot salt corrosion. Thin Solid Films, 73(2):439–445, 1980.spa
dc.relation.references[58] AS Nagelberg. Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts. Journal of the electrochemical society, 132(10):2502– 2507, 1985.spa
dc.relation.references[59] YS Zhang and RA Rapp. Solubilities of CeO2, HfO2 and Y2O3 in fused Na2SO4-30 mol% NaVO3 and CeO2 in pure Na2SO4 at 900 C. Corrosion, 43(6):348–352, 1987.spa
dc.relation.references[60] RL Jones, CE Williams, and AJ Jones. Reaction of vanadium compounds with ceramic oxides. Journal of Electrochemical Society, 133(1), 1986.spa
dc.relation.references[61] I Gurrappa. Thermal barrier coatings for hot corrosion resistance of CM 247 LC superalloy. Journal of materials science letters, 17(15):1267–1269, 1998.spa
dc.relation.references[62] W Hertl. Vanadia reactions with yttria stabilized zirconia. Journal of applied physics, 63(11):5514–5520, 1988.spa
dc.relation.references[63] Prabhakar Mohan. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications, 2010.spa
dc.relation.references[64] Subramaniam Yugeswaran, Akira Kobayashi, and PV Ananthapadmanabhan. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barrier coatings. Journal of the European Ceramic Society, 32(4):823–834, 2012.spa
dc.relation.references[65] Carlos G Levi, John W Hutchinson, Marie-Hélène Vidal-Sétif, and Curtis A Johnson. Environmental degradation of thermal-barrier coatings by molten deposits. MRS bulletin, 37(10):932–941, 2012.spa
dc.relation.references[66] Zheng Chen, NQ Wu, J Singh, and SX Mao. Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate-vanadate salt. Thin solid films, 443(1-2):46–52, 2003.spa
dc.relation.references[67] Imran Nazir Qureshi, Muhammad Shahid, A Nusair Khan, and Yaseer A Durrani. Evaluation of titanium nitride-modified bondcoat system used in thermal barrier coating in corrosive salts environment at high temperature. Journal of Thermal Spray Technology, 24(8):1520–1528, 2015.spa
dc.relation.references[68] Zun Chen, Scott Speakman, Jane Howe, Hsin Wang, Wally Porter, and Rodney Trice. Investigation of reactions between vanadium oxide and plasma-sprayed yttriastabilized zirconia coatings. Journal of the European Ceramic Society, 29(8):1403– 1411, 2009.spa
dc.relation.references[69] Zohre Soleimanipour, Saeid Baghshahi, Reza Shoja-razavi, and Mehdi Salehi. Hot corrosion behavior of Al2O3 laser clad plasma sprayed YSZ thermal barrier coatings. Ceramics International, 42(15):17698–17705, 2016.spa
dc.relation.references[70] DR Clarke and CG Levi. Materials design for the next generation thermal barrier coatings. Annual review of materials research, 33(1):383–417, 2003.spa
dc.relation.references[71] MC Mayoral, JM Andrés, MT Bona, V Higuera, and FJ Belzunce. Yttria stabilized zirconia corrosion destabilization followed by Raman mapping. Surface and Coatings Technology, 202(21):5210–5216, 2008.spa
dc.relation.references[72] Lei Guo, Mingzhu Li, and Fuxing Ye. Comparison of hot corrosion resistance of Sm2Zr2O7 and (Sm0:5Sc0:5)2Zr2O7 ceramics in Namolten salt. Ceramics International, 42(12):13849–13854, 2016.spa
dc.relation.references[73] M Bahamirian, SMM Hadavi, M Farvizi, MR Rahimipour, and A Keyvani. Enhancement of hot corrosion resistance of thermal barrier coatings by using nanostructured Gd2Zr2O7 coating. Surface and Coatings Technology, 2018.spa
dc.relation.references[74] Morteza Hajizadeh-Oghaz, Reza Shoja Razavi, Ali Ghasemi, and Zia Valefi. Na2SO4 and V2O5 molten salts corrosion resistance of plasma-sprayed nanostructured ceria and yttria co-stabilized zirconia thermal barrier coatings. Ceramics International, 42(4):5433–5446, 2016.spa
dc.relation.references[75] MH Habibi and SM Guo. The hot corrosion behavior of plasma sprayed zirconia coatings stabilized with yttria, ceria, and titania in sodium sulfate and vanadium oxide. Materials and Corrosion, 66(3):270–277, 2015.spa
dc.relation.references[76] Vaishak Viswanathan, Gopal Dwivedi, and Sanjay Sampath. Engineered multilayer thermal barrier coatings for enhanced durability and functional performance. Journal of the American Ceramic Society, 97(9):2770–2778, 2014.spa
dc.relation.references[77] Abbas Afrasiabi, Mohsen Saremi, and Akira Kobayashi. A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ+ Al2O3 and YSZ/Al2O3. Materials Science and Engineering: A, 478(1-2):264–269, 2008.spa
dc.relation.references[78] M Saremi and Z Valefi. Thermal and mechanical properties of nano-ysz–alumina functionally graded coatings deposited by nano-agglomerated powder plasma spraying. Ceramics International, 40(8):13453–13459, 2014.spa
dc.relation.references[79] Dowon Song, Taeseup Song, Ungyu Paik, Guanlin Lyu, and Yeon-Gil Jung. Hot corrosion behavior in thermal barrier coatings with heterogeneous splat boundary. Corrosion Science, page in press, 2019.spa
dc.relation.references[80] PG Lashmi, Sumil Majithia, V Shwetha, N Balaji, and ST Aruna. Improved hot corrosion resistance of plasma sprayed ysz/gd2zr2o7 thermal barrier coating over single layer ysz. Materials Characterization, 147:199–206, 2019.spa
dc.relation.references[81] A Keyvani, M Saremi, and M Heydarzadeh Sohi. Microstructural stability of zirconia– alumina composite coatings during hot corrosion test at 1050 c. Journal of Alloys and Compounds, 506(1):103–108, 2010.spa
dc.relation.references[82] AH Pakseresht, AH Javadi, E Ghasali, A Shahbazkhan, and S Shakhesi. Evaluation of hot corrosion behavior of plasma sprayed thermal barrier coatings with graded intermediate layer and double ceramic top layer. Surface and Coatings Technology, 288:36–45, 2016.spa
dc.relation.references[83] A Keyvani and M Bahamirian. Hot corrosion and mechanical properties of nanostructured Al2O3/CSZ composite TBCs. Surface Engineering, 33(6):433–443, 2017.spa
dc.relation.references[84] Ahmad Keyvani. Microstructural stability oxidation and hot corrosion resistance of nanostructured Al2O3/YSZ composite compared to conventional YSZ TBC coatings. Journal of Alloys and Compounds, 623:229–237, 2015.spa
dc.relation.references[85] Lewis E Shoemaker. Alloys 625 and 725: trends in properties and applications. Superalloys, 718:625–706, 2005.spa
dc.relation.references[86] GD Smith, DJ Tillack, and SJ Patel. Alloy 625: impressive past, significant presence, awesome future. Superalloys, 718:625–706, 1991.spa
dc.relation.references[87] HX Hu, YG Zheng, and CP Qin. Comparison of inconel 625 and inconel 600 in resistance to cavitation erosion and jet impingement erosion. Nuclear Engineering and Design, 240(10):2721–2730, 2010.spa
dc.relation.references[88] Dominic Mercier, Bryan D Gauntt, and Mathieu Brochu. Thermal stability and oxidation behavior of nanostructured nicocraly coatings. Surface and Coatings Technology, 205(17-18):4162–4168, 2011.spa
dc.relation.references[89] Masatomo Yashima, Kenji Morimoto, Nobuo Ishizawa, and Masahiro Yoshimura. Diffusionless tetragonal–cubic transformation temperature in zirconia–ceria solid solutions. Journal of the American Ceramic Society, 76(11):2865–2868, 1993.spa
dc.relation.references[90] Masatomo Yashima, Haruo Arashi, Masato Kakihana, and Masahiro Yoshimura. Raman scattering study of cubic–tetragonal phase transition in Zr1-xCexO2 solid solution. Journal of the American Ceramic Society, 77(4):1067–1071, 1994.spa
dc.relation.references[91] Vaishak Viswanathan, Gopal Dwivedi, and Sanjay Sampath. Multilayer, multimaterial thermal barrier coating systems: design, synthesis, and performance assessment. Journal of the American Ceramic Society, 98(6):1769–1777, 2015.spa
dc.relation.references[92] Oerlikon Metco. SinplexPro Plasma Spray gun.spa
dc.relation.references[93] ASM Thermal Spray Society (TSS). Accepted Practice to Test Bond Strength of Thermal Spray Coatings, 2013.spa
dc.relation.references[94] J Zhang and V Desai. Determining thermal conductivity of plasma sprayed TBC by electrochemical impedance spectroscopy. Surface and Coatings Technology, 190(1):90–97, 2005.spa
dc.relation.references[95] M Leoni, RL Jones, and P Scardi. Phase stability of scandia–yttria-stabilized zirconia TBCs. Surface and coatings technology, 108:107–113, 1998.spa
dc.relation.references[96] Jing Wu, Hong-Bo Guo, Le Zhou, Lu Wang, and Sheng-Kai Gong. Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ. Journal of Thermal Spray Technology, 19(6):1186–1194, 2010.spa
dc.relation.references[97] Vanni Lughi and David R Clarke. Transformation of Electron-Beam Physical Vapor- Deposited 8 wt% Yttria-Stabilized Zirconia Thermal Barrier Coatings. Journal of the American Ceramic Society, 88(9):2552–2558, 2005.spa
dc.relation.references[98] Robert A Rapp. Chemistry and electrochemistry of hot corrosion of metals. materials science and engineering, 87:319–327, 1987.spa
dc.relation.references[99] M Seiersten and P Kofstad. The effect of SO3 on vanadate-induced hot corrosion. High Temperature Technology, 5(3):115–122, 1987.spa
dc.relation.references[100] S Erdei and FW Ainger. Crystal growth of YVO4 using the LHPG technique. Journal of crystal growth, 128(1-4):1025–1030, 1993.spa
dc.relation.references[101] A Keyvani, M Saremi, and M Heydarzadeh Sohi. Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100 C. Journal of alloys and compounds, 509(33):8370–8377, 2011.spa
dc.relation.references[102] Reza Ghasemi, Reza Shoja-Razavi, Reza Mozafarinia, and Hossein Jamali. Comparison of microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. Ceramics International, 39(8):8805–8813, 2013.spa
dc.relation.references[103] Christopher C Berndt. Tensile adhesion testing methodology for thermally sprayed coatings. Journal of materials engineering, 12(2):151–158, 1990.spa
dc.relation.references[104] CRC Lima and JM Guilemany. Adhesion improvements of thermal barrier coatings with hvof thermally sprayed bond coats. Surface and Coatings Technology, 201(8):4694–4701, 2007.spa
dc.relation.references[105] Luis Tobón, César Barrios, Darío Zambrano, and Alejandro Toro. Análisis morfológico de la porosidad de un sistema de barrera térmica sometido a cargas térmicas cosntantes. Revista Colombiana de Materiales, (5):35–41, 2014.spa
dc.relation.references[106] Anand A Kulkarni, Allen Goland, Herbert Herman, Andrew J Allen, Jan Ilavsky, Gabrielle G Long, and Francesco De Carlo. Advanced microstructural characterization of plasma-sprayed zirconia coatings over extended length scales. Journal of Thermal Spray Technology, 14(2):239–250, 2005.spa
dc.relation.references[107] Anand Kulkarni, A Vaidya, A Goland, S Sampath, and H Herman. Processing effects on porosity-property correlations in plasma sprayed yttria-stabilized zirconia coatings. Materials Science and Engineering: A, 359(1-2):100–111, 2003.spa
dc.relation.references[108] M Karger, R Vassen, and D Stover. Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: Spraying process, microstructure and thermal cycling behavior. Surface and Coatings Technology, 206(1):16–23, 2011.spa
dc.relation.references[109] Manish Madhwal, Eric H Jordan, and Maurice Gell. Failure mechanisms of dense vertically-cracked thermal barrier coatings. Materials Science and Engineering: A, 384(1-2):151–161, 2004.spa
dc.relation.references[110] HB Guo, R Vassen, and D Stover. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density. Surface and Coatings technology, 186(3):353–363, 2004.spa
dc.relation.references[111] Biao Li, Xueling Fan, Hiroshi Okada, and Tiejun Wang. Mechanisms governing the failure modes of dense vertically cracked thermal barrier coatings. Engineering Fracture Mechanics, 189:451–480, 2018.spa
dc.relation.references[112] P Fauchais, A Vardelle, M Vardelle, and M Fukumoto. Knowledge concerning splat formation: an invited review. Journal of Thermal Spray Technology, 13(3):337–360, 2004.spa
dc.relation.references[113] S Sampath and X Jiang. Splat formation and microstructure development during plasma spraying: deposition temperature effects. Materials Science and Engineering: A, 304:144–150, 2001.spa
dc.relation.references[114] A Nusair Khan and J Lu. Behavior of air plasma sprayed thermal barrier coatings, subject to intense thermal cycling. Surface and Coatings Technology, 166(1):37–43, 2003.spa
dc.relation.references[115] AGEA Rabiei and AG Evans. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. Acta materialia, 48(15):3963–3976, 2000.spa
dc.relation.references[116] Feifei Zhou, You Wang, Liang Wang, Yaming Wang, Wenlong Chen, Changxiang Huang, and Min Liu. Synthesis and characterization of nanostructured t’-YSZ spherical feedstocks for atmospheric plasma spraying. Journal of Alloys and Compounds, 740:610–616, 2018.spa
dc.relation.references[117] P Mohan, T Patterson, VH Desai, and YH Sohn. Degradation of free-standing air plasma sprayed conicraly coatings by vanadium and phosphorus pentoxides. Surface and Coatings Technology, 203(5-7):427–431, 2008.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::669 - Metalurgiaspa
dc.subject.ddc660 - Ingeniería química::666 - Cerámica y tecnologías afinesspa
dc.subject.proposalHot corrosioneng
dc.subject.proposalCorrosión en calientespa
dc.subject.proposalAPSeng
dc.subject.proposalAPSspa
dc.subject.proposalYSZspa
dc.subject.proposalYSZeng
dc.subject.proposalCYSZeng
dc.subject.proposalCYSZspa
dc.subject.proposalTBCspa
dc.subject.proposalTBCeng
dc.titleHot corrosion resistance of dense Ceria-Yttria Stabilized Zirconia/Yttria stabilized Zirconia Bilayer coatings deposited by atmospheric plasma sprayspa
dc.title.alternativeResistencia a la corrosión en caliente de recubrimientos de Circonia estabilizada con Itria y Ceria densa/Circonia estabilizada con Itria depositados por aspersión térmica por plasma atmosféricospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1130617693.2020.pdf
Tamaño:
71.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materiales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: