Desarrollo de un sistema de clasificación de sustancias basado en un arreglo de sensores tipo lengua electrónica

dc.contributor.advisorTibaduiza Burgos, Diego Alexander
dc.contributor.advisorAnaya Vejar, Maribel
dc.contributor.authorLeon Medina, Jersson Xavier
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (CMUN)spa
dc.date.accessioned2021-08-18T15:37:40Z
dc.date.available2021-08-18T15:37:40Z
dc.date.issued2021-08-16
dc.descriptiongráficas, ilustraciones, tablasspa
dc.description.abstractThe analysis of liquid substances is a current research area with applications in food, agricultural and chemical sciences, among others. These tests are generally time-consuming and performed with expensive equipment. Additionally, another way to analyze liquids is using a panel of previously trained experts who can evaluate some type of flavor. Although this method has proved to be effective, it is subject to disturbances produced by humans that can affect the classification process. Electronic tongue sensor arrays have emerged as an alternative to traditional liquid analysis methods, since they have demonstrated their effectiveness as classifiers of liquid substances and made it possible to automate this process. This doctoral thesis presents the development of an electronic system for classifying substances based on an array of electronic tongue sensor arrays. The system consists of an array of sensors, an electronic data acquisition system, and a computerized system for pattern recognition and multivariate analysis of the experimental data obtained. Different stages in the development of the classification system for liquid substances are described, such as the selection of sensors and electronic data acquisition equipment, system configuration, assembly and experimental design. Two new methodologies are presented for the processing of the signals obtained by electronic tongue sensor arrays. These methodologies include the use of feature extraction algorithms such as Principal Component Analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) which are used to reduce the high dimensionality of the data. These methodologies are based on the pattern recognition approach and use machine learning algorithms for classification as k nearest neighbors k-NN. The developed methodologies are validated using different datasets from different experiments, sensors and configurations, thus showing the effectiveness of the developed methodologies. (Tex taken from source)eng
dc.description.abstractEl análisis de sustancias liquidas es un área de investigación actual con aplicaciones en ciencias alimentarias, agrícolas, químicas, entre otras. Estos análisis generalmente llevan tiempo y se realizan con equipos costosos. Adicionalmente, la forma de analizar líquidos es con un panel de personas expertas previamente entrenadas que pueden evaluar algún tipo de sabor y aunque este método ha mostrado ser efectivo está sujeto a las perturbaciones producidas por el ser humano que pueden afectar el proceso de clasificación. Los arreglos de sensores tipo lengua electrónica han surgido como una alternativa a los métodos tradicionales de análisis de líquidos dado que han demostrado su efectividad como clasificadores de sustancias liquidas y han permitido automatizar este proceso. Esta tesis doctoral presenta el desarrollo de un sistema electrónico de clasificación de sustancias basado en un arreglo de sensores tipo lengua electrónica. El sistema se compone de un arreglo de sensores, un sistema electrónico de adquisición de datos y un sistema computarizado de reconocimiento de patrones y análisis multivariante de los datos experimentales obtenidos. Se describen diferentes etapas en el desarrollo del sistema de clasificación de sustancias liquidas como la selección de sensores y equipo electrónico de adquisición de datos, configuración del sistema, montaje y diseño experimental. Se presentan dos nuevas metodologías para el procesamiento de las señales obtenidas por arreglos de sensores tipo lengua electrónica. Estas incluyen el uso de algoritmos de extracción de características como Análisis de componentes principales (PCA) y tdistributed stochastic neighbor embedding (t-SNE) los cuales son utilizados para reducir la alta dimensionalidad de los datos. Estas metodologías están basadas en el enfoque de reconocimiento de patrones y utilizan algoritmos de aprendizaje automático para la clasificación como k vecinos más cercanos k-NN. Las metodologías desarrolladas son validadas usando diferentes conjuntos de datos provenientes de diferentes experimentos, sensores y configuraciones mostrando la efectividad de las metodologías desarrolladas. (texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería-Ingeniería Mecánica y Mecatrónicaspa
dc.description.researchareaIngeniería de Automatización, Control y Mecatrónicaspa
dc.description.sponsorship“Fondo de Ciencia Tecnología e Innovación FCTEI del Sistema General de Regalías SGR”, el Departamento Administrativo de Ciencia, Tecnología e Innovación — Colciencias con su convocatoria 779— “Convocatoria para la Formación de Capital Humano de Alto Nivel para el Departamento de Boyacá 2017” y la Gobernación de Boyacá por patrocinar la investigación presentada aquí.spa
dc.format.extent241 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79962
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Mecánica y Mecatrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá - Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.references“Harvey d (2010) analytical chemistry 2.0." https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Instrumental_Analysis/Cyclic_Voltammetry. Accessed: 2021-01-24.spa
dc.relation.referencesT. Nasir, Electrochemical sensors of environmental pollutants based on carbon electrodes modified by ordered mesoporous silica. PhD thesis, Université de Lorraine, 2018.spa
dc.relation.referencesJ. X. Leon-Medina, W. A. Pineda-Muñoz, and D. A. T. Burgos, “Joint distribution adaptation for drift correction in electronic nose type sensor arrays," IEEE Access, vol. 8, pp. 134413-134421, 2020.spa
dc.relation.referencesL. Wang, Q. Niu, Y. Hui, and H. Jin, “Discrimination of rice with different pretreatment methods by using a voltammetric electronic tongue," Sensors (Switzerland), vol. 15, no. 7, pp. 17767-17785, 2015.spa
dc.relation.referencesM. Sliwinska, P. Wisniewska, T. Dymerski, J. Namiesnik, and W. Wardencki, “Food analysis using artificial senses," Journal of Agricultural and Food Chemistry, vol. 62, no. 7, pp. 1423-1448, 2014.spa
dc.relation.referencesH. Jiang, M. Zhang, B. Bhandari, and B. Adhikari, “Application of electronic tongue for fresh foods quality evaluation: A review," Food Reviews International, vol. 34, no. 8, pp. 746-769, 2018.spa
dc.relation.referencesC. Costa, C. Taiti, M. C. Strano, G. Morone, F. Antonucci, S. Mancuso, S. Claps, F. Pallottino, L. Sepe, N. Bazihizina, and P. Menesatti, Multivariate Approaches to Electronic Nose and PTR-TOF-MS Technologies in Agro-Food Products. 2016.spa
dc.relation.referencesD. Ha, Q. Sun, K. Su, H. Wan, H. Li, N. Xu, F. Sun, L. Zhuang, N. Hu, and P. Wang, “Recent achievements in electronic tongue and bioelectronic tongue as taste sensors," vol. 207, pp. 1136-1146, 2015.spa
dc.relation.referencesM. Esteban, C. Ariño, and J. M. Díaz-Cruz, “Chemometrics in electroanalytical chemistry," Crit. Rev. Anal. Chem., vol. 36, pp. 295-313, 2006.spa
dc.relation.referencesP. Oliveri, M. C. Casolino, and M. Forina, Chemometric Brains for Artificial Tongues, vol. 61. Elsevier Inc., 1 ed., 2010.spa
dc.relation.referencesM. del Valle, “Materials for electronic tongues: Smart sensor combining different materials and chemometric tools," in Materials for Chemical Sensing, pp. 227-265, Springer, 2017.spa
dc.relation.referencesL. Zhang and F. C. Tian, “A new kernel discriminant analysis framework for electronic nose recognition," Analytica Chimica Acta, vol. 816, pp. 8-17, 2014.spa
dc.relation.referencesL. Zhang, X. Wang, G. B. Huang, T. Liu, and X. Tan, “Taste Recognition in E-Tongue Using Local Discriminant Preservation Projection," IEEE Trans. Cybern., vol. PP, pp. 1-14, 2018.spa
dc.relation.referencesL. Zhang, F. Tian, and D. Zhang, E-Nose Algorithms and Challenges. Springer Singapore, 2018.spa
dc.relation.referencesJ. X. Leon-Medina, L. J. Cardenas-Flechas, and D. A. Tibaduiza, “A data-driven methodology for the classification of different liquids in artificial taste recognition applications with a pulse voltammetric electronic tongue," International Journal of Distributed Sensor Networks, vol. 15, no. 10, p. ., 2019.spa
dc.relation.referencesM. del Valle, “Electronic tongues employing electrochemical sensors," Electroanalysis, vol. 22, pp. 1539-1555, jul 2010.spa
dc.relation.referencesJ. X. Leon-Medina, M. A. Vejar, and D. A. Tibaduiza, “Signal Processing and Pattern Recognition in Electronic Tongues: A Review," in Pattern Recognition Applications in Engineering (D. A. T. Burgos, M. A. Vejar, and F. Pozo, eds.), pp. 84-108, Hershey, PA, USA: IGI Global, 2020.spa
dc.relation.referencesS. Y. Tian, S. P. Deng, and Z. X. Chen, “Multifrequency large amplitude pulse voltammetry: A novel electrochemical method for electronic tongue," Sensors and Actuators, B: Chemical, vol. 123, no. 2, pp. 1049-1056, 2007.spa
dc.relation.referencesZ. Wei, J. Wang, and W. Jin, “Evaluation of varieties of set yogurts and their physical properties using a voltammetric electronic tongue based on various potential waveforms," Sensors and Actuators B: Chemical, vol. 177, pp. 684-694, 2013.spa
dc.relation.referencesP. Ivarsson, S. Holmin, N.-E. Höjer, C. Krantz-Rülcker, and F. Winquist, “Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms," Sensors and Actuators B: Chemical, vol. 76, no. 1-3, pp. 449-454, 2001.spa
dc.relation.referencesZ. Wei, J. Wang, and L. Ye, “Classification and prediction of rice wines with different marked ages by using a voltammetric electronic tongue," Biosensors and bioelectronics, vol. 26, no. 12, pp. 4767-4773, 2011.spa
dc.relation.referencesM. Palit, B. Tudu, P. K. Dutta, A. Dutta, A. Jana, J. K. Roy, N. Bhattacharyya, R. Bandyopadhyay, and A. Chatterjee, “Classification of black tea taste and correlation with tea taster's mark using voltammetric electronic tongue," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 8, pp. 2230-2239, 2009.spa
dc.relation.referencesZ. Wei and J. Wang, “Classification of monofloral honeys by voltammetric electronic tongue with chemometrics method," Electrochimica acta, vol. 56, no. 13, pp. 4907-4915, 2011.spa
dc.relation.referencesA. Gutes, F. Cespedes, M. Del Valle, D. Louthander, C. Krantz-Rülcker, and F. Winquist, “A ow injection voltammetric electronic tongue applied to paper mill industrial waters," Sensors and Actuators B: Chemical, vol. 115, no. 1, pp. 390-395, 2006.spa
dc.relation.referencesT. Liu, Y. Chen, D. Li, T. Yang, and J. Cao, “Electronic tongue recognition with feature specificity enhancement," Sensors, vol. 20, no. 3, p. 772, 2020.spa
dc.relation.referencesT. Liu, Y. Chen, D. Li, and M. Wu, “An Active Feature Selection Strategy for DWT in Artificial Taste," Journal of Sensors, vol. 2018, 2018.spa
dc.relation.referencesX. Wang and K. K. Paliwal, “Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition," Pattern recognition, vol. 36, no. 10, pp. 2429-2439, 2003.spa
dc.relation.referencesL. F. Villamil Cubillos, “Implementación y validación de algoritmos de selección de características en el proceso de clasificación de líquidos con arreglos de sensores tipo lengua electrónica," tech. rep., Trabajo de grado. Programa de Ingeniería mecatrónica. Universidad Nacional de Colombia sede Bogotá, 2020.spa
dc.relation.referencesJ. X. Leon-Medina, M. Anaya, F. Pozo, and D. Tibaduiza, “Nonlinear feature extraction through manifold learning in an electronic tongue classification task," Sensors, vol. 20, no. 17, 2020.spa
dc.relation.referencesI. Levner, “Feature selection and nearest centroid classification for protein mass spectrometry," BMC bioinformatics, vol. 6, no. 1, p. 68, 2005.spa
dc.relation.referencesJ. Yan, X. Guo, S. Duan, P. Jia, L. Wang, C. Peng, and S. Zhang, “Electronic nose feature extraction methods: A review," Sensors, vol. 15, no. 11, pp. 27804-27831, 2015.spa
dc.relation.referencesG. Sugihara, R. May, H. Ye, C.-h. Hsieh, E. Deyle, M. Fogarty, and S. Munch, “Detecting causality in complex ecosystems," science, vol. 338, no. 6106, pp. 496-500, 2012.spa
dc.relation.referencesY. Huang, G. Kou, and Y. Peng, “Nonlinear manifold learning for early warnings in financial markets," European Journal of Operational Research, vol. 258, no. 2, pp. 692-702, 2017.spa
dc.relation.referencesD. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, “Manifold-learning-based feature extraction for classification of hyperspectral data: A review of advances in manifold learning," IEEE Signal Processing Magazine, vol. 31, no. 1, pp. 55-66, 2013.spa
dc.relation.referencesK. Yildiz, A. Y. Çamurcu, and B. Dogan, “Comparison of dimension reduction techniques on high dimensional datasets.," Int. Arab J. Inf. Technol., vol. 15, no. 2, pp. 256-262, 2018.spa
dc.relation.referencesJ. X. Leon, W. A. P. MuÑOz, M. Anaya, J. Vitola, and D. A. Tibaduiza, “Structural damage classification using machine learning algorithms and performance measures," Structural Health Monitoring 2019, 2019.spa
dc.relation.referencesD. Agis and F. Pozo, “A frequency-based approach for the detection and classification of structural changes using t-sne," Sensors, vol. 19, no. 23, p. 5097, 2019.spa
dc.relation.referencesV. D. Silva and J. B. Tenenbaum, “Global versus local methods in nonlinear dimensionality reduction," in Advances in neural information processing systems, pp. 721-728, 2003.spa
dc.relation.referencesF. Plastria, S. De Bruyne, and E. Carrizosa, “Dimensionality reduction for classification, comparison of techniques and dimension choice," Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5139 LNAI, pp. 411-418, 2008.spa
dc.relation.referencesP. Jia, T. Huang, L. Wang, S. Duan, J. Yan, and L. Wang, “A novel pre-processing technique for original feature matrix of electronic nose based on supervised locality preserving projections," Sensors, vol. 16, no. 7, p. 1019, 2016.spa
dc.relation.referencesP. Zhu, J. Du, B. Xu, and M. Lu, “Modified unsupervised discriminant projection with an electronic nose for the rapid determination of chinese mitten crab freshness," Analytical Methods, vol. 9, no. 11, pp. 1806-1815, 2017.spa
dc.relation.referencesL. Ding, Z. Guo, S. Pan, and P. Zhu, “Manifold learning for dimension reduction of electronic nose data," in 2017 International Conference on Control, Automation and Information Sciences (ICCAIS), pp. 169-174, IEEE, 2017.spa
dc.relation.referencesP. Zhu, Y. Zhang, and L. Ding, “Rapid freshness prediction of crab based on a portable electronic nose system," International Journal of Computer Applications in Technology, vol. 61, no. 4, pp. 241-246, 2019.spa
dc.relation.referencesJ. Leon-Medina, M. Anaya, F. Pozo, and D. Tibaduiza, “Application of manifold learning algorithms to improve the classification performance of an electronic nose," in 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, IEEE, 2020.spa
dc.relation.referencesR. Zhi, L. Zhao, B. Shi, and Y. Jin, “New dimensionality reduction model (manifold learning) coupled with electronic tongue for green tea grade identification," European Food Research and Technology, vol. 239, no. 1, pp. 157-167, 2014.spa
dc.relation.referencesM. Liu, M. Wang, J. Wang, and D. Li, “Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar," Sensors and Actuators, B: Chemical, vol. 177, pp. 970-980, 2013.spa
dc.relation.referencesJ. M. Gutiérrez, Z. Haddi, A. Amari, B. Bouchikhi, A. Mimendia, X. Cetó, and M. del Valle, “Hybrid electronic tongue based on multisensor data fusion for discrimination of beers," Sensors and Actuators B: Chemical, vol. 177, pp. 989-996, 2013.spa
dc.relation.referencesJ. X. Leon-Medina, M. A. Vejar, and D. A. Tibaduiza, “Signal processing and pattern recognition in electronic tongues: A review," in Pattern Recognition Applications in Engineering, pp. 84-108, IGI Global, 2020.spa
dc.relation.referencesS. Zhang, R. He, J. Zhang, Z. Zhou, X. Cheng, G. Huang, J. Zhang, et al., “A convolutional neural network based auto features extraction method for tea classification with electronic tongue," Applied Sciences, vol. 9, no. 12, p. 2518, 2019.spa
dc.relation.referencesJ. X. Leon-Medina, L. J. Cardenas-Flechas, and D. A. Tibaduiza, “A data-driven methodology for the classification of different liquids in artificial taste recognition applications with a pulse voltammetric electronic tongue," International Journal of Distributed Sensor Networks, vol. 15, no. 10, p. 1550147719881601, 2019.spa
dc.relation.referencesQ. Shi, T. Guo, T. Yin, Z. Wang, C. Li, X. Sun, Y. Guo, and W. Yuan, “Classification of pericarpium citri reticulatae of different ages by using a voltammetric electronic tongue system," International Journal Of Electrochemical Science, vol. 13, no. 12, pp. 11359-11374, 2018.spa
dc.relation.referencesM. Palit, B. Tudu, N. Bhattacharyya, A. Dutta, P. K. Dutta, A. Jana, R. Bandyopadhyay, and A. Chatterjee, “Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea," Analytica Chimica Acta, vol. 675, no. 1, pp. 8-15, 2010.spa
dc.relation.referencesY. Vlasov, A. Legin, A. Rudnitskaya, C. Di Natale, and A. D'amico, “Nonspecific sensor arrays (.electronic tongue") for chemical analysis of liquids (IUPAC Technical Report)," Pure and Applied Chemistry, vol. 77, no. 11, pp. 1965-1983, 2005.spa
dc.relation.referencesA. Bratov, N. Abramova, and A. Ipatov, “Recent trends in potentiometric sensor arrays-a review," Anal. Chim. Acta, vol. 678, pp. 149-159, 2010.spa
dc.relation.referencesZ. Wei, Y. Yang, J. Wang, W. Zhang, and Q. Ren, “The measurement principles, working parameters and configurations of voltammetric electronic tongues and its applications for foodstuff analysis," J. Food Eng., vol. 217, pp. 75-92, 2018.spa
dc.relation.referencesC. G. Zoski, Handbook of electrochemistry. Elsevier, 2006.spa
dc.relation.references“Real academia de ingeniería (2021) electroanálisis." http://diccionario.raing.es/es/lema/electroan%C3%A1lisis. Accessed: 2021-04-12.spa
dc.relation.referencesD. J. Munch, M. Wasko, E. Flynt, S. C. Wendelken, J. Scifres, J. R. Mario, M. Hunt, D. Gregg, T. Schaeffer, M. Clarage, et al., “Validation and peer review of us environmental protection agency chemical methods of analysis," in Forum on Environmental Measurements, US Environmental Protection Agency, Washington, DC, Citeseer, 2005.spa
dc.relation.referencesA. Wilken, V. Kraft, S. Girod, M. Winter, and S. Nowak, “A fluoride-selective electrode (fse) for the quantification of fluoride in lithium-ion battery (lib) electrolytes," Analytical methods, vol. 8, no. 38, pp. 6932-6940, 2016.spa
dc.relation.referencesV. Pravdová, M. Pravda, and G. Guilbault, “Role of chemometrics for electrochemical sensors," Analytical letters, vol. 35, no. 15, pp. 2389-2419, 2002.spa
dc.relation.referencesM. Holmberg, M. Eriksson, C. Krantz-Rülcker, T. Artursson, F. Winquist, A. Lloyd-Spetz, and I. Lundström, “2nd workshop of the second network on artificial olfactory sensing (nose ii)," Sensors and Actuators B: Chemical, vol. 101, no. 1-2, pp. 213-223, 2004.spa
dc.relation.referencesI. Campos Sánchez, Sensores electroquímicos tipo lengua electrónica voltamétrica aplicados al control medioambiental ya la industria alimentaria. PhD thesis, Universitat Politècnica de Valencia, 2013.spa
dc.relation.referencesM. del Valle, “Electronic tongues employing electrochemical sensors," Electroanalysis, vol. 22, no. 14, pp. 1539-1555, 2010.spa
dc.relation.referencesM. del Valle, “Potentiometric electronic tongues applied in ion multidetermination," Comprehensive Analytical Chemistry, vol. 49, pp. 721-753, 2007.spa
dc.relation.referencesJ. Wang, Study of Electrode Reactions and Interfacial Properties, ch. 2, pp. 29-66. Analytical Electrochemistry John Wiley Sons, Ltd, 2006.spa
dc.relation.referencesM. M. Cuenca Quicazan, Desarrollo de una herramienta instrumental de gusto artificial aplicable a bebidas alcohólicas a base de miel de abejas. PhD thesis, Universidad Nacional de Colombia sede Bogotá, 2014.spa
dc.relation.referencesQ. Ouyang, Y. Yang, J. Wu, Z. Liu, X. Chen, C. Dong, Q. Chen, Z. Zhang, and Z. Guo, “Rapid sensing of total theaflavins content in black tea using a portable electronic tongue system coupled to efficient variables selection algorithms," Journal of Food Composition and Analysis, vol. 75, pp. 43-48, 2019.spa
dc.relation.referencesQ. Ouyang, Y. Yang, J. Wu, Q. Chen, Z. Guo, and H. Li, “Measurement of total free amino acids content in black tea using electronic tongue technology coupled with chemometrics," LWT, vol. 118, p. 108768, 2020.spa
dc.relation.referencesE. M. Fuentes Perez, Aplicación de la lengua electrónica voltamétrica a alimentos líquidos. PhD thesis, Universitat Politècnica de Valencia, 2017.spa
dc.relation.referencesE. Baldeon Chamorro, Desarrollo de la técnica de lengua electrónica voltamétrica para la determinación de la capacidad antioxidante total de extractos de plantas y frutas peruanas. PhD thesis, Universitat Politècnica de Valencia, 2015.spa
dc.relation.referencesM. A. Fillol, Diseño de un sistema de lengua electrónica basado en técnicas electroquímicas voltamétricas y su aplicación en el ámbito agroalimentario. PhD thesis, Universitat Politècnica de Valencia, 2011.spa
dc.relation.referencesF. Winquist, P. Wide, and I. Lundström, “An electronic tongue based on voltammetry," Anal. Chim. Acta, vol. 357, pp. 21-31, 1997.spa
dc.relation.referencesZ. Wei, J. Wang, and W. Jin, “Evaluation of varieties of set yogurts and their physical properties using a voltammetric electronic tongue based on various potential waveforms," Sens. Actuators, B, vol. 177, pp. 684-694, 2013.spa
dc.relation.referencesC. A. Nunes, V. O. Alvarenga, A. de Souza Sant'Ana, J. S. Santos, and D. Granato, “The use of statistical software in food science and technology: Advantages, limitations and misuses," Food Research International, vol. 75, pp. 270-280, 2015.spa
dc.relation.referencesP. C. Jurs, G. A. Bakken, and H. E. McClelland, “Computational methods for the analysis of chemical sensor array data from volatile analytes," Chemical Reviews, vol. 100, no. 7, pp. 2649-2678, 2000.spa
dc.relation.referencesR. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons, 2012.spa
dc.relation.referencesD. A. Tibaduiza, L. E. Mujica, and J. Rodellar, “Damage classification in structural health monitoring using principal component analysis and self-organizing maps," Structural Control and Health Monitoring, vol. 20, no. 10, pp. 1303-1316, 2013.spa
dc.relation.referencesM. Anaya, D. A. Tibaduiza, and F. Pozo, “A bioinspired methodology based on an artificial immune system for damage detection in structural health monitoring," Shock and Vibration, vol. 501, p. 648097, 2015.spa
dc.relation.referencesJ. A. Westerhuis, T. Kourti, and J. F. MacGregor, “Comparing alternative approaches for multivariate statistical analysis of batch process data," Journal of Chemometrics, vol. 13, no. 3-4, pp. 397-413, 1999.spa
dc.relation.referencesF. Pozo, Y. Vidal, and Ó. Salgado, “Wind turbine condition monitoring strategy through multiway PCA and multivariate inference," Energies, vol. 11, no. 4, pp. 1-19, 2018.spa
dc.relation.referencesM. Anaya, D. A. Tibaduiza, and F. Pozo, “Detection and classification of structural changes using artificial immune systems and fuzzy clustering," International Journal of Bio-Inspired Computation, vol. 9, no. 1, pp. 35-52, 2017.spa
dc.relation.referencesD. Agis, D. A. Tibaduiza, and F. Pozo, “Vibration-based detection and classification of structural changes using principal component analysis and-distributed stochastic neighbor embedding," Structural Control and Health Monitoring, vol. 27, no. 6, p. e2533, 2020.spa
dc.relation.referencesJ. M. Gutiérrez, L. Moreno-Barón, F. Céspedes, R. Munoz, and M. del Valle, “Resolution of heavy metal mixtures from highly overlapped asv voltammograms employing a wavelet neural network," Electroanal, vol. 21, no. 3-5, pp. 445-451, 2009.spa
dc.relation.referencesZ. Haddi, H. Alami, N. El Bari, M. Tounsi, H. Barhoumi, A. Maaref, N. Jaffrezic-Renault, and B. Bouchikhi, “Electronic nose and tongue combination for improved classification of Moroccan virgin olive oil profiles," Food Research International, vol. 54, no. 2, pp. 1488-1498, 2013.spa
dc.relation.referencesK. Thongpull, Advancing the automated design of integrated intelligent multi-sensory systems with self-X properties. PhD thesis, Technischen Universität Kaiserslautern, 2016.spa
dc.relation.referencesS. Ayesha, M. K. Hanif, and R. Talib, “Overview and comparative study of dimensionality reduction techniques for high dimensional data," Information Fusion, vol. 59, pp. 44-58, 2020.spa
dc.relation.referencesS. Wold, K. Esbensen, and P. Geladi, “Principal component analysis," Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37-52, 1987.spa
dc.relation.referencesH. Abdi and L. J. Williams, “Principal component analysis," Wiley interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433-459, 2010.spa
dc.relation.referencesR. Bro and A. K. Smilde, “Principal component analysis," Analytical Methods, vol. 6, no. 9, pp. 2812-2831, 2014.spa
dc.relation.referencesD.-A. Tibaduiza, M.-A. Torres-Arredondo, L. Mujica, J. Rodellar, and C.-P. Fritzen, “A study of two unsupervised data driven statistical methodologies for detecting and classifying damages in structural health monitoring," Mechanical Systems and Signal Processing, vol. 41, no. 1-2, pp. 467-484, 2013.spa
dc.relation.referencesM. Anaya, D. A. Tibaduiza, and F. Pozo, “Detection and classification of structural changes using artificial immune systems and fuzzy clustering," International Journal of Bio-Inspired Computation, vol. 9, no. 1, p. 35, 2017.spa
dc.relation.referencesD. Tibaduiza, L. Mujica, and J. Rodellar, “Damage classification in structural health monitoring using principal component analysis and self-organizing maps," Structural Control and Health Monitoring, vol. 20, no. 10, pp. 1303-1316, 2013.spa
dc.relation.referencesM. Anaya Vejar, Design and validation of structural health monitoring system based on bio-inspired algorithms. PhD thesis, Universitat Politècnica de Catalunya, 2016.spa
dc.relation.referencesB. M. Wise, N. B. Gallagher, R. Bro, J. M. Shaver, W. Windig, and R. S. Koch, “PLS Toolbox 3.5 for use with Matlab. ," Manson, WA: Eigenvector Research Inc, 2005.spa
dc.relation.referencesM. Anaya, D. Tibaduiza, and F. Pozo, “Data driven methodology based on artificial immune systems for damage detection," in 7th European Workshop on Structural Health Monitoring. La Cité, Nantes, France, July 8-11, 2014.spa
dc.relation.referencesD. A. Tibaduiza Burgos, Design and validation of a structural health monitoring system for aeronautical structures. PhD thesis, Universitat Politècnica de Catalunya, 2013.spa
dc.relation.referencesJ. Vitola, F. Tibadui, D. Tibaduiza, and M. Anaya, “A sensor data fusion system based on k-nearest neighbor pattern classification for structural health monitoring applications," Sensors, vol. 17, p. 417, 2017.spa
dc.relation.referencesY. Ma and Y. Fu, Manifold learning theory and applications. CRC press, 2011.spa
dc.relation.referencesJ. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction," science, vol. 290, no. 5500, pp. 2319-2323, 2000.spa
dc.relation.referencesL. Van der Maaten, “An introduction to dimensionality reduction using matlab," Report, vol. 1201, no. 07-07, p. 62, 2007.spa
dc.relation.referencesJ. A. Lee and M. Verleysen, Nonlinear dimensionality reduction. Springer Science & Business Media, 2007.spa
dc.relation.references“Gabriel peyré (2011) manifold learning with isomap." http://www.numerical-tours.com/matlab/shapes_7_isomap/. Accessed: 2021-04-12.spa
dc.relation.referencesG. Peyré, “The numerical tours of signal processing-advanced computational signal and image processing," IEEE Computing in Science and Engineering, vol. 13, no. 4, pp. 94-97, 2011.spa
dc.relation.referencesM. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation," Neural computation, vol. 15, no. 6, pp. 1373-1396, 2003.spa
dc.relation.referencesÁ. Fernández Pascual, “Advanced methods for dimensionality reduction and clustering: Laplacian eigenmaps and spectral clustering," Master's thesis, Universidad Autónoma de Madrid, 2010.spa
dc.relation.referencesS. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding," science, vol. 290, no. 5500, pp. 2323-2326, 2000.spa
dc.relation.referencesY. Ni, J. Chai, Y.Wang, and W. Fang, “A fast radio map construction method merging self-adaptive local linear embedding (lle) and graph-based label propagation in wlan fingerprint localization systems," Sensors, vol. 20, no. 3, p. 767, 2020.spa
dc.relation.referencesZ. Zhang and J. Wang, “Mlle: Modified locally linear embedding using multiple weights," in Advances in neural information processing systems, pp. 1593-1600, 2007.spa
dc.relation.referencesD. L. Donoho and C. Grimes, “Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data," Proceedings of the National Academy of Sciences, vol. 100, no. 10, pp. 5591-5596, 2003.spa
dc.relation.referencesL. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality reduction: a comparative," J Mach Learn Res, vol. 10, no. 66-71, p. 13, 2009.spa
dc.relation.referencesZ. Zhang and H. Zha, “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment," SIAM journal on scienti_c computing, vol. 26, no. 1, pp. 313-338, 2004.spa
dc.relation.referencesL. v. d. Maaten and G. Hinton, “Visualizing data using t-sne," Journal of machine learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.spa
dc.relation.referencesG. E. Hinton and S. T. Roweis, “Stochastic neighbor embedding," in Advances in neural information processing systems, pp. 857-864, 2003.spa
dc.relation.referencesM. Husnain, M. M. S. Missen, S. Mumtaz, M. M. Luqman, M. Coustaty, and J.-M. Ogier, “Visualization of high-dimensional data by pairwise fusion matrices using t-sne," Symmetry, vol. 11, no. 1, p. 107, 2019.spa
dc.relation.referencesR. E. Sha_er, S. L. Rose-Pehrsson, and R. A. McGill, “A comparison study of chemical sensor array pattern recognition algorithms," Analytica Chimica Acta, vol. 384, no. 3, pp. 305-317, 1999.spa
dc.relation.referencesM. Weso ly and P. Ciosek, “Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue," Sensors and Actuators B: Chemical, vol. 267, pp. 570-580, 2018.spa
dc.relation.referencesS. Dhanabal and S. Chandramathi, “A review of various k-nearest neighbor query processing techniques," International Journal of Computer Applications, vol. 31, no. 7, pp. 14-22, 2011.spa
dc.relation.referencesX. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip, et al., “Top 10 algorithms in data mining," Knowledge and information systems, vol. 14, no. 1, pp. 1-37, 2008.spa
dc.relation.referencesR. A. Fisher, “The use of multiple measurements in taxonomic problems," Annals of eugenics, vol. 7, no. 2, pp. 179-188, 1936.spa
dc.relation.referencesMathWorks:, Statistics and Machine Learning Toolbox for Matlab; ,. 2015.spa
dc.relation.referencesF. J. H. . O. R. A. Breiman, L., Classification and Regression Trees. Belmont, California.: Wadsworth,, 1984.spa
dc.relation.referencesL. Breiman, “Random forests," Machine Learning, vol. 45, pp. 5-32, 2001.spa
dc.relation.referencesT. K. Ho, “The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 832-844, Aug. 1998.spa
dc.relation.referencesC. Cortes and V. Vapnik, “Support-vector networks," Machine learning, vol. 20, no. 3, pp. 273-297, 1995.spa
dc.relation.referencesC. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Netw., vol. 13, pp. 415-425, Mar. 2002.spa
dc.relation.referencesM. Liu, M. Wang, J. Wang, and D. Li, “Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and chinese vinegar," Sens. Actuators, B, vol. 177, pp. 970-980, 2013.spa
dc.relation.referencesT.-T. Wong, “Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation," Pattern Recognition, vol. 48, no. 9, pp. 2839-2846, 2015.spa
dc.relation.referencesD. Ballabio, F. Grisoni, and R. Todeschini, “Multivariate comparison of classification performance measures," Chemometrics and Intelligent Laboratory Systems, vol. 174, no. February, pp. 33-44, 2018.spa
dc.relation.referencesK. Varmuza and P. Filzmoser, Introduction to Multivariate Statistical Analysis in Chemometrics. Boca Raton, FL: CRC press, 2009.spa
dc.relation.referencesL. F. Villamil-Cubillos, J. X. Leon-Medina, M. Anaya, and D. A. Tibaduiza, “Evaluation of feature selection techniques in a multifrequency large amplitude pulse voltametric electronic tongue," Engineering Proceedings, vol. 2, no. 1, 2020.spa
dc.relation.referencesJ. X. Leon-Medina, M. Anaya, and D. A. Tibaduiza, “Locally linear embedding as nonlinear feature extraction to discriminate liquids with a cyclic voltammetric electronic tongue," in CSAC2021: 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry, (Basel), pp. 1-6, MDPI, 2021.spa
dc.relation.referencesE. G. Mendez-Lopez, J. X. Leon-Medina, and D. A. Tibaduiza, “Development of a pattern recognition tool for the classification of electronic tongue signals using machine learning," in CSAC2021: 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry, (Basel), pp. 1-6, MDPI, 2021.spa
dc.relation.referencesJ. X. Leon-Medina, M. Anaya, and D. A. Tibaduiza, “T-distributed stochastic neighbor embedding to improve the discrimination of yogurt using a multistep amperometry electronic tongue," ECS Meeting Abstracts, vol. MA2021-01, pp. 2061-2061, may 2021.spa
dc.relation.referencesN. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, “Electrochemical sensors: a powerful tool in analytical chemistry," Journal of the Brazilian Chemical Society, vol. 14, no. 2, pp. 159-173, 2003.spa
dc.relation.referencesJ. Bobacka, A. Ivaska, and A. Lewenstam, “Potentiometric ion sensors," Chemical reviews, vol. 108, no. 2, pp. 329-351, 2008.spa
dc.relation.referencesJ. Wang, Electrochemical Sensors, ch. 6, pp. 201-243. John Wiley Sons, Ltd, 2006.spa
dc.relation.referencesB. Uslu and S. A. Ozkan, “Solid electrodes in electroanalytical chemistry: present applications and prospects for high throughput screening of drug compounds," Combinatorial chemistry & high throughput screening, vol. 10, no. 7, pp. 495-513, 2007.spa
dc.relation.referencesB. Uslu and S. A. Ozkan, “Electroanalytical application of carbon based electrodes to the pharmaceuticals," Analytical Letters, vol. 40, no. 5, pp. 817-853, 2007.spa
dc.relation.referencesP. Kissinger and W. R. Heineman, Laboratory Techniques in Electroanalytical Chemistry, revised and expanded. CRC press, 2018.spa
dc.relation.referencesJ. Wang, “Stripping analysis at bismuth electrodes: a review," Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 17, no. 15-16, pp. 1341-1346, 2005.spa
dc.relation.referencesD. F. Nieto Arboleda, “Desarrollo de un sistema de adquisición de datos provenientes de sensores tipo lengua electrónica para aplicaciones en industria alimenticia," tech. rep., Trabajo de grado. Programa de Ingeniería electrónica. Universidad Nacional de Colombia sede Bogotá, 2020.spa
dc.relation.referencesF. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.spa
dc.relation.referencesK. Johnsson, Structures in High-Dimensional Data: Intrinsic Dimension and Cluster Analysis. PhD thesis, Lund University, 2016.spa
dc.relation.referencesG. Kraemer, M. Reichstein, and M. D. Mahecha, “dimred and coranking-unifying dimensionality reduction in r," R Journal, vol. 10, no. 1, pp. 342-358, 2018.spa
dc.relation.references“Robrecht cannoodt and wouter saelens (2020) dyndimred: Dimensionality reduction methods in a common format." https://cran.microsoft.com/snapshot/2020-04-20/web/packages/dyndimred/index.html. Accessed: 2021-04-12.spa
dc.relation.referencesK. You, “Rdimtools: An r package for dimension reduction and intrinsic dimension estimation," arXiv preprint arXiv:2005.11107, 2020.spa
dc.relation.referencesI. Capera, J. Calder_on, O. Ramos, and O. Restrepo, “Inuencia del voltaje sobre las características reológicas del sabajón," Publicaciones e Investigación, vol. 1, pp. 15-35, 2007.spa
dc.relation.referencesC. A. Fuenmayor, A. C. Díaz-Moreno, C. M. Zuluaga-Domínguez, and M. C. Quicazán, “Honey of colombian stingless bees: Nutritional characteristics and physicochemical quality indicators," in Pot-Honey, pp. 383-394, Springer, 2013.spa
dc.relation.referencesA. Naila, S. H. Flint, A. Z. Sulaiman, A. Ajit, and Z. Weeds, “Classical and novel approaches to the analysis of honey and detection of adulterants," Food Control, vol. 90, pp. 152-165, 2018.spa
dc.relation.referencesC. Maione, F. Barbosa, and R. M. Barbosa, “Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: A review," Computers and Electronics in Agriculture, vol. 157, no. January, pp. 436-446, 2019.spa
dc.relation.referencesM. Bougrini, K. Tahri, T. Saidi, N. El Alami El Hassani, B. Bouchikhi, and N. El Bari, “Classification of Honey According to Geographical and Botanical Origins and Detection of Its Adulteration Using Voltammetric Electronic Tongue," Food Analytical Methods, vol. 9, no. 8, pp. 2161-2173, 2016.spa
dc.relation.referencesJ. Cai, X. Wu, L. Yuan, E. Han, L. Zhou, and A. Zhou, “Determination of Chinese Angelica honey adulterated with rice syrup by an electrochemical sensor and chemometrics, "Analytical Methods, vol. 5, no. 9, pp. 2324-2328, 2013.spa
dc.relation.referencesZ. Gan, Y. Yang, J. Li, X.Wen, M. Zhu, Y. Jiang, and Y. Ni, “Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey," Journal of Food Engineering, vol. 178, pp. 151-158, 2016.spa
dc.relation.referencesM. Juan-Borrás, J. Soto, L. Gil-Sánchez, A. Pascual-Maté, and I. Escriche, “Antioxidant activity and physico-chemical parameters for the differentiation of honey using a potentiometric electronic tongue," Journal of the Science of Food and Agriculture, vol. 97, no. 7, pp. 2215-2222, 2016.spa
dc.relation.referencesM. Oroian, S. Paduret, and S. Ropciuc, “Honey adulteration detection: voltammetric etongue versus official methods for physicochemical parameter determination," Journal of the Science of Food and Agriculture, vol. 98, no. 11, pp. 4304-4311, 2018.spa
dc.relation.referencesM. Oroian and S. Ropciuc, “Romanian honey authentication using voltammetric electronic tongue. correlation of voltammetric data with physico-chemical parameters and phenolic compounds," Computers and electronics in agriculture, vol. 157, pp. 371-379, 2019.spa
dc.relation.referencesD. Pauliuc, F. Dranca, and M. Oroian, “Raspberry, rape, thyme, sunower and mint honeys authentication using voltammetric tongue," Sensors, vol. 20, no. 9, p. 2565, 2020.spa
dc.relation.referencesK. Tiwari, B. Tudu, R. Bandyopadhyay, and A. Chatterjee, “Identification of monofloral honey using voltammetric electronic tongue," Journal of Food Engineering, vol. 117, no. 2, pp. 205-210, 2013.spa
dc.relation.referencesL. Sobrino-Gregorio, R. Bataller, J. Soto, and I. Escriche, “Monitoring honey adulteration with sugar syrups using an automatic pulse voltammetric electronic tongue," Food Control, vol. 91, pp. 254-260, 2018.spa
dc.relation.referencesA. C. Veloso, M. E. Sousa, L. Estevinho, L. G. Dias, and A. M. Peres, “Honey evaluation using electronic tongues: An overview," Chemosensors, vol. 6, no. 3, pp. 1-25, 2018.spa
dc.relation.referencesJ. W. Gardner and P. N. Bartlett, “A brief history of electronic noses," Sensors and Actuators: B. Chemical, vol. 18, no. 1-3, pp. 210-211, 1994.spa
dc.relation.referencesM. Holmberg, F. Winquist, I. Lundström, F. Davide, C. DiNatale, and A. D'Amico, “Drift counteraction for an electronic nose," Sens. Actuators, B, vol. 36, no. 1-3, pp. 528-535, 1996.spa
dc.relation.referencesM. Zuppa, C. Distante, P. Siciliano, and K. C. Persaud, “Drift counteraction with multiple self-organising maps for an electronic nose," Sens. Actuators, B, vol. 98, no. 2-3, pp. 305-317, 2004.spa
dc.relation.referencesA. Rudnitskaya, “Calibration Update and Drift Correction for Electronic Noses and Tongues," Frontiers in Chemistry, vol. 6, no. September, 2018.spa
dc.relation.referencesG. Korotcenkov and B. Cho, “Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey)," Sens. Actuators, B, vol. 156, no. 2, pp. 527-538, 2011.spa
dc.relation.referencesS. Di Carlo and M. Falasconi, “Drift correction methods for gas chemical sensors in artificial olfaction systems: techniques and challenges," in Advances in Chemical Sensors, IntechOpen, 2012.spa
dc.relation.referencesA. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and R. Huerta, “Chemical gas sensor drift compensation using classifier ensembles," Sensors and Actuators, B: Chemical, vol. 166-167, pp. 320-329, 2012.spa
dc.relation.referencesJ. Fonollosa, I. Rodríguez-Luján, and R. Huerta, “Chemical gas sensor array dataset," Data in brief, vol. 3, pp. 85-89, 2015.spa
dc.relation.referencesL. Zhang, D. Zhang, X. Yin, and Y. Liu, “A novel semi-supervised learning approach in artificial olfaction for e-nose application," IEEE Sensors J., vol. 16, no. 12, pp. 4919- 4931, 2016.spa
dc.relation.referencesA. ur Rehman and A. Bermak, “Swarm intelligence and similarity measures for memory efficient electronic nose system," IEEE Sensors J., vol. 18, no. 6, pp. 2471-2482, 2018.spa
dc.relation.referencesT. Liu, D. Li, J. Chen, Y. Chen, T. Yang, and J. Cao, “Gas-sensor drift counteraction with adaptive active learning for an electronic nose," Sensors, vol. 18, no. 11, p. 4028, 2018.spa
dc.relation.referencesK. Yan, L. Kou, and D. Zhang, “Learning domain-invariant subspace using domain features and independence maximization," IEEE transactions on cybernetics, vol. 48, no. 1, pp. 288-299, 2017.spa
dc.relation.referencesB. Liu, X. Zeng, F. Tian, S. Zhang, and L. Zhao, “Domain transfer broad learning system for long-term drift compensation in electronic nose systems," IEEE Access, vol. 7, pp. 143947-143959, 2019.spa
dc.relation.referencesA. Grover and B. Lall, “A novel method for removing baseline drifts in multivariate chemical sensor," IEEE Transactions on Instrumentation and Measurement, 2020.spa
dc.relation.referencesT. Liu, Y. Chen, D. Li, T. Yang, J. Cao, and M. Wu, “Drift compensation for an electronic nose by adaptive subspace learning," IEEE Sensors Journal, vol. 20, no. 1, pp. 337-347, 2019.spa
dc.relation.referencesS. J. Pan and Q. Yang, “A survey on transfer learning," IEEE Trans Knowl Data Eng, vol. 22, no. 10, pp. 1345-1359, 2009.spa
dc.relation.referencesA. Arnold, R. Nallapati, and W. W. Cohen, “A comparative study of methods for transductive transfer learning.," in ICDM Workshops, pp. 77-82, 2007.spa
dc.relation.referencesM. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature learning with joint distribution adaptation," in Proceedings of the IEEE international conference on computer vision, pp. 2200-2207, 2013.spa
dc.relation.referencesA. Gretton, K. Borgwardt, M. J. Rasch, B. Scholkopf, and A. J. Smola, “A kernel method for the two-sample problem," arXiv preprint arXiv:0805.2368, 2008.spa
dc.relation.referencesH. Abdi and L. J. Williams, “Principal component analysis," Wiley Interdiscip Rev Comput Stat, vol. 2, no. 4, pp. 433-459, 2010.spa
dc.relation.referencesS. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via transfer component analysis," IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 199-210, 2010.spa
dc.relation.referencesT.-M. Huang, V. Kecman, and I. Kopriva, Kernel based algorithms for mining huge data sets, vol. 1. Springer, 2006.spa
dc.relation.referencesG. Camps-Valls, “Kernel spectral angle mapper," Electron. Lett., vol. 52, no. 14, pp. 1218-1220, 2016.spa
dc.relation.referencesB. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic ow kernel for unsupervised domain adaptation," in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066-2073, IEEE, 2012.spa
dc.relation.referencesQ. Sun, R. Chattopadhyay, S. Panchanathan, and J. Ye, “A two-stage weighting framework for multi-source domain adaptation," in Advances in neural information processing systems, pp. 505-513, 2011.spa
dc.relation.referencesI. Rodriguez-Lujan, J. Fonollosa, A. Vergara, M. Homer, and R. Huerta, “On the calibration of sensor arrays for pattern recognition using the minimal number of experiments," Chemometrics and Intelligent Laboratory Systems, vol. 130, pp. 123-134, 2014.spa
dc.relation.referencesE. G. Méndez López, “Desarrollo de una interfaz gráfica de usuario gui para el procesamiento de señales obtenidas con arreglos de sensores tipo lengua electrónica," tech. rep., Trabajo de grado. Programa de Ingeniería eléctrica. Universidad Nacional de Colombia sede Bogotá, 2021.spa
dc.rightsDerechos reservados al autor, 2021
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalLengua electrónicaspa
dc.subject.proposalExtracción de característicasspa
dc.subject.proposalReducción de dimensionalidadspa
dc.subject.proposalManifold learningeng
dc.subject.proposalSelección de característicasspa
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalClasificaciónspa
dc.subject.proposalSustancias líquidasspa
dc.subject.proposalArreglo de sensoresspa
dc.subject.proposalVoltametríaspa
dc.subject.proposalAmperometríaspa
dc.subject.proposalValidación cruzadaspa
dc.subject.proposalElectronic tongueeng
dc.subject.proposalFeature extractioneng
dc.subject.proposalDimensionality reductioneng
dc.subject.proposalFeature selectioneng
dc.subject.proposalMachine learningeng
dc.subject.proposalClassificationeng
dc.subject.proposalSensor arrayeng
dc.subject.proposalVoltammetryeng
dc.subject.proposalAmperometryeng
dc.subject.proposalCross validationeng
dc.titleDesarrollo de un sistema de clasificación de sustancias basado en un arreglo de sensores tipo lengua electrónicaspa
dc.title.translatedDevelopment of a system for classifying substances based on an electronic tongue-type sensor arrayeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializada
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de un sistema de clasificación de sustancias basado en un arreglo de sensores tipo lengua electrónicaspa
oaire.fundername“Fondo de Ciencia Tecnología e Innovación FCTEI del Sistema General de Regalías SGR”spa
oaire.fundernameDepartamento Administrativo de Ciencia, Tecnología e Innovación — Colciencias con su convocatoria 779— “Convocatoria para la Formación de Capital Humano de Alto Nivel para el Departamento de Boyacá 2017”spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1057587522_2021.pdf
Tamaño:
24.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería- Ingeniería Mecánica y Mecatrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: