On the use of random sets in geotechnical engineering

dc.contributor.advisorÁlvarez Marín, Diego Andrés
dc.contributor.authorSepúlveda García, Juan José
dc.contributor.researchgroupIngeniería Sísmica y Sismologíaspa
dc.date.accessioned2021-10-12T22:28:03Z
dc.date.available2021-10-12T22:28:03Z
dc.date.issued2021-10
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractGeotechnics is subject to two major types of uncertainty: aleatory and epistemic. Aleatory uncertainty refers to the inherent variability of materials and their external agents, while epistemic uncertainty refers to the lack of information and knowledge. A comprehensive geotechnical model should take into account these two types of uncertainties in light of a reliability analysis. However, the reliability analyses that are conventionally performed in geotechnical engineering have a series of gaps and approximations that may diverge model estimations from reality. In the first place, reliability analyses have been commonly based on probability theory, which is capable of modeling aleatory but not epistemic uncertainty, so the latter is usually ignored. Second, assumptions are made about the dependence between the basic variables of the models, which are not validated and in most cases are unfounded. Third, obtaining accurate modeling results requires excessive computational costs, which in many cases are unfeasible. In order to fill these gaps in the \emph{state-of-the-art}, this thesis proposes a methodology for the evaluation of reliability in geotechnics, which is computationally efficient, takes into account the dependence between the basic variables and also their aleatory and epistemic uncertainty. Specifically, subset simulation is employed for efficient and accurate calculation of probabilities of failure, copula theory is used to model dependence among basic variables, and random set theory is employed to model both epistemic and aleatory uncertainties. The proposed methodology manages to integrate the three aforementioned developments in a single approach for the analysis of the reliability in geotechnical models. The applicability of this procedure is proved through different practical examples of geotechnical engineering. The results show the efficiency of the proposed algorithm, the importance of dependence in reliability analyses, and the impact that aleatory and epistemic uncertainties have on the final results of the modeling. In conclusion, the proposed method proves to be a fairly complete tool with a very wide application range, so that geotechnical engineers will have the possibility of implementing it in their designs and modeling (in fact, they should).eng
dc.description.abstractLa geotecnia está sujeta a dos grandes tipos de incertidumbre: aleatorias y epistémicas. La incertidumbre aleatoria se manifiesta a través de la variabilidad inherente de los materiales y de sus agentes externos, mientras que la incertidumbre epistémica se manifiesta a través de la escasez de la información y de la falta de conocimiento. Un modelo geotécnico integral debería de tener en cuenta estos dos tipos de incertidumbre a la luz de un análisis de confiabilidad. No obstante, los análisis de confiabilidad que se desarrollan convencionalmente en la ingeniería geotécnica tienen una serie de vacíos y aproximaciones que pueden generar que los resultados de los modelos disten de la realidad. En primer lugar, los análisis de confiabilidad se han basado comúnmente en la teoría de la probabilidad, la cual es capaz de modelar la incertidumbre aleatoria pero no la epistémica, por lo que esta última se suele obviar. En segundo lugar, se realizan supuestos sobre la dependencia entre las variables básicas de los modelos, las cuales no son validadas y en la mayoría de los casos carecen de fundamentos. En tercer lugar, obtener resultados precisos requiere de un costo computacional excesivo, que en muchos casos puede ser inviable. Con el objetivo de suplir estos vacíos en el estado del arte, esta tesis propone una metodología para la evaluación de la confiabilidad en geotecnia, la cual es eficiente computacionalmente, tiene en cuenta la dependencia entre las variables básicas y también su incertidumbre aleatoria y epistémica. Específicamente, se usa el algoritmo subset simulation para el cálculo eficiente y preciso de las probabilidades de falla, se hace uso de la teoría de copulas para modelar la dependencia entre las variables, y se emplea la teoría de random sets para modelar la incertidumbre epistémica y aleatoria. La metodología propuesta logra integrar los tres desarrollos anteriormente mencionados en un único enfoque para el análisis de la confiabilidad de modelos geotécnicos. La aplicabilidad de este enfoque se demuestra a través de diferentes ejemplos prácticos de la ingeniería geotécnica. Los resultados evidencian la eficiencia del algoritmo propuesto, la importancia de la dependencia en los análisis de confiabilidad, y el impacto que las incertidumbres aleatorias y epistémicas tienen en las modelaciones. En conclusión, el enfoque propuesto es una herramienta bastante completa y con una aplicación muy amplia para realizar análisis de confiabilidad, por lo que los geotecnistas tendrán la posibilidad de implementarla en sus diseños y modelaciones (de hecho, ellos deberían usarla). (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Geotecniaspa
dc.format.extentix, 221 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80527
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecniaspa
dc.relation.referencesAas, K., Czado, C., Frigessi, A., and Bakken, H. (2009). Pair-copula constructions of multiple dependence.Insurance: Mathematics and Economics, 44(2):182–198.spa
dc.relation.referencesAkaike, H. (1974). A new look at the statistical model identification.IEEE transactions on Automatic Control, 19(6):716–723.spa
dc.relation.referencesAlonso, E. E. (1976). Risk analysis of slopes and its application to slopes in canadian sensitive clays. Geotechnique, 26(3):453–472.spa
dc.relation.referencesAlvarez, D. A. (2006). On the calculation of the bounds of probability of events using infinite random sets.International Journal of Approximate Reasoning, 43(3):241–267.spa
dc.relation.referencesAlvarez, D. A. (2007).Infinite random sets and applications in uncertainty analysis. PhD thesis,Leopold-Franzens Universit at Innsbruck, Innsbruck, Austria.spa
dc.relation.referencesAlvarez, D. A. (2009). A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type.Fuzzy Sets and Systems, 160(3):384–401.spa
dc.relation.referencesAlvarez, D. A. and Hurtado, J. E. (2014). An efficient method for the estimation of structural reliability intervals with random sets, dependence modeling and uncertain inputs. Computers & Structures, 142:54–63.spa
dc.relation.referencesAlvarez, D. A., Hurtado, J. E., and Ramírez, J. (2017). Tighter bounds on the probability of failure than those provided by random set theory. Computers & Structures, 189:101–113.spa
dc.relation.referencesAlvarez, D. A., Uribe, F., and Hurtado, J. E. (2018). Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory. Mechanical Systems and Signal Processing, 100:782–801.spa
dc.relation.referencesAmeratunga, J., Sivakugan, N., and Das, B. M. (2016).Correlations of soil and rock properties in geotechnical engineering. Springer.spa
dc.relation.referencesAng, A. H.-S. and Tang, W. H. (1984). Probability concepts in engineering planning and design, vol. 2: Decision, risk, and reliability.John Wiley&Sons, Inc.spa
dc.relation.referencesAng, A. H.-S. and Tang, W. H. (2007).Probability concepts in engineering planning and design: Emphasis on application to civil and environmental engineering. Wiley.spa
dc.relation.referencesAsh, R. B. (2008).Basic probability theory. Courier Corporation.spa
dc.relation.referencesAu, S. K. and Beck, J. (2003). Subset simulation and its application to seismic risk based on dynamic analysis. Journal of Engineering Mechanics, 129(8):901–917.spa
dc.relation.referencesAu, S.-K. and Beck, J. L. (2001). Estimation of small failure probabilities in high dimensions by subset simulation.Probabilistic Engineering Mechanics, 16(4):263–277.spa
dc.relation.referencesAu, S. K., Ching, J., and Beck, J. (2007). Application of subset simulation methods to reliability benchmark problems.Structural Safety, 29(3):183–193.spa
dc.relation.referencesBaecher, G. B. and Christian, J. T. (2005).Reliability and statistics in geotechnical engineering.John Wiley & Sons.spa
dc.relation.referencesBaker, J. W. and Cornell, C. A. (2006). Correlation of response spectral values for multi-component ground motions.Bulletin of the Seismological Society of America, 96(1):215–227.spa
dc.relation.referencesBaker, J. W. et al. (2007). Correlation of ground motion intensity parameters used for predicting structural and geotechnical response. InTenth International Conference on Application ofStatistics and Probability in Civil Engineering, volume 8. Citeseer.spa
dc.relation.referencesBaker, J. W. and Jayaram, N. (2008). Correlation of spectral acceleration values from NGA ground-motion models. Earthquake Spectra, 24(1):299–317.spa
dc.relation.referencesBarbe, P., Genest, C., Ghoudi, K., and Rémillard, B. (1996). On Kendall’s process. Journal of Multivariate Analysis, 58(2):197–229.spa
dc.relation.referencesBedford, T. and Cooke, R. M. (2001). Probability density decomposition for conditionally dependent random variables modeled by vines.Annals of Mathematics and Artificial Intelligence,32(1):245–268.spa
dc.relation.referencesBedford, T. and Cooke, R. M. (2002). Vines: A new graphical model for dependent random variables. Annals of Statistics, pages 1031–1068.spa
dc.relation.referencesBeer, M., Zhang, Y., Quek, S. T., and Phoon, K. K. (2013). Reliability analysis with scarce information: Comparing alternative approaches in a geotechnical engineering context. Structural Safety, 41:1–10.spa
dc.relation.referencesBenjamin, J. R. and Cornell, A. C. (1981). Probability, Statistics, and Decision for Civil Engineers. McGraw-Hill.spa
dc.relation.referencesBernardini, A. and Tonon, F. (2010). Bounding uncertainty in civil engineering: theoretical background. Springer Science & Business Media.spa
dc.relation.referencesBertoluzza, C., Gil, M. A., and Ralescu, D. A. (2002). Statistical modeling, analysis and management of fuzzy data, volume 87. Physica Verlag.spa
dc.relation.referencesBlockley, D. (1999). Risk based structural safety methods in context.Structural Safety, 21(4):335–348.spa
dc.relation.referencesBlockley, D. I. (1980).The nature of structural design and safety. Ellis Horwood Chichester.spa
dc.relation.referencesBlyth, F. G. H. and De Freitas, M. (2017). A geology for engineers. CRC Press.spa
dc.relation.referencesBriaud, J.-L. (2007). Spread footings in sand: load settlement curve approach. Journal of Geotechnical and Geoenvironmental Engineering, 133(8):905–920.spa
dc.relation.referencesBurnham, K. P. and Anderson, D. R. (2002). A practical information-theoretic approach. Model selection and multi-model inference, 2nd ed. Springer, New York.spa
dc.relation.referencesBurnham, K. P. and Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection.Sociological Methods & Research, 33(2):261–304.spa
dc.relation.referencesChao, X. and Lin-de, Y. (1998). Test of goodness of fit of random variables and Bayesian estimation of distribution parameters.Journal of Tongji University, 26(3):340–344.spa
dc.relation.referencesChapra, S. C. et al. (2012). Applied numerical methods with MATLAB for engineers and scientists. New York: McGraw-Hill.spa
dc.relation.referencesChen, L., Singh, V. P., and Guo, S. (2013). Measure of correlation between river flows using the copula-entropy method. Journal of Hydrologic Engineering, 18(12):1591–1606.spa
dc.relation.referencesCheng, Y., Du, J., and Ji, H. (2020). Multivariate joint probability function of earthquake ground motion prediction equations based on vine copula approach. Mathematical Problems in Engineering, 2020.spa
dc.relation.referencesCherubini, C. (2000). Reliability evaluation of shallow foundation bearing capacity on c-φ soils. Canadian Geotechnical Journal, 37(1):264–269.spa
dc.relation.referencesCherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula methods in finance. John Wiley & Sons.spa
dc.relation.referencesChin, F. K. (1970). Estimation of the ultimate load of piles from tests not carried to failure. In Proceedings, 2nd Southeast Asian Conference on Soil Engineering, Singapore.spa
dc.relation.referencesCornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5):1583–1606.spa
dc.relation.referencesCouso, I., Moral, S., and Walley, P. (1999). Examples of independence for imprecise probabilities. In Proceedings of 1st International Symposium on Imprecise Probabilities and Their Applications, volume 99, pages 121–130.spa
dc.relation.referencesCrespo, L. G., Kenny, S. P., and Giesy, D. P. (2013). The NASA Langley multidisciplinary uncertainty quantification challenge. In 16th AIAA Non-Deterministic Approaches Conference, page 1347.spa
dc.relation.referencesCzado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in Statistics, Springer.spa
dc.relation.referencesDavison, M. (1972). High-capacity piles. In Proceedings, Lecture Series, Innovations in Foundation Construction, Chicago. ASCE, Illinois Section.spa
dc.relation.referencesDempster, A. P. (1967). Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Statist., 38(2):325–339.spa
dc.relation.referencesDer Kiureghian, A. and Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter? Structural safety, 31(2):105–112.spa
dc.relation.referencesDer Kiureghian, A. and Liu, P.-L. (1986). Structural reliability under incomplete probability information. Journal of Engineering Mechanics, 112(1):85–104.spa
dc.relation.referencesDithinde, M., Phoon, K., De Wet, M., and Retief, J. (2011). Characterization of model uncertainty in the static pile design formula. Journal of Geotechnical and Geoenvironmental Engineering, 137(1):70–85.spa
dc.relation.referencesDitlevsen, O. and Madsen, H. O. (1996). Structural reliability methods, volume 178. Wiley New York.spa
dc.relation.referencesDong, W. and Shah, H. C. (1987). Vertex method for computing functions of fuzzy variables. Fuzzy sets and Systems, 24(1):65–78.spa
dc.relation.referencesDubois, D. and Prade, H. (1991). Random sets and fuzzy interval analysis. Fuzzy sets and Systems, 42(1):87–101.spa
dc.relation.referencesDurrleman, V., Nikeghbali, A., and Roncalli, T. (2000). Which copula is the right one? SSRN Electronic Journal.spa
dc.relation.referencesDutfoy, A. and Lebrun, R. (2009). Practical approach to dependence modelling using copulas. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223(4):347–361.spa
dc.relation.referencesEfron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics, pages 569–593. Springer.spa
dc.relation.referencesEmbrechts, P., Lindskog, F., and McNeil, A. (2001). Modelling dependence with copulas and applications to risk management. Rapport technique, Département de math ́ematiques, Institut Fédéral de Technologie de Zurich, Zurich, 14.spa
dc.relation.referencesEmbrechts, P., McNeil, A., and Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. Risk management: value at risk and beyond, 1:176–223.spa
dc.relation.referencesFan, S. (1989). A new extracting formula and a new distinguishing means on the one variable cubic equation. Nat. Sci. J. Hainan Teach. Coll, 2(2):91–98.spa
dc.relation.referencesFellin, W. and Oberguggenberger, M. (2012). Robust assessment of shear parameters from direct shear tests. International Journal of Reliability and Safety, 6(1-3):49–64.spa
dc.relation.referencesFenton, G. A. and Griffiths, D. (2003). Bearing-capacity prediction of spatially random c-φ soils. Canadian Geotechnical Journal, 40(1):54–65.spa
dc.relation.referencesFerson, S. (2002). RAMAS Risk Calc 4.0 software: risk assessment with uncertain numbers. CRC Press.spa
dc.relation.referencesFerson, S., Kreinovich, V., Grinzburg, L., Myers, D., and Sentz, K. (2003). Constructing probability boxes and dempster-shafer structures. Technical report, Sandia National Lab. Albuquerque.spa
dc.relation.referencesFetz, T. and Oberguggenberger, M. (2004). Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering & System Safety, 85(1-3):73–87.spa
dc.relation.referencesForrest, W. S. and Orr, T. L. (2010). Reliability of shallow foundations designed to Eurocode 7. Georisk, 4(4):186–207.spa
dc.relation.referencesFredlund, D. G. and Krahn, J. (1977). Comparison of slope stability methods of analysis. Canadian Geotechnical Journal, 14(3):429–439.spa
dc.relation.referencesFrees, E. W. and Valdez, E. A. (1998). Understanding relationships using copulas. North AmericanActuarial Journal, 2(1):1–25.spa
dc.relation.referencesGelman, A., Roberts, G. O., Gilks, W. R., et al. (1996). Efficient Metropolis jumping rules. Bayesian Statistics, 5(599-608):42.spa
dc.relation.referencesGenest, C. and Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4):347–368.spa
dc.relation.referencesGenest, C. and MacKay, J. (1986). The joy of copulas: bivariate distributions with uniform marginals. The American Statistician, 40(4):280–283.spa
dc.relation.referencesGenest, C., R ́emillard, B., and Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44(2):199–213.spa
dc.relation.referencesGenest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate archimedean copulas.Journal of the American Statistical Association, 88(423):1034–1043.spa
dc.relation.referencesGhosh, S. (2010). Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighbouring meteorological subdivisions using copula. Hydrological Processes, 24(24):3558–3567.spa
dc.relation.referencesGilks, W., Richardson, S., and Spiegelhalter, D. (1995).Markov Chain Monte Carlo in Practice. Chapman & Hall/CRC Interdisciplinary Statistics. Taylor & Francis.spa
dc.relation.referencesGoda, K. (2010). Statistical modeling of joint probability distribution using copula: application to peak and permanent displacement seismic demands. Structural Safety, 32(2):112–123.spa
dc.relation.referencesGoda, K. and Atkinson, G. (2009a). Interperiod dependence of ground-motion prediction equations: A copula perspective. Bulletin of the Seismological Society of America, 99(2A):922–927.spa
dc.relation.referencesGoda, K. and Atkinson, G. M. (2009b). Probabilistic characterization of spatially correlated response spectra for earthquakes in japan. Bulletin of the Seismological Society of America, 99(5):3003–3020.spa
dc.relation.referencesGoda, K. and Hong, H.-P. (2008). Spatial correlation of peak ground motions and response spectra. Bulletin of the Seismological Society of America, 98(1):354–365.spa
dc.relation.referencesGoodman, I. R. and Nguyen, H. T. (2002). Fuzziness and randomness. In Statistical modeling, analysis and management of fuzzy data, pages 3–21. Springer.spa
dc.relation.referencesHastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.spa
dc.relation.referencesHata, Y., Ichii, K., Tsuchida, T., Kano, S., and Yamashita, N. (2008). A practical method for identifying parameters in the seismic design of embankments. Georisk, 2(1):28–40.spa
dc.relation.referencesHelton, J. C. (1997). Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. Journal of Statistical Computation and Simulation, 57(1-4):3–76.spa
dc.relation.referencesHelton, J. C., Johnson, J. D., Oberkampf, W., and Sallaberry, C. J. (2006). Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty. Reliability Engineering & System Safety, 91(10-11):1414–1434.spa
dc.relation.referencesHoek, E. (2000).Practical Rock Engineering.spa
dc.relation.referencesHoek, E. and Bray, J. D. (1981). Rock slope engineering. CRC Press.spa
dc.relation.referencesHuang, D., Yang, C., Zeng, B., and Fu, G. (2014). A Copula-based method for estimating shear strength parameters of rock mass. Mathematical Problems in Engineering, 2014.spa
dc.relation.referencesHuffman, J. C., Strahler, A. W., and Stuedlein, A. W. (2015). Reliability-based serviceability limit state design for immediate settlement of spread footings on clay. Soils and Foundations, 55(4):798–812.spa
dc.relation.referencesHuffman, J. C. and Stuedlein, A. W. (2014). Reliability-based serviceability limit state design of spread footings on aggregate pier reinforced clay.Journal of Geotechnical and Geoenvironmental Engineering, 140(10):04014055.spa
dc.relation.referencesHult, H. and Lindskog, F. (2002). Multivariate extremes, aggregation and dependence in elliptical distributions. Advances in Applied Probability, 34(3):587–608.spa
dc.relation.referencesHurtado, J. E. (2004). Structural reliability: statistical learning perspectives, volume 17 of Lecture Notes in Applied and Computational Mechanics. Springer Science & Business Media.spa
dc.relation.referencesHurtado, J. E. and Alvarez, D. A. (2000). Reliability assessment of structural systems using neural networks. In Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS, volume 2000.spa
dc.relation.referencesJoe, H. (1996). Families of m-variate distributions with given margins and m(m−1)/2 bivariate dependence parameters. Lecture Notes-Monograph Series, pages 120–141.spa
dc.relation.referencesJoe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press.spa
dc.relation.referencesJoe, H. and Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models. Technical report, University of British Columbia.spa
dc.relation.referencesJogdeo, K. (1982). Concepts of dependence.Encyclopedia of statistical sciences, 1:324–334.spa
dc.relation.referencesJoslyn, C. and Booker, J. M. (2004). Generalized information theory for engineering modeling and simulation. Engineering Design Reliability Handbook, 9:1–40.spa
dc.relation.referencesKass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the american Statistical association, 90(430):773–795.spa
dc.relation.referencesKatafygiotis, L. S. and Zuev, K. M. (2008). Geometric insight into the challenges of solving high-dimensional reliability problems. Probabilistic Engineering Mechanics, 23(2-3):208–218.spa
dc.relation.referencesKazianka, H. and Pilz, J. (2010). Copula-based geostatistical modeling of continuous and discrete data including covariates.Stochastic environmental research and risk assessment, 24(5):661–673.spa
dc.relation.referencesKazianka, H. and Pilz, J. (2011). Bayesian spatial modeling and interpolation using copulas. Computers & Geosciences, 37(3):310–319.spa
dc.relation.referencesKendall, D. (1974). Foundation of a theory of random sets. Stochastic geometry.spa
dc.relation.referencesKlar, A., Aharonov, E., Kalderon-Asael, B., and Katz, O. (2011). Analytical and observational relations between landslide volume and surface area.Journal of Geophysical Research: Earth Surface, 116(F2).spa
dc.relation.referencesKlir, G. J. (1995). Principles of uncertainty: What are they? why do we need them? Fuzzy Sets and Systems, 74(1):15–31.spa
dc.relation.referencesKolmogoroff, A. (1941). Confidence limits for an unknown distribution function. The Annals of Mathematical Statistics, 12(4):461–463.spa
dc.relation.referencesKottegoda, N. T. and Rosso, R. (2008). Applied statistics for civil and environmental engineers. Blackwell Malden, MA.spa
dc.relation.referencesKotz, S. and Drouet, D. (2001). Correlation and dependence. World Scientific.spa
dc.relation.referencesKramer, S. L. et al. (1996). Geotechnical earthquake engineering. Pearson Education India.spa
dc.relation.referencesLambe, T. W. and Whitman, R. V. (1991). Soil mechanics, volume 10. John Wiley & Sons.spa
dc.relation.referencesLebrun, R. and Dutfoy, A. (2009a). A generalization of the Nataf transformation to distributions with elliptical copula. Probabilistic Engineering Mechanics, 24(2):172–178.spa
dc.relation.referencesLebrun, R. and Dutfoy, A. (2009b). An innovating analysis of the Nataf transformation from the copula viewpoint. Probabilistic Engineering Mechanics, 24(3):312–320.spa
dc.relation.referencesLee, Y.-F. and Chi, Y.-Y. (2011). Rainfall-induced landslide risk at Lushan, Taiwan. Engineering Geology, 123(1-2):113–121.spa
dc.relation.referencesLemaire, M. (2013). Structural reliability. John Wiley & Sons.spa
dc.relation.referencesLi, D., Chen, Y., Lu, W., and Zhou, C. (2011). Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables. Computers and Geotechnics, 38(1):58–68.spa
dc.relation.referencesLi, D., Tang, X., Zhou, C., and Phoon, K. K. (2012). Uncertainty analysis of correlated non-normal geotechnical parameters using Gaussian copula. Science China Technological Sciences, 55(11):3081–3089.spa
dc.relation.referencesLi, D. Q., Tang, X. S., Phoon, K. K., Chen, Y. F., and Zhou, C. B. (2013). Bivariate simulation using copula and its application to probabilistic pile settlement analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 37(6):597–617.spa
dc.relation.referencesLi, D.-Q., Tang, X.-S., Zhou, C.-B., and Phoon, K.-K. (2015a). Characterization of uncertainty in probabilistic model using bootstrap method and its application to reliability of piles. Applied Mathematical Modelling, 39(17):5310–5326.spa
dc.relation.referencesLi, D. Q., Zhang, L., Tang, X. S., Zhou, W., Li, J. H., Zhou, C. B., and Phoon, K. K. (2015b). Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability. Computers and Geotechnics, 68:184–195.spa
dc.relation.referencesLi, H., L ̈u, Z., and Yuan, X. (2008). Nataf transformation based point estimate method. Chinese Science Bulletin, 53(17):2586.spa
dc.relation.referencesLi, K. and Lumb, P. (1987). Probabilistic design of slopes. Canadian Geotechnical Journal, 24(4):520–535.spa
dc.relation.referencesLiu, P.-L. and Der Kiureghian, A. (1986). Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics, 1(2):105–112.spa
dc.relation.referencesLizarraga, H. S. and Lai, C. G. (2014). Effects of spatial variability of soil properties on the seismic response of an embankment dam. Soil Dynamics and Earthquake Engineering, 64:113–128.spa
dc.relation.referencesLow, B. (2007). Reliability analysis of rock slopes involving correlated nonnormals. International Journal of Rock Mechanics and Mining Sciences, 44(6):922–935.spa
dc.relation.referencesLumb, P. (1970). Safety factors and the probability distribution of soil strength. Canadian Geotechnical Journal, 7(3):225–242.spa
dc.relation.referencesLuo, Z., Atamturktur, S., and Juang, C. H. (2013). Bootstrapping for characterizing the effect of uncertainty in sample statistics for braced excavations. Journal of Geotechnical and Geoenvironmental Engineering, 139(1):13–23.spa
dc.relation.referencesMalevergne, Y., Sornette, D., et al. (2003). Testing the Gaussian copula hypothesis for financial assets dependences. Quantitative Finance, 3(4):231–250.spa
dc.relation.referencesMarchant, B. P., Saby, N. P., Jolivet, C. C., Arrouays, D., and Lark, R. M. (2011). Spatial prediction of soil properties with copulas. Geoderma, 162(3-4):327–334.spa
dc.relation.referencesMarek, P., Anagnos, T., and Gustar, M. (1996). Simulation-based reliability assessment for structural engineers. CRC Press.spa
dc.relation.referencesMatheron, G. (1974). Random Sets and Integral Geometry. Probability and Statistics Series. Wiley.spa
dc.relation.referencesMatsuo, M. and Kuroda, K. (1974). Probabilistic approach to design of embankments. Soils and Foundations, 14(2):1–17.spa
dc.relation.referencesMayne, P. W. and Poulos, H. G. (1999). Approximate displacement influence factors for elastic shallow foundations. Journal of Geotechnical and Geoenvironmental Engineering, 125(6):453–460.spa
dc.relation.referencesMcGuire, R. K. (2004). Seismic hazard and risk analysis. Earthquake Engineering Research Institute.spa
dc.relation.referencesMcNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative risk management: concepts, techniques and tools-revised edition. Princeton University Press.spa
dc.relation.referencesMelchers, R. E. and Beck, A. T. (2018). Structural reliability analysis and prediction. John Wiley & Sons.spa
dc.relation.referencesMetropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092.spa
dc.relation.referencesMitchell, J. K., Soga, K., et al. (2005). Fundamentals of Soil behavior, volume 3. John Wiley & Sons New York.spa
dc.relation.referencesMontgomery, D. C. and Runger, G. C. (2010). Applied statistics and probability for engineers. John Wiley & Sons.spa
dc.relation.referencesMost, T. and Knabe, T. (2010). Reliability analysis of the bearing failure problem considering uncertain stochastic parameters. Computers and Geotechnics, 37(3):299–310.spa
dc.relation.referencesMotamedi, M. and Liang, R. Y. (2014). Probabilistic landslide hazard assessment using copula modeling technique.Landslides, 11(4):565–573.spa
dc.relation.referencesNasekhian, A. and Schweiger, H. F. (2011). Random set finite element method application to tunnelling. International Journal of Reliability and Safety, 5(3-4):299–319.spa
dc.relation.referencesNataf, A. (1962). Détermination des distributions de probabilités dont les marges sont données. C.R. Acad Sci, 225:42–43.spa
dc.relation.referencesNaylor, T., Naylor, T., Balintfy, J., Burdick, D., and Chu, K. (1966). Computer Simulation Techniques. Wiley.spa
dc.relation.referencesNelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.spa
dc.relation.referencesNguyen, V. and Chowdhury, R. (1984). Probabilistic study of spoil pile stability in strip coal mines — two techniques compared. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, volume 21, pages 303–312. Elsevier.spa
dc.relation.referencesOberguggenberger, M. and Fellin, W. (2002). From probability to fuzzy sets: the struggle for meaning in geotechnical risk assessment. In Conference Report, volume 1. Citeseer.spa
dc.relation.referencesOberguggenberger, M. and Fellin, W. (2004). The fuzziness and sensitivity of failure probabilities, pages 33–49.spa
dc.relation.referencesOberguggenberger, M. and Fellin, W. (2005). Assessing the sensitivity of failure probabilities: a random set approach. In Safety and Reliability of Engineering Systems and Structures: Proceedings of the 9th International Conference on Structural Safety and Reliability, pages 1755–1760.spa
dc.relation.referencesOberguggenberger, M. and Fellin, W. (2008). Reliability bounds through random sets: non-parametric methods and geotechnical applications. Computers & Structures, 86(10):1093–1101.spa
dc.relation.referencesOberkampf, W. L., Tucker, W. T., Zhang, J., Ginzburg, L., Berleant, D. J., Ferson, S., Hajagos, J., and Nelsen, R. B. (2004). Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Technical report, Sandia National Laboratories.spa
dc.relation.referencesOrr, T. L. (2000). Selection of characteristic values and partial factors in geotechnical designs to Eurocode 7. Computers and Geotechnics, 26(3-4):263–279.spa
dc.relation.referencesParker, C., Simon, A., and Thorne, C. R. (2008). The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi. Geomorphology, 101(4):533–543.spa
dc.relation.referencesPeck, R. B. (1969). Advantages and limitations of the observational method in applied soil mechanics. Geotechnique, 19(2):171–187.spa
dc.relation.referencesPeschl, G. and Schweiger, H. (2004). Application of the random set finite element method (RS-FEM) in geotechnics. In Plaxis Bulletin, volume 19.spa
dc.relation.referencesPeschl, G. M. (2004). Reliability Analyses in Geotechnics with the Random Set Finite Element Method. Phd thesis, Technische Universitat Graz, Graz, Austria.spa
dc.relation.referencesPhoon, K., Chen, J., and Kulhawy, F. (2006). Characterization of model uncertainties for augured cast-in-place (ACIP) piles under axial compression. In Foundation Analysis and Design: Innovative Methods, pages 82–89spa
dc.relation.referencesPhoon, K., Chen, J.-R., and Kulhawy, F. (2007). Probabilistic hyperbolic models for foundation uplift movements. In Probabilistic Applications in Geotechnical Engineering, pages 1–12.spa
dc.relation.referencesPhoon, K.-K. (2008). Reliability-based design in geotechnical engineering: computations and applications. CRC Press.spa
dc.relation.referencesPhoon, K.-K. (2020). The story of statistics in geotechnical engineering. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 14(1):3–25.spa
dc.relation.referencesPhoon, K.-K. and Ching, J. (2014). Risk and reliability in geotechnical engineering. CRC Press.spa
dc.relation.referencesPhoon, K.-K., Kulhawy, F. H., and Grigoriu, M. D. (2003). Multiple resistance factor design for shallow transmission line structure foundations. Journal of Geotechnical and Geoenvironmental Engineering, 129(9):807–818.spa
dc.relation.referencesPuzrin, A. M., Alonso, E. E., and Pinyol, N. M. (2010). Geomechanics of failures. Springer Science & Business Media.spa
dc.relation.referencesRackwitz, R. (2000). Reviewing probabilistic soils modeling. Computers and Geotechnics, 26:199–223.spa
dc.relation.referencesRobert, C. and Casella, G. (2013). Monte Carlo statistical methods. Springer Science & Business Media.spa
dc.relation.referencesRobertson, P. and Cabal, K. (2015). Guide to Cone Penetration Testing For Geotechnical Engineering. Gregg Drilling & Testing, Inc.spa
dc.relation.referencesRoss, S. (2012). Simulation. Knovel Library. Elsevier Science.spa
dc.relation.referencesRubinstein, R. Y. and Kroese, D. P. (2016). Simulation and the Monte Carlo method, volume 10. John Wiley & Sons.spa
dc.relation.referencesSchuëller, G., Pradlwarter, H., and Koutsourelakis, P.-S. (2004). A critical appraisal of reliability estimation procedures for high dimensions. Probabilistic Engineering Mechanics, 19(4):463–474.spa
dc.relation.referencesSchwarz, G. et al. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464.spa
dc.relation.referencesSchweiger, H. and Peschl, G. (2005). Reliability analysis in geotechnics with the random set finite element method. Computers and Geotechnics, 32:422–435.spa
dc.relation.referencesSchweiger, H. and Peschl, G. M. (2004). Numerical analysis of deep excavations utilizing random set theory. In Geotechnical Innovations, pages 277–294.spa
dc.relation.referencesSchweizer, B., Wolff, E. F., et al. (1981). On nonparametric measures of dependence for random variables. The Annals of Statistics, 9(4):879–885.spa
dc.relation.referencesSentz, K., Ferson, S., et al. (2002). Combination of evidence in Dempster-Shafer theory, volume 4015. Sandia National Laboratories Albuquerque.spa
dc.relation.referencesShafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.spa
dc.relation.referencesSklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris, 8:229–231.spa
dc.relation.referencesSklar, A. (1996). Random variables, distribution functions, and copulas: A personal look backward and forward. Lecture Notes-Monograph Series, 28:1–14.spa
dc.relation.referencesSmirnov, N. V. (1939). On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bull. Math. Univ. Moscou, 2(2):3–14.spa
dc.relation.referencesSoubra, A.-H. and Mao, N. (2012). Probabilistic analysis of obliquely loaded strip foundations. Soils and Foundations, 52(3):524–538.spa
dc.relation.referencesSriboonchitta, S. and Kreinovich, V. (2018). Why are FGM copulas successful? a simple explanation. Advances in Fuzzy Systems, 2018.spa
dc.relation.referencesStaff, M.-W. (2004). Merriam-Webster’s collegiate dictionary, volume 2. Merriam-Webster.spa
dc.relation.referencesStansbury, Dustin (2012). MCMC the Metropolis-Hastings sampler. https://theclevermachine.wordpress.com/2012/10/20/mcmc-the-metropolis-hastings-sampler/. [Online; accessed 28-December-2020].spa
dc.relation.referencesTang, X. S., Li, D. Q., Cao, Z. J., and Phoon, K. K. (2017). Impact of sample size on geotechnical probabilistic model identification. Computers and Geotechnics, 87:229–240.spa
dc.relation.referencesTang, X.-S., Li, D.-Q., Chen, Y.-F., Zhou, C.-B., and Zhang, L.-M. (2012). Improved knowledge-based clustered partitioning approach and its application to slope reliability analysis. Computers and Geotechnics, 45:34–43.spa
dc.relation.referencesTang, X. S., Li, D. Q., Rong, G., Phoon, K. K., and Zhou, C. B. (2013). Impact of copula selection on geotechnical reliability under incomplete probability information. Computers and Geotechnics, 49:264–278.spa
dc.relation.referencesTang, X. S., Li, D. Q., Zhou, C. B., and Phoon, K. K. (2015). Copula-based approaches for evaluating slope reliability under incomplete probability information. Structural Safety, 52(PA):90–99.spa
dc.relation.referencesTarbuck, E. J., Lutgens, F. K., Tasa, D., and Linneman, S. (2005). Earth: an introduction to physical geology. Pearson/Prentice Hall Upper Saddle River.spa
dc.relation.referencesTerazaghi, K. (1943). Theoretical soil mechanics. John Wiley and Sons.spa
dc.relation.referencesTerzaghi, K., Peck, R. B., and Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley & Sons.spa
dc.relation.referencesTobutt, D. and Richards, E. (1979). The reliability of earth slopes. International Journal for Numerical and Analytical Methods in Geomechanics, 3(4):323–354.spa
dc.relation.referencesTonon, F. (2004). Using random set theory to propagate epistemic uncertainty through a mechanical system. Reliability Engineering & System Safety, 85(1-3):169–181.spa
dc.relation.referencesTonon, F., Bernardini, A., and Mammino, A. (2000a). Determination of parameters range in rock engineering by means of random set theory. Reliability Engineering System Safety, 70:241–261.spa
dc.relation.referencesTonon, F., Bernardini, A., and Mammino, A. (2000b). Reliability analysis of rock mass response by means of random set theory. Reliability Engineering & System Safety, 70:263–282.spa
dc.relation.referencesTonon, F., Mammino, A., Bernardini, A., et al. (1996). A random set approach to the uncertainties in rock engineering and tunnel lining design. In ISRM International Symposium-EUROCK 96. International Society for Rock Mechanics and Rock Engineering.spa
dc.relation.referencesUribe, F. (2011). Implementation of simulation methods in structural reliability. Master’s thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesUzielli, M. and Mayne, P. W. (2011). Serviceability limit state CPT-based design for vertically loaded shallow footings on sand. Geomechanics and Geoengineering, 6(2):91–107.spa
dc.relation.referencesUzielli, M. and Mayne, P. W. (2012). Load-displacement uncertainty of vertically loaded shallow footings on sands and effects on probabilistic settlement estimation. Georisk, 6(1):50–69.spa
dc.relation.referencesVanmarcke, E. (2010). Random fields: analysis and synthesis. World scientific.spa
dc.relation.referencesVrieze, S. I. (2012). Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological methods, 17(2):228.spa
dc.relation.referencesWalsh, B. (2004). Markov chain monte carlo and gibbs sampling. Lecture notes for EEB, 581.spa
dc.relation.referencesWang, F. and Li, H. (2018). The role of copulas in random fields: Characterization and application. Structural Safety, 75:75–88.spa
dc.relation.referencesWang, J. P., Tang, X. S., Wu, Y. M., and Li, D. Q. (2018). Copula-based earthquake early warning decision-making strategy. Soil Dynamics and Earthquake Engineering, 115:324–330.spa
dc.relation.referencesWang, M.-X., Tang, X.-S., Li, D.-Q., and Qi, X.-H. (2020). Subset simulation for efficient slope reliability analysis involving copula-based cross-correlated random fields. Computers and Geotechnics, 118:103326.spa
dc.relation.referencesWang, Z. and Klir, G. (1992). Fuzzy Measure Theory. The Language of science. Springer US.spa
dc.relation.referencesWhittle, A. and Davies, R. (2006). Nicoll highway collapse: evaluation of geotechnical factors affecting design of excavation support system. In International Conference on Deep Excavations, volume 28, page 30.spa
dc.relation.referencesWikipedia contributors (2021a). Autocorrelation — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Autocorrelation. [Online; accessed 3-January-2021].spa
dc.relation.referencesWikipedia contributors (2021b). Examples of Markov chains — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Examples_of_Markov_chains. [Online; accessed 5-January-2021].spa
dc.relation.referencesWikipedia contributors (2021c). Markov chain — Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Markov_chain. [Online; accessed 4-Januray-2021].spa
dc.relation.referencesWolff, T. F. (1985). Analysis and design of embankment dam slopes: a probabilistic approach. University Microfilms.spa
dc.relation.referencesWu, X. Z. (2013a). Probabilistic slope stability analysis by a copula-based sampling method. Computational Geosciences, 17(5):739–755.spa
dc.relation.referencesWu, X. Z. (2013b). Trivariate analysis of soil ranking-correlated characteristics and its application to probabilistic stability assessments in geotechnical engineering problems. Soils and Foundations, 53(4):540–556.spa
dc.relation.referencesWu, X. Z. (2015). Modelling dependence structures of soil shear strength data with bivariate copulas and applications to geotechnical reliability analysis. Soils and Foundations, 55(5):1243–1258.spa
dc.relation.referencesWyllie, D. C. (2017). Rock slope engineering: civil applications. CRC Press.spa
dc.relation.referencesXu, X., Li, J., Gong, J., Deng, H., and Wan, L. (2016a). Copula-Based Slope Reliability Analysis Using the Failure Domain Defined by the g-Line. Mathematical Problems in Engineering, 2016.spa
dc.relation.referencesXu, Y., Tang, X. S., Wang, J. P., and Kuo-Chen, H. (2016b). Copula-based joint probability function for PGA and CAV: a case study from Taiwan. Earthquake Engineering and Structural Dynamics, 45(13):2123–2136.spa
dc.relation.referencesXu, Z.-X. and Zhou, X.-P. (2018). Three-dimensional reliability analysis of seismic slopes using the copula-based sampling method. Engineering Geology, 242:81–91.spa
dc.relation.referencesYager, R. R. (1987). On the Dempster-Shafer framework and new combination rules. Information Sciences, 41(2):93–137.spa
dc.relation.referencesYu, Q. (2006). Slope reliability of embankment dam and its application to engineering practice. Master’s thesis, Hohai University, Nanjing, China.spa
dc.relation.referencesZhang, J., Huang, H. W., Juang, C. H., and Su, W. W. (2014). Geotechnical reliability analysis with limited data: Consideration of model selection uncertainty. Engineering Geology, 181:27–37.spa
dc.relation.referencesZhang, L. and Singh, V. (2006). Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11(2):150–164.spa
dc.relation.referencesZhang, L. and Singh, V. P. (2019).Copulas and their applications in water resources engineering. Cambridge University Press.spa
dc.relation.referencesZhang, L., Tang, X., and Li, D. (2013). Bivariate distribution model of soil shear strength parameter using copula. Journal of Civil Engineering and Management, 30(2):11–17.spa
dc.relation.referencesZhu, H., Zhang, L., Xiao, T., and Li, X. (2017). Generation of multivariate cross-correlated geotechnical random fields. Computers and Geotechnics, 86:95–107.spa
dc.relation.referencesZou, Z.-H., Yi, Y., and Sun, J.-N. (2006). Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences, 18(5):1020–1023.spa
dc.relation.referencesZuev, K. M., Beck, J. L., Au, S.-K., and Katafygiotis, L. S. (2012). Bayesian post-processor and other enhancements of subset simulation for estimating failure probabilities in high dimensions. Computers & structures, 92:283–296.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.otherGeotecniaspa
dc.subject.otherEngineering geologyeng
dc.subject.proposalUncertaintyeng
dc.subject.proposalReliability analysiseng
dc.subject.proposalMonte Carlo simulationeng
dc.subject.proposalSubset Simulationeng
dc.subject.proposalCopulaseng
dc.subject.proposalRandom Sets theoryeng
dc.subject.proposalImprecise probabilitieseng
dc.subject.proposalLower and upper probabilities of failureeng
dc.subject.proposalIncertidumbrespa
dc.subject.proposalAnálisis de confiabilidadspa
dc.subject.proposalSimulación de Subconjuntosspa
dc.subject.proposalCopulasspa
dc.subject.proposalTeoría de conjuntos aleatoriosspa
dc.subject.proposalProbabilidades imprecisasspa
dc.subject.proposalProbabilidades de falla superior e inferiorspa
dc.subject.proposalSimulación Monte Carlospa
dc.subject.spinesAnálisis numéricospa
dc.subject.spinesNumerical analysiseng
dc.titleOn the use of random sets in geotechnical engineeringeng
dc.title.translatedSobre el uso de los conjuntos aleatorios en la ingeniería geotécnicaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1088322519.2021.pdf
Tamaño:
2.72 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Geotecnia

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: