Producción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnética

dc.contributor.advisorCadavid Rodríguez, Doris Yaneth
dc.contributor.advisorGarcía Fernández, Leonardo
dc.contributor.authorMorales Carreño, Angie Nataly
dc.contributor.researchgroupGrupo de Física de Nuevos Materialesspa
dc.date.accessioned2024-07-25T20:02:39Z
dc.date.available2024-07-25T20:02:39Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractLa hipertermia magnética es una terapia antitumoral basada en el aumento de temperatura local en células cancerígenas, por medio del uso de nanopartículas (NPs) magnéticas bajo la acción de un campo magnético alterno. En los últimos años se ha estudiado la posibilidad de que las NPs utilizadas en esta terapia sean materiales heteroestructurados, es decir, NPs conformadas por múltiples componentes como Ag, Au, Zn, M n y Co entre otros, con la finalidad de optimizar sus propiedades estructurales, morfológicas, ópticas y magnéticas que permitan una mayor eficiencia en el tratamiento. Teniendo en cuenta lo anterior, en el presente trabajo se presenta la síntesis y caracterización de nanoestructuras (NEs) magnéticas de ZnFe2O4 y Zn0.41Mn0.50Fe1.83O4, como también su modificación superficial. La síntesis de las NEs se llevó acabo mediante el método de descomposición térmica y su modificación superficial se realizó mediante el uso de Polivinilpirrolidona (PVP) (Texto tomado de la fuente).spa
dc.description.abstractMagnetic hyperthermia is an antitumor therapy based on the increase of local temperature in cancer cells through the use of magnetic nanoparticles (NPs) under the action of an alternating magnetic field. In recent years, the possibility has been studied that the NPs used in this therapy are heterostructured materials, that is, NPs made up of multiple components such as Ag, Au, Zn, M n and Co among others, in order to optimize their structural, morphological, optical and magnetic properties that allow greater efficiency in the treatment. Considering the above, the present work presents the synthesis and characterization of magnetic nanostructures (NEs) of ZnFe2O4 and Zn0.41Mn0.50Fe1.83O4, as well as their surface modification. The synthesis of the NEs was carried out by thermal decomposition method and their surface modification was performed by using polyvinylpyrrolidone (PVP).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaNanomateriales Multifuncionalesspa
dc.format.extentxix, 82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86623
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesMozhdeh Peiravi, Hossein Eslami, Mojtaba Ansari, and Hadi Zare-Zardini. Magnetic hyperthermia: Potentials and limitations, volume 99, page 100269. Elsevier, 2022.spa
dc.relation.referencesDaniel Ortega and Quentin A Pankhurst. Magnetic hyperthermia, pages 60–88. The Royal Society of Chemistry, 2012.spa
dc.relation.referencesSandeep B Somvanshi, Swapnil A Jadhav, Sudarshan S Gawali, Kranti Zakde, and KM Jadhav. Core-shell structured superparamagnetic zn-mg ferrite nanoparticles for magnetic hyperthermia applications. Journal of Alloys and Compounds, 947:169574, 2023.spa
dc.relation.referencesImran Ali, Yunxiang Pan, Yasir Jamil, Aqeel Ahmed Shah, Muhammad Amir, Shamoon Al Islam, Yusra Fazal, Jun Chen, and Zhonghua Shen. Comparison of copper-based cu-ni and cu-fe nanoparticles synthesized via laser ablation for magnetic hyperthermia and antibacterial applications. Physica B: Condensed Matter, 650:414503, 2023.spa
dc.relation.referencesJae-Hyun Lee, Jung-tak Jang, Jin-sil Choi, Seung Ho Moon, Seung-hyun Noh, Ji-wookKim, Jin-Gyu Kim, Il-Sun Kim, Kook In Park, and Jinwoo Cheon. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature nanotechnology, 6(7):418– 422, 2011.spa
dc.relation.referencesKonstantina Kazeli, Aliki Athanasiadou, Antonis Makridis, Lamprini Malletzidou,George Vourlias, Eleana Kontonasaki, Evgenia Lymperaki, and M Angelakeris. Synthesis and characterization of a novel multifunctional magnetic bioceramic nanocomposite. Ceramics International, 2023.spa
dc.relation.referencesSandeep B Somvanshi, Prashant B Kharat, and KM Jadhav. Surface functionalized superparamagnetic zn-mg ferrite nanoparticles for magnetic hyperthermia application towards noninvasive cancer treatment. In Macromolecular symposia, volume 400, page 2100124. Wiley Online Library, 2021.spa
dc.relation.referencesXinglong Zhu, Tiantian Ren, Pushan Guo, Lijing Yang, Yixuan Shi, Wensheng Sun, and Zhenlun Song. Strengthening mechanism and biocompatibility of degradable zn-mn alloy with different mn content. Materials Today Communications, 31:103639, 2022.spa
dc.relation.referencesM Deepty, Ch Srinivas, N Krishna Mohan, E Ranjith Kumar, Surendra Singh, Sher Singh Meena, Pramod Bhatt, and DL Sastry. Chemical synthesis of mn–zn magnetic ferrite nanoparticles: Effect of secondary phase on extrinsic magnetic properties of mn–zn ferrite nanoparticles. Ceramics International, 2024.spa
dc.relation.referencesRavikant Choubey, Dipankar Das, Samrat Mukherjee, et al. Effect of doping of manganese ions on the structural and magnetic properties of nickel ferrite. Journal of Alloys and Compounds, 668:33–39, 2016.spa
dc.relation.referencesHyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu Laversanne, Isabelle Soerjo-mataram, Ahmedin Jemal, and Freddie Bray. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3):209–249, 2021.spa
dc.relation.referencesFrederick L Moffat, Rudolf E Falk, David Laingw, Alfred S Ketcham, and Judith A Falk. Hyperthermia for cancer: a practical perspective. In Seminars in surgical oncology, volume 1, pages 200 219. Wiley Online Library, 1985.spa
dc.relation.referencesLiliane De La Caridad Beola Guibert, Lucía Gutiérrez Marruedo, and Valeria Grazú Bonavia. Hipertermia magnética basada en nanopartículas de óxido de hierro como terapia antitumoral: del cultivo celular tridimensional al modelo in vivo.spa
dc.relation.referencesSwati Kaushik, Jijo Thomas, Vineeta Panwar, Hasan Ali, Vianni Chopra, Anjana Sharma, Ruchi Tomar, and Deepa Ghosh. In situ biosynthesized superparamagnetic iron oxide nanoparticles (spions) induce efficient hyperthermia in cancer cells. ACS Applied Bio Materials, 3(2):779–788, 2020.spa
dc.relation.referencesGaneshlenin Kandasamy, Atul Sudame, Tania Luthra, Kalawati Saini, and Dipak Maity. Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS omega, 3(4):39914005, 2018.spa
dc.relation.referencesSaeed Shanehsazzadeh, Afsaneh Lahooti, Mohammad Javad Hajipour, Mahdi Ghavami, and Morteza Azhdarzadeh. External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Colloids and Surfaces B: Biointerfaces,136:1107–1112, 2015.spa
dc.relation.referencesIrene Rubia-Rodríguez, Antonio Santana-Otero, Simo Spassov, Etelka Tombácz, Christer Johansson, Patricia De La Presa, Francisco J Teran, María del Puerto Morales, Sabino Veintemillas-Verdaguer, Nguyen TK Thanh, et al. Whither magnetic hyperthermia? a tentative roadmap. Materials, 14(4):706, 2021.spa
dc.relation.referencesIrene Rubia-Rodríguez, Antonio Santana-Otero, Simo Spassov, Etelka Tombácz, Christer Johansson, Patricia De La Presa, Francisco J Teran, María del Puerto Morales, Sabino Veintemillas-Verdaguer, Nguyen TK Thanh, et al. Whither magnetic hyperthermia? a tentative roadmap. Materials, 14(4):706, 2021.spa
dc.relation.referencesYijue Wang, Liqing Zou, Zhe Qiang, Jianhai Jiang, Zhengfei Zhu, and Jie Ren. Enhancing targeted cancer treatment by combining hyperthermia and radiotherapy using mn zn ferrite magnetic nanoparticles. ACS Biomaterials Science & Engineering, 6(6):35503562, 2020.spa
dc.relation.referencesQi Ding, Dongfang Liu, Dawei Guo, Fang Yang, Xingyun Pang, Renchao Che, Naizhen Zhou, Jun Xie, Jianfei Sun, Zhihai Huang, et al. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials, 124:35–46, 2017.spa
dc.relation.referencesRobert Vajtai. Springer handbook of nanomaterials. Springer Science & Business Media, 2013.spa
dc.relation.referencesMuhammad Sajid. Nanomaterials: types, properties, recent advances, and toxicity concerns. Current Opinion in Environmental Science & Health, 25:100319, 2022.spa
dc.relation.referencesShiza Malik, Khalid Muhammad, and Yasir Waheed. Nanotechnology: A revolution in modern industry. Molecules, 28(2):661, 2023.spa
dc.relation.referencesShiza Malik, Khalid Muhammad, and Yasir Waheed. Nanotechnology: A revolution in modern industry. Molecules, 28(2):661, 2023.spa
dc.relation.referencesAlexander Hinderhofer and Frank Schreiber. Organic–organic heterostructures: Concepts and applications. ChemPhysChem, 13(3):628–643, 2012.spa
dc.relation.referencesJin-Ho Choy, Seung-Min Paek, Jae-Min Oh, and Eue-Soon Jang. Intercalative route to heterostructured nanohybrids. Current Applied Physics, 2(6):489–495, 2002.spa
dc.relation.referencesAlessandra Quarta, Clara Piccirillo, Giacomo Mandriota, and Riccardo Di Corato. Nanoheterostructures (nhs) and their applications in nanomedicine: focusing on in vivo studies. Materials, 12(1):139, 2019.spa
dc.relation.referencesIngrid Hilger and Werner A Kaiser. Iron oxide-based nanostructures for mri and magnetic hyperthermia. Nanomedicine, 7(9):1443–1459, 2012.spa
dc.relation.referencesAgnieszka Włodarczyk, Szymon Gorgoń, Adrian Radoń, and Karolina Bajdak-Rusinek. Magnetite nanoparticles in magnetic hyperthermia and cancer therapies: Challenges and perspectives. Nanomaterials, 12(11):1807, 2022.spa
dc.relation.referencesBoris I Kharisov, HV Rasika Dias, and Oxana V Kharissova. Mini-review: Ferrite nanoparticles in the catalysis. Arabian Journal of Chemistry, 12(7):1234–1246, 2019.spa
dc.relation.referencesDina Tobia. Efectos de superficie e interacción de intercambio en nanopartículas magnéticas. PhD thesis, Universidad Nacional de Cuyo, 2011.spa
dc.relation.referencesDaliya S Mathew and Ruey-Shin Juang. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chemical engineering journal, 129(13):51–65, 2007.spa
dc.relation.referencesGabriel C Lavorato. Nanopartículas magnéticas multicomponentes: diseño, fabricación y propiedades. PhD thesis, Universidad Nacional de Cuyo, 2016.spa
dc.relation.referencesAdriele A de Almeida. Hipertermia de fluido magnético en nanopartículas de ferritas de zinc y manganeso: el mecanismo de relajación dominante. PhD thesis, Universidad Nacional de Cuyo, 2021.spa
dc.relation.referencesXiaoguang Pan, Aimin Sun, Yingqiang Han, Wei Zhang, and Xiqian Zhao. Structural and magnetic properties of Bi 3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method. Journal of Materials Science: Materials in Electronics, 30:4644–4657, 2019.spa
dc.relation.referencesAli Dabbagh, Basri Johan Jeet Abdullah, Hadijah Abdullah, Mohd Hamdi, and Noor Hayaty Abu Kasim. Triggering mechanisms of thermosensitive nanoparticles under hyperthermia condition. Journal of Pharmaceutical Sciences, 104(8):2414–2428, 2015.spa
dc.relation.referencesBernard Dennis Cullity and Chad D Graham. Introduction to magnetic materials. John Wiley & Sons, 2011.spa
dc.relation.referencesAlejandro Otero Vázquez et al. Magnetismo e hipertermia: modelos para nanopartículas magnéticas. 2023.spa
dc.relation.referencesM Knobel, LM Socolovsky, and JM Vargas. Propiedades magnéticas y de transporte de sistemas nanocristalinos: conceptos básicos y aplicaciones a sistemas reales. Revista mexicana de física, 50(En1):8–28, 2004.spa
dc.relation.referencesH Mamiya, M Ohnuma, I Nakatani, and T Furubayashim. Extraction of blocking temperature distribution from zero-field-cooled and field-cooled magnetization curves. IEEE Transactions on Magnetics, 41(10):3394–3396, 2005.spa
dc.relation.referencesDaniela Paola Valdés. Modelando el efecto de las interacciones dipolares en cadenas de nanopartículas para hipertermia magnética. PhD thesis, Universidad Nacional de Cuyo, 2018.spa
dc.relation.referencesMary L Mojica Pisciotti. Desarrollo de nanopartículas magnéticas para su utilización en el tratamiento médico: Hipertermia. PhD thesis, Universidad Nacional de Cuyo, 2015.spa
dc.relation.referencesGerman Yovanny Velez Catillo. Estudio teórico y experimental sobre la relajación de Néel en ensambles de partículas magnéticas interactuantes. 2019.spa
dc.relation.referencesAlbert P Philipse. Brownian motion. Undergraduate lecture notes in physics, 2018.spa
dc.relation.referencesPeter Josef William Debye. Polar molecules, 1929.spa
dc.relation.referencesAleksey A Nikitin, Anna V Ivanova, Alevtina S Semkina, Polina A Lazareva, and Maxim A Abakumov. Magneto-mechanical approach in biomedicine: Benefits, challenges, and future perspectives. International Journal of Molecular Sciences, 23(19):11134, 2022.spa
dc.relation.referencesRonald E Rosensweig. Heating magnetic fluid with alternating magnetic field. Journal of magnetism and magnetic materials, 252:370–374, 2002.spa
dc.relation.referencesCostica Caizer. Optimization study on specific loss power in superparamagnetic hyperthermia with magnetite nanoparticles for high efficiency in alternative cancer therapy. Nanomaterials, 11(1):40, 2020.spa
dc.relation.references[60] M Osaci and M Cacciola. Specific loss power in superparamagnetic hyperthermia: nano fluid versus composite. In IOP Conference Series: Materials Science and Engineering, volume 163, page 012008. IOP Publishing, 2017.spa
dc.relation.referencesFrederik Soetaert, Sri Kamal Kandala, Andris Bakuzis, and Robert Ivkov. Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles. Scientific reports, 7(1):6661, 2017.spa
dc.relation.referencesDebora Bonvin, Duncan TL Alexander, Angel Millán, Rafael Piñol, Beatriz Sanz, Gerardo F Goya, Abelardo Martínez, Jessica AM Bastiaansen, Matthias Stuber, Kurt J Schenk, et al. Tuning properties of iron oxide nanoparticles in aqueous synthesis without ligands to improve mri relaxivity and sar. Nanomaterials, 7(8):225, 2017.spa
dc.relation.referencesJean-Paul Fortin, Claire Wilhelm, Jacques Servais, Christine Ménager, Jean-Claude Bacri, and Florence Gazeau. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the american chemical society, 129(9):2628–2635, 2007.spa
dc.relation.referencesChetna Dhand, Neeraj Dwivedi, Xian Jun Loh, Alice Ng Jie Ying, Navin Kumar Verma, Roger W Beuerman, Rajamani Lakshminarayanan, and Seeram Ramakrishna. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. Rsc Advances, 5(127):105003–105037, 2015.spa
dc.relation.referencesYoung-wook Jun, Jung-wook Seo, and Jinwoo Cheon. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Accounts of chemical research, 41(2):179–189, 2008.spa
dc.relation.referencesOmar Messaoudi and Mourad Bendahou. Biological synthesis of nanoparticles using endophytic microorganisms: Current development. Nanotechnology and the Environment, 2020.spa
dc.relation.referencesFumie Hirosawa, Tomohiro Iwasaki, and Satoru Watano. Synthesis and magnetic induction heating properties of gd-substituted mg–zn ferrite nanoparticles. Applied Nanoscience, 7:209–214, 2017.spa
dc.relation.referencesGennaro Sanità, Barbara Carrese, and Annalisa Lamberti. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Frontiers in molecular biosciences, 7:587012, 2020.spa
dc.relation.referencesReisa A Sperling and Wolfgang J Parak. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1915):1333–1383, 2010.spa
dc.relation.referencesHendrik Heinz, Chandrani Pramanik, Ozge Heinz, Yifu Ding, Ratan K Mishra, Delphine Marchon, Robert J Flatt, Irina Estrela-Lopis, Jordi Llop, Sergio Moya, et al. Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surface Science Reports, 72(1):1–58, 2017.spa
dc.relation.referencesLiel Sapir, Christopher B Stanley, and Daniel Harries. Properties of polyvinylpyrrolidone in a deep eutectic solvent. The Journal of Physical Chemistry A, 120(19):3253–3259, 2016.spa
dc.relation.referencesThomas Vangijzegem, Valentin Lecomte, Indiana Ternad, Levy Van Leuven, Robert N Muller, Dimitri Stanicki, and Sophie Laurent. Superparamagnetic iron oxide nanoparticles (spion): from fundamentals to state-of-the-art innovative applications for cancer therapy. Pharmaceutics, 15(1):236, 2023.spa
dc.relation.referencesRoy N Dsouza, Uwe Pischel, and Werner M Nau. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chemical reviews, 111(12):7941–7980, 2011.spa
dc.relation.referencesAlina A Kokorina, Andrei V Sapelkin, Gleb B Sukhorukov, and Irina Yu Goryacheva. Luminescent carbon nanoparticles separation and purification. Advances in colloid and interface science, 274:102043, 2019.spa
dc.relation.referencesHelena Gavilán, Giusy MR Rizzo, Niccolò Silvestri, Binh T Mai, and Teresa Pellegrino. Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications. Nature Protocols, 18(3):783–809, 2023.spa
dc.relation.referencesDoris Cadavid. Towards high performance nanostructured thermoelectric materials. a bottom-up approach. 2014.spa
dc.relation.referencesPablo Guardia, Riccardo Di Corato, Lenaic Lartigue, Claire Wilhelm, Ana Espinosa, Mar Garcia-Hernandez, Florence Gazeau, Liberato Manna, and Teresa Pellegrino. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS nano, 6(4):3080–3091, 2012.spa
dc.relation.referencesRitchie Chen, Michael G Christiansen, and Polina Anikeeva. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS nano, 7(10):8990–9000, 2013.spa
dc.relation.referencesDongguo Li, Chao Wang, Dusan Tripkovic, Shouheng Sun, Nenad M Markovic, and Vojislav R Stamenkovic. Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. Acs Catalysis, 2(7):1358–1362, 2012.spa
dc.relation.referencesLe Thi Tam, Vu Ngoc Phan, Hoang Lan, Nguyen Thanh Thuy, Tran Minh Hien, Tran Quang Huy, Nguyen Van Quy, Huynh Dang Chinh, Le Minh Tung, Pham Anh Tuan, et al. Characterization and antimicrobial activity of silver nanoparticles prepared by a thermal decomposition technique. Applied Physics A, 113:613–621, 2013.spa
dc.relation.referencesInstituto de Tecnología Nuclear Dan Beninson de la Comisión Nacional de Energía Atómica. Dosimetría en la Radioterapia . https://www.famaf.unc.edu.ar/ pperez1/manuales/cdr/tubos-de-rayos-x.html, 2018.spa
dc.relation.referencesAlfredo Sanz Hervás. Desarrollo de un modelo teórico para la interpretación de difractogramas de rayos x de alta resolución. phd, ETSI Telecomunicación (UPM), 1995.spa
dc.relation.referencesAndreas Maier, Stefan Steidl, Vincent Christlein, and Joachim Hornegger. Medical imaging systems: An introductory guide. 2018.spa
dc.relation.referencesCarmelo Giacovazzo. Fundamentals of crystallography, volume 7. Oxford university press, USA, 2002.spa
dc.relation.referencesMohsin Raza. Oxygen vacancy stabilized zirconia; synthesis and properties. PhD thesis, Ph. D. Thesis, 2017.spa
dc.relation.referencesMichael Dunlap and JE Adaskaveg. Introduction to the scanning electron microscope. Theory, practice, & procedures. Facility for Advance Instrumentation. UC Davis, 52, 1997.spa
dc.relation.referencesFurqan A Shah, Krisztina Ruscsák, and Anders Palmquist. 50 years of scanning electron microscopy of bone—a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone research, 7(1):15, 2019.spa
dc.relation.referencesMario M Modena, Bastian Rühle, Thomas P Burg, and Stefan Wuttke. Nanoparticle characterization: what to measure? Advanced Materials, 31(32):1901556, 2019.spa
dc.relation.referencesTransmission Electron Microscopy | Nanoscience Instruments.spa
dc.relation.referencesMarc De Graef. Introduction to conventional transmission electron microscopy. Cam-bridge university press, 2003.spa
dc.relation.referencesAhmed Fadlelmoula, Diana Pinho, Vitor Hugo Carvalho, Susana O Catarino, and Graça Minas. Fourier transform infrared (ftir) spectroscopy to analyse human blood over the last 20 years: a review towards lab-on-a-chip devices. Micromachines, 13(2):187, 2022.spa
dc.relation.referencesFisher Thermo. Ftir basic organic functional group reference chart, 2015. 15/01/2023.spa
dc.relation.referencesJosep Francesc Ventura Gayete et al. Desarrollo de métodos analíticos medioambientalmente sostenibles por espectrometría ftir. 2007.spa
dc.relation.referencesClara Téllez Mesa. Aplicaciones de la espectroscopía infrarroja en el análisis de alimentos. 2019.spa
dc.relation.referencesTony Owen. Fundamentos de la espectroscopía UV-visible moderna: conceptos básicos. Hewlett Packard, 1996.spa
dc.relation.referencesGovinda Verma and Manish Mishra. Development and optimization of uv-vis spectroscopy-a review. World J. Pharm. Res, 7(11):1170–1180, 2018.spa
dc.relation.referencesFile:Schematic of UV- visible spectrophotometer.png - Wikimedia Commons, 9 2013.spa
dc.relation.referencesJavier Alonso Cuervo Farfán. Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R= La, Nd, Sm, Eu; A= Sr, Bi; M= Ti, Mn, Fe). PhD thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesQuantum Design Latin America. PPMS VersaLab. https://www.qd-latam.com/ site/en/products/company/quantum-design/ppms-versalab/. Accessed: 2024-1-24.spa
dc.relation.referencesVikas Nandwana and Vinayak P Dravid. Multicomponent magnetic spinels: From complexity of crystal chemistry to coupled magnetic resonance imaging (mri). APL Materials, 11(5), 2023.spa
dc.relation.referencesE Hema, A Manikandan, M Gayathri, M Durka, S Arul Antony, and BR Venkatraman. The role of Mn2+-doping on structural, morphological, optical, magnetic and catalytic properties of spinel ZnFe2O4 nanoparticles. Journal of nanoscience and nanotechnology, 16(6):5929–5943, 2016.spa
dc.relation.referencesAlexander LeBrun and Liang Zhu*. Magnetic nanoparticle hyperthermia in cancer treatment: History, mechanism, imaging-assisted protocol design, and challenges. Theory and Applications of Heat Transfer in Humans, 2:631–667, 2018.spa
dc.relation.referencesAndrei Stanislavovich Vorokh. Scherrer formula: estimation of error in determining small nanoparticle size. Nanosystems: physics, chemistry, mathematics, 9(3):364–369, 2018.spa
dc.relation.referencesSergei A Degterov, Arthur D Pelton, Evgueni Jak, and Peter C Hayes. Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system. Metallurgical and Materials Transactions B, 32:643–657, 2001.spa
dc.relation.referencesMarco A Morales Ovalle. Optimización del tamaño de nanopartículas magnéticas de MnFe2O4 para aplicaciones conjuntas de hipertermia y producción de radicales libres en terapias oncológicas. PhD thesis, Universidad Nacional de Cuyo, 2021.spa
dc.relation.referencesYoung-Shin Jun, Yaguang Zhu, Ying Wang, Deoukchen Ghim, Xuanhao Wu, Doyoon Kim, and Haesung Jung. Classical and nonclassical nucleation and growth mechanisms for nanoparticle formation. Annual Review of Physical Chemistry, 73:453–477, 2022.spa
dc.relation.referencesNicola Pinna and Markus Niederberger. Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angewandte Chemie International Edition, 47(29):5292–5304, 2008.spa
dc.relation.referencesAV Nikam, BLV Prasad, and AA Kulkarni. Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm, 20(35):5091–5107, 2018.spa
dc.relation.referencesSamson O Aisida, Paul A Akpa, Ishaq Ahmad, M Maaza, and Fabian I Ezema. Influence of pva, pvp and peg doping on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method. Physica B: Condensed Matter, 571:130–136, 2019.spa
dc.relation.referencesPablo Guardia, Nicolás Pérez, Amilcar Labarta, and Xavier Batlle. Controlled synthesis of iron oxide nanoparticles over a wide size range. Langmuir, 26(8):5843–5847, 2010.spa
dc.relation.referencesSudeep Shukla, Alka Jadaun, Vikas Arora, Raj Kumar Sinha, Neha Biyani, and VK Jain. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicology reports, 2:27–39, 2015.spa
dc.relation.referencesIA Safo, M Werheid, C Dosche, and M Oezaslan. The role of polyvinylpyrrolidone (pvp) as a capping and structure-directing agent in the formation of pt nanocubes. Nanoscale Advances, 1(8):3095–3106, 2019.spa
dc.relation.referencesMirela Teodorescu, Maria Bercea, and Simona Morariu. Biomaterials of pva and pvp in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology advances, 37(1):109–131, 2019.spa
dc.relation.referencesEnling Hu, Songmin Shang, and Ka-Lok Chiu. Removal of reactive dyes in textile effluents by catalytic ozonation pursuing on-site effluent recycling. Molecules, 24(15):2755, 2019.spa
dc.relation.referencesXiaoming Zhang, Zewei Quan, Jun Yang, Piaoping Yang, Hongzhou Lian, and Jun Lin. Solvothermal synthesis of well-dispersed mf2 (m= ca, sr, ba) nanocrystals and their optical properties. Nanotechnology, 19(7):075603, 2008.spa
dc.relation.referencesLyudmila M Bronstein, Xinlei Huang, John Retrum, Abrin Schmucker, Maren Pink, Barry D Stein, and Bogdan Dragnea. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chemistry of materials, 19(15):3624–3632, 2007.spa
dc.relation.referencesVA Niraimathee, V Subha, RS Ernest Ravindran, and S Renganathan. Green synthesis of iron oxide nanoparticles from mimosa pudica root extract. International Journal of Environment and Sustainable Development, 15(3):227–240, 2016.spa
dc.relation.referencesEdwin Shigwenya Madivoli, Patrick Gachoki Kareru, Ernest Gachui Maina, Augustine Otieno Nyabola, Sammy Indire Wanakai, and Jared Onyango Nyang’au. Biosynthesis of iron nanoparticles using ageratum conyzoides extracts, their antimicrobial and photocatalytic activity. SN Applied Sciences, 1:1–11, 2019.spa
dc.relation.referencesBrajesh Kumar, Kumari Smita, Luis Cumbal, and Alexis Debut. Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 18(4):364–369, 2014.spa
dc.relation.referencesJ Tauc, Radu Grigorovici, and Anina Vancu. Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 15(2):627–637, 1966.spa
dc.relation.referencesPradeep Chavan and LR Naik. Investigation of energy band gap and conduction mechanism of magnesium substituted nickel ferrite nanoparticles. physica status solidi (a), 214(9):1700077, 2017.spa
dc.relation.referencesOG Torres, G Gordillo, MC Plazas, DA Landinez Tellez, and J Roa-Rojas. Optical features of pbbr2 semiconductor thin films for radiation attenuation application. Journal of Materials Science: Materials in Electronics, 32(12):16937–16944, 2021.spa
dc.relation.referencesDonald F Swinehart. The beer-lambert law. Journal of chemical education, 39(7):333, 1962.spa
dc.relation.referencesSanju Singh, Jaya V Gade, Dakeshwar Kumar Verma, Berdimurodov Elyor, and Bhawana Jain. Exploring zno nanoparticles: Uv–visible analysis and different size estimation methods. Optical Materials, 152:115422, 2024.spa
dc.relation.referencesM Fuentes-Pérez, M Sotelo-Lerma, JL Fuentes-Ríos, Eric G Morales-Espinoza, Manuel Serrano, and ME Nicho. Synthesis and study of physicochemical properties of Fe3O4@znfe2o4 core/shell nanoparticles. Journal of Materials Science: Materials in Electronics, 32(12):16786–16799, 2021.spa
dc.relation.referencesYuan Zhi-hao, You Wei, Jia Jun-hui, and Zhang Li-de. Optical absorption red shift of capped znfe2o4 nanoparticle. Chinese physics letters, 15(7):535, 1998.spa
dc.relation.referencesLuis I Granone, Anna C Ulpe, Lars Robben, Stephen Klimke, Moritz Jahns, Franz Renz, Thorsten M Gesing, Thomas Bredow, Ralf Dillert, and Detlef W Bahnemann. Effect of the degree of inversion on optical properties of spinel znfe 2 o 4. Physical Chemistry Chemical Physics, 20(44):28267–28278, 2018.spa
dc.relation.referencesP Iranmanesh, S Saeednia, M Mehran, and S Rashidi Dafeh. Modified structural and magnetic properties of nanocrystalline mnfe2o4 by ph in capping agent free co- precipitation method. Journal of Magnetism and Magnetic Materials, 425:31–36, 2017.spa
dc.relation.referencesSomayeh Shams, Zahra Sheibanizadeh, and Zahra Khalaj. Ternary nanocompositeof znfe2o4/α-fe2o3/zno; synthesis via coprecipitation method and physical properties characterization. Applied Physics A, 127(6):459, 2021.spa
dc.relation.referencesMusa Mutlu Can, Yeşim Akbaba, and Satoru Kaneko. Synthesis of iron gallate (fega2o4) nanoparticles by mechanochemical method. Coatings, 12(4):423, 2022.spa
dc.relation.referencesJulian Carrey, Boubker Mehdaoui, and Marc Respaud. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. Journal of applied physics, 109(8), 2011.spa
dc.relation.referencesA Manikandan, J Judith Vijaya, M Sundararajan, C Meganathan, L John Kennedy, and M Bououdina. Optical and magnetic properties of mg-doped znfe2o4 nanoparticles prepared by rapid microwave combustion method. Superlattices and Microstructures, 64:118–131, 2013.spa
dc.relation.referencesK Vamvakidis, D Sakellari, M Angelakeris, and C Dendrinou-Samara. Size and compositionally controlled manganese ferrite nanoparticles with enhanced magnetization. Journal of nanoparticle research, 15:1–11, 2013.spa
dc.relation.referencesYaser Hadadian, Ana Paula Ramos, and Theo Z Pavan. Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: Interplay between intrinsic properties and dipolar interactions. Scientific Reports, 9(1):18048, 2019.spa
dc.relation.referencesSushmitha Lakshminarayanan, M Furhana Shereen, KL Niraimathi, P Brindha, and A Arumugam. One-pot green synthesis of iron oxide nanoparticles from bauhinia to mentosa: Characterization and application towards synthesis of 1, 3 diolein. Scientific Reports, 11(1):8643, 2021.spa
dc.relation.referencesMary L Mojica Pisciotti. Estudio del proceso de calentamiento de nanopartículas magnéticas con campos magnéticos AC para su utilización en el tratamiento de tumores por hipertermia. PhD thesis, Universidad Nacional de Cuyo, 2009.spa
dc.relation.referencesMona Ebadi, Saifullah Bullo, Kalaivani Buskara, Mohd Zobir Hussein, Sharida Fakurazi, and Giorgia Pastorin. Release of a liver anticancer drug, sorafenib from its pva/ldh and peg/ldh-coated iron oxide nanoparticles for drug delivery applications. Scientific Reports, 10:21521, 2020.spa
dc.relation.referencesRusul Al-Obaidy, Adawiya J. Haider, Sharafaldin Al-Musawi, and Norhana Arsad.Targeted delivery of paclitaxel drug using polymer-coated magnetic nanoparticles for fibrosarcoma therapy: in vitro and in vivo studies. Scientific Reports, 13(1):3180, Feb 2023.spa
dc.relation.referencesMike J Jackson and Bruce Moskowitz. On the distribution of Verwey transition temperatures in natural magnetites. Geophysical Journal International, 224(2):1314–1325, 10 2020.spa
dc.relation.referencesArijit Mitra, J. Mohapatra, S. S. Meena, C. V. Tomy, and M. Aslam. Verwey transition in ultrasmall-sized octahedral fe3o4 nanoparticles. The Journal of Physical Chemistry C, 118(33):19356–19362, 2014.spa
dc.relation.referencesSanju Tanwar, VPS Awana, Surinder P Singh, and Renu Pasricha. Magnetic field dependence of blocking temperature in oleic acid functionalized iron oxide nanoparticles. Journal of superconductivity and novel magnetism, 25:2041–2045, 2012.spa
dc.relation.referencesVenkatesha Narayanaswamy, Bilal Rah, Imaddin A Al-Omari, Alexander S Kamzin, Hafsa Khurshid, Jibran Sualeh Muhammad, Ihab M Obaidat, and Bashar Issa. Evaluation of antiproliferative properties of comnzn-fe2o4 ferrite nanoparticles in colorectal cancer cells. Pharmaceuticals, 17(3):327, 2024.spa
dc.relation.referencesC Iacovita, A Florea, L Scorus, E Pall, R Dudric, AI Moldovan, R Stiufiuc, R Tetean, and CM Lucaciu. Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process. nanomaterials 9 (10): 1489, 2019.spa
dc.relation.referencesAS Nikolic, M Boskovic, V Spasojevic, B Jancar, and B Antic. Magnetite/mn-ferrite nanocomposite with improved magnetic properties. Materials Letters, 120:86–89, 2014.spa
dc.relation.referencesPallab Pradhan, Jyotsnendu Giri, Gopal Samanta, Haladhar Dev Sarma, Kaushala Prasad Mishra, Jayesh Bellare, Rinti Banerjee, and Dhirendra Bahadur. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 81(1):12–22, 2007.spa
dc.relation.referencesBehnam Sabzi Dizajyekan, Arezou Jafari, Mohsen Vafaie-Sefti, Reza Saber, and Zahra Fakhroueian. Preparation of stable colloidal dispersion of surface modified fe3o4 nanoparticles for magnetic heating applications. Scientific Reports, 14(1):1296, 2024.spa
dc.relation.referencesYohannes Getahun, Ahsan Habib, Valeria Erives-Sedano, Wen-Yee Lee, Wilson Poon, and Ahmed A El-Gendy. Superparamagnetic nanoparticles coated with novel biocompatible materials produced high specific absorption rate in magnetic hyperthermia. Colloids and Surfaces A: Physicochemical and Engineering Aspects, page 134036, 2024.spa
dc.relation.referencesAntonios Makridis, Konstantina Topouridou, Magdalini Tziomaki, Despoina Sakellari, Konstantinos Simeonidis, Mavroeidis Angelakeris, Maria P Yavropoulou, John G Yovos, and Orestis Kalogirou. In vitro application of mn-ferrite nanoparticles as novel magnetic hyperthermia agents. Journal of materials chemistry B, 2(47):8390–8398, 2014.spa
dc.relation.referencesIdoia Castellanos-Rubio, Oihane Arriortua, Lourdes Marcano, Irati Rodrigo, Daniela Iglesias-Rojas, Ander Barón, Ane Olazagoitia-Garmendia, Luca Olivi, Fernando Plazaola, M Luisa Fdez Gubieda, et al. Shaping up zn-doped magnetite nanoparticles from mono-and bimetallic oleates: the impact of zn content, fe vacancies, and morphology on magnetic hyperthermia performance. Chemistry of Materials, 33(9):3139–3154, 2021.spa
dc.relation.referencesAbolfazl Yazdanpanah, Maryam Ghaffari, Zarrin Ahmadi, Amir Babak Abrishamkar, Saem Sattarzadeh, Arash Ramedani, Sahar Arabyazdi, and Fatollah Moztarzadeh. Threatening sarcoma withcombinational therapies: Magnetic hyperthermia using nanoparticles. Nano Select, 2023.spa
dc.relation.referencesSean Healy, Andris F Bakuzis, Patrick W Goodwill, Anilchandra Attaluri, Jeff WM Bulte, and Robert Ivkov. Clinical magnetic hyperthermia requires integrated magnetic particle imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechno-logy, 14(3):e1779, 2022.spa
dc.relation.referencesCarlotta Pucci, Andrea Degl’Innocenti, Melike Belenli Gümüş, and Gianni Ciofani. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: Recent advancements, molecular effects, and future directions in the omics era. Biomaterials Science, 10(9):2103–2121, 2022.spa
dc.relation.referencesMuhammad Suleman and Samia Riaz. In silico study of hyperthermia treatment of liver cancer using core-shell cofe2o4@ mnfe2o4 magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 498:166143, 2020.spa
dc.relation.referencesBo Jia, Hongtao Yang, Yu Han, Zechuan Zhang, Xinhua Qu, Yifu Zhuang, Qiang Wu, Yufeng Zheng, and Kerong Dai. In vitro and in vivo studies of zn-mn biodegradable metals designed orthopedic applications. Acta Biomaterialia, 108:358–372, 2020.spa
dc.relation.referencesDerk Joester, Andrew Hillier, Yi Zhang, and Ty J Prosa. Organic materials and organi-c/inorganic heterostructures in atom probe tomography. Microscopy Today, 20(3):2631, 2012.spa
dc.relation.referencesD Harikishore Kumar Reddy and Yeoung-Sang Yun. Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coordination Chemistry Reviews, 315:90–111, 2016.spa
dc.relation.referencesCharlotte M Beddoes, C Patrick Case, and Wuge H Briscoe. Understanding nanoparticle cellular entry: a physicochemical perspective. Advances in colloid and interface science, 218:48–68, 2015.spa
dc.relation.referencesLilianne Beola, Laura Asín, Catarina Roma-Rodrigues, Yilian Fernández-Afonso, Raluca M Fratila, David Serantes, Sergiu Ruta, Roy W Chantrell, Alexandra R Fernandes, Pedro V Baptista, et al. The intracellular number of magnetic nanoparticles modulates the apoptotic death pathway after magnetic hyperthermia treatment. ACS Applied Materials & Interfaces, 12(39):43474–43487, 2020.spa
dc.relation.referencesN Guijarro, P Bornoz, M Prévot, X Yu, X Zhu, M Johnson, X Jeanbourquin, F Le Formal, and K Sivula. Evaluating spinel ferrites mfe 2 o 4 (m= cu, mg, zn) as photoanodes for solar water oxidation: prospects and limitations. Sustainable Energy & Fuels, 2(1):103–117, 2018.spa
dc.relation.referencesDaniela Carta, Maria Francesca Casula, Andrea Falqui, Danilo Loche, Gavin Mountjoy, Claudio Sangregorio, and Anna Corrias. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M= Mn, Co, Ni). The Journal of Physical Chemistry C, 113(20):8606–8615, 2009.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.decsNanopartículas Magnéticas de Óxido de Hierrospa
dc.subject.decsCalcifying Nanoparticleseng
dc.subject.lembMATERIALES DE NANOESTRUCTURASspa
dc.subject.lembNanostructure materialseng
dc.subject.lembNANOPARTICULASspa
dc.subject.lembNanoparticleseng
dc.subject.proposalHipertermia magnéticaspa
dc.subject.proposalNanopartículas magnéticasspa
dc.subject.proposalNanoestructurasspa
dc.subject.proposalDescomposición térmicaspa
dc.subject.proposalModificación superficialspa
dc.subject.proposalMagnetic hyperthermiaeng
dc.subject.proposalMagnetic nanoparticleseng
dc.subject.proposalNanostructureseng
dc.subject.proposalThermal decompositioneng
dc.subject.proposalSurface modificationeng
dc.titleProducción de nanoheteroestructuras basadas en óxido de hierro para aplicaciones en la terapia de hipertermia magnéticaspa
dc.title.translatedProduction of iron oxide-based nanoheterostructures for applications in magnetic hyperthermia therapyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1233888882.2024.pdf
Tamaño:
12.25 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: