Desarrollo de modelo para determinar el stock de carbono orgánico del suelo con base en reflectancia difusa. Caso: Carimagua – Meta

dc.contributor.advisorCamacho Tamayo, Jesús Hernánspa
dc.contributor.advisorRubiano Sanabria, Yolandaspa
dc.contributor.authorFernández Martínez, Felipespa
dc.contributor.researchgroupIngeniería de Biosistemasspa
dc.coverage.countryColombiaspa
dc.coverage.regionCarimaguaspa
dc.coverage.regionMetaspa
dc.date.accessioned2021-01-29T22:30:20Zspa
dc.date.available2021-01-29T22:30:20Zspa
dc.date.issued2020-11-11spa
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl Stock de Carbono Orgánico del Suelo (SCOS) es un aspecto determinante para evaluar la calidad en los agroecosistemas, y a su vez cumple una función fundamental en la mitigación del cambio climático. Debido a esto, es ideal monitorear el SCOS a diferentes escalas espaciales y temporales, lo cual representa una inversión de recursos difícil de satisfacer. El objetivo de esta investigación fue desarrollar un modelo con base en espectroscopía de reflectancia difusa en Infrarrojo Cercano (NIR, por sus siglas en inglés) para estimar el SCOS en un Oxisol de Colombia. Mediante una red rígida de 70 puntos en 248 ha, fueron recolectadas 313 muestras de suelo en cinco profundidades definidas de 0-10, 10-20, 20-30, 30-40 y 40-50 cm. A cada muestra se le determinó el contenido de Carbono Orgánico del Suelo (COS), Densidad Aparente (DA), fracciones texturales y porosidades por medio de metodologías convencionales de laboratorio, así como también el cálculo del SCOS. Así mismo, fueron adquiridas firmas espectrales en el rango NIR de cada muestra de suelo que, junto con los datos medidos en laboratorio, se usaron para alimentar los modelos de estimación aplicando regresión de mínimos cuadrados parciales (PLSR). Se alcanzó un modelo de alta representatividad para la estimación de SCOS (R2 = 0,93, RMSE = 2,12 tC/ha, RPD = 3,69), lo cual se corroboró con la variabilidad espacial evaluada con splines de profundidad y superficies de interpolación geoestadística. La espectroscopía de reflectancia difusa en NIR mostró ser una alternativa viable para la estimación del SCOS. (Texto tomado de la fuente).spa
dc.description.abstractSoil Organic Carbon Stock (SOCS) is a determining factor to evaluate the quality of agroecosystems and at the same time, plays a fundamental role in mitigating climate change. This highlights the importance of monitoring SOCS at different spatial and temporal scales, which represents a high demand of resources. The aim of this research was to develop a model based on Near Infrared (NIR) diffuse reflectance spectroscopy to estimate the SOCS of a Colombian Oxisol. Using a rigid grid system of 70 points in 248 ha, 313 soil samples were collected at five defined depths of 0-10, 10-20, 20-30, 30-40 and 40-50 cm. Soil Organic Carbon (SOC), Bulk Density (BD), textural fractions and porosities were determined for each sample using conventional laboratory methodologies, as well as the SOCS calculation. Likewise, spectral signatures were acquired in the NIR range of each soil sample, and together with laboratory data, were used to build the estimation models applying Partial Least Squares Regression (PLSR). A highly representative model was obtained for the estimation of SOCS (R2 = 0.93, RMSE = 2.12 tC/ha, RPD = 3.69), which was corroborated with the spatial variability evaluated with depth splines and geostatistical interpolation surfaces. NIR diffuse reflectance spectroscopy proved to be a viable alternative for estimating SOCS.eng
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.notesIncluye anexosspa
dc.description.projectModelamiento del contenido de carbono de los suelos de la altillanura plana del municipio de Puerto Gaitán (Meta)spa
dc.description.researchareaSuelos y aguasspa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.format.extentxiv, 105 páginasspa
dc.format.extentxiv, 105 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79000
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentUniversidad Nacional de Colombiaspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAl-Asadi, R. A., & Mouazen, A. M. (2014). Combining frequency domain reflectometry and visible and near infrared spectroscopy for assessment of soil bulk density. Soil and Tillage Research, 135, 60–70. https://doi.org/10.1016/j.still.2013.09.002spa
dc.relation.referencesAlarcón Jiménez, M. F. (2013). Determinación de zonas de manejo agrícola basadas en el rendimiento de maíz y su relación con atributos edáficos en la altillanura plana [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/20706spa
dc.relation.referencesAldana-Jague, E., Heckrath, G., Macdonald, A., van Wesemael, B., & Van Oost, K. (2016). UAS-based soil carbon mapping using VIS-NIR (480-1000 nm) multi-spectral imaging: Potential and limitations. Geoderma, 275, 55–66. https://doi.org/10.1016/j.geoderma.2016.04.012spa
dc.relation.referencesAllo, M., Todoroff, P., Jameux, M., Stern, M., Paulin, L., & Albrecht, A. (2020). Prediction of tropical volcanic soil organic carbon stocks by visible-near- and mid-infrared spectroscopy. Catena, 189, 104452. https://doi.org/10.1016/j.catena.2020.104452spa
dc.relation.referencesAllory, V., Cambou, A., Moulin, P., Schwartz, C., Cannavo, P., Vidal-Beaudet, L., & Barthès, B. G. (2019). Quantification of soil organic carbon stock in urban soils using visible and near infrared reflectance spectroscopy (VNIRS) in situ or in laboratory conditions. Science of the Total Environment, 686, 764–773. https://doi.org/10.1016/j.scitotenv.2019.05.192spa
dc.relation.referencesAraújo, S. R., Söderström, M., Eriksson, J., Isendahl, C., Stenborg, P., & Demattê, J. A. M. (2015). Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy. Geoderma, 237, 308–317. https://doi.org/10.1016/j.geoderma.2014.09.014spa
dc.relation.referencesArzuaga, S. A., Toledo, D. M., Leiva, S. M. C., & Vázquez, S. (2016). Carbon and nitrogen stocks and stratification ratios in oxisols under forest systems. Ciencia Del Suelo, 34(1), 13–20spa
dc.relation.referencesAtehortúa, M. R. (2016). Stock de carbono del suelo, a escala local, en ocho sistemas de uso agrícola del piedemonte llanero [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56121spa
dc.relation.referencesBarnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772–777. https://doi.org/10.1366/0003702894202201spa
dc.relation.referencesBellon-Maurel, V., & McBratney, A. (2011). Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils - Critical review and research perspectives. Soil Biology and Biochemistry, 43(7), 1398–1410. https://doi.org/10.1016/j.soilbio.2011.02.019spa
dc.relation.referencesBen-Dor, E., Inbar, Y., & Chen, Y. (1997). The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400-2500 nm) during a controlled decomposition process. Remote Sensing of Environment, 61(1), 1–15. https://doi.org/10.1016/S0034-4257(96)00120-4spa
dc.relation.referencesBen Dor, E., Ong, C., & Lau, I. C. (2015). Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma, 245–246, 112–124. https://doi.org/10.1016/j.geoderma.2015.01.002spa
dc.relation.referencesBeretta, A. N., Silbermann, A. V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., & García-Lamohte, A. (2014). Análisis de textura del suelo con hidrómetro: Modificaciones al método de Bouyoucus. Ciencia e Investigacion Agraria, 41(2), 263–271. https://doi.org/10.4067/S0718-16202014000200013spa
dc.relation.referencesBigham, J. M., Golden, D. C., Bowen, L. H., Buol, S. W., & Weed, S. B. (1978). Iron Oxide Mineralogy of Well‐drained Ultisols and Oxisols: I. Characterization of Iron Oxides in Soil Clays by Mössbauer Spectroscopy, X‐ray Diffractometry, and Selected Chemical Techniques. Soil Science Society of America Journal, 42(5), 816–825. https://doi.org/https://doi.org/10.2136/sssaj1978.03615995004200050033xspa
dc.relation.referencesBiondi, F., Myers, D. E., & Avery, C. C. (1994). Geostatistically modelling stem size and increment in an old-growth forest. Canadian Journal of Forest Research, 24(7), 1354–1368.spa
dc.relation.referencesBlaschek, M., Roudier, P., Poggio, M., & Hedley, C. B. (2019). Prediction of soil available water-holding capacity from visible near-infrared reflectance spectra. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-49226-6spa
dc.relation.referencesBonett, J. P. (2013). Uso de la espectroscopía de reflectancia difusa (MIR) para la determinación de las propiedades químicas en suelos agrícolas de Colombia [Universidad Nacional de Colombia, sede Bogotá.]. https://repositorio.unal.edu.co/handle/unal/51527spa
dc.relation.referencesBorja Martínez, K., Mercado Lázaro, J., & Combatt Caballero, E. M. (2015). Dispersantes químicos y cuantificación de fracciones texturales por los métodos Bouyoucos y pipeta. Acta Agronomica, 64(4), 308–314. https://doi.org/10.15446/acag.v64n4.45722spa
dc.relation.referencesBrodský, L., Vašát, R., Klement, A., Zádorová, T., & Jakšík, O. (2013). Uncertainty propagation in VNIR reflectance spectroscopy soil organic carbon mapping. Geoderma, 199, 54–63. https://doi.org/10.1016/j.geoderma.2012.11.006spa
dc.relation.referencesCamacho-Tamayo, J. H. (2013). Uso de la reflectancia difusa -NIR en la determinación de características físicas y químicas de un Oxisol. Carimagüa -Meta [Universidad Nacional de Colombia, Sede Bogotá]. https://repositorio.unal.edu.co/handle/unal/20889spa
dc.relation.referencesCamacho-Tamayo, J. H., Forero-Cabrera, N. M., Ramírez L., L., & Rubiano S., Y. (2017). Evaluación de textura del suelo con espectroscopía de infrarrojo cercano en un oxisol de Colombia. Colombia Forestal, 20(1), 5–18spa
dc.relation.referencesCamacho-Tamayo, J. H., Rubiano, Y. S., & Hurtado, M. del P. (2014). Near-infrared (NIR) diffuse reflectance spectroscopy for the prediction of carbon and nitrogen in an Oxisol. Agronomía Colombiana, 32(1), 86–94.spa
dc.relation.referencesCambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Science Society of America Journal, 58(5), 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033xspa
dc.relation.referencesCambou, A., Cardinael, R., Kouakoua, E., Villeneuve, M., Durand, C., & Barthès, B. G. (2016). Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field. Geoderma, 261, 151–159. https://doi.org/10.1016/j.geoderma.2015.07.007spa
dc.relation.referencesCampos, B.-H. C. de, Amado, T. J. C., Bayer, C., Nicoloso, R. da S., & Fiorin, J. E. (2011). Carbon stock and its compartments in a subtropical oxisol under long-term tillage and crop rotation systems. Revista Brasileira de Ciência Do Solo, 35(3), 805–817. https://doi.org/10.1590/s0100-06832011000300016spa
dc.relation.referencesChartin, C., Stevens, A., Goidts, E., Krüger, I., Carnol, M., & Van Wesemael, B. (2016). Mapping Soil Organic Carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia). Geoderma Regional, 9, 73–86. https://doi.org/10.1016/j.geodrs.2016.12.006spa
dc.relation.referencesChaudhari, P. R., Ahire, D. V, Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil Bulk Density as related to Soil Texture, Organic Matter Content and available total Nutrients of Coimbatore Soil. International Journal of Scientific and Research Publications, 3(1), 2250–3153. https://doi.org/10.2136/sssaj2015.11.0407spa
dc.relation.referencesCombatt-Caballero, E. M., Palencia-L, M., & Borja-M, K. (2018). Particle size distribution by Bouyoucos in slightly alkaline soils from department of Cordoba, Colombia. Acta Agronomica, 67(1), 126–132. https://doi.org/10.15446/acag.v67n1.60762spa
dc.relation.referencesComino, F., Aranda, V., García-Ruiz, R., Ayora-Cañada, M. J., & Domínguez-Vidal, A. (2018). Infrared spectroscopy as a tool for the assessment of soil biological quality in agricultural soils under contrasting management practices. Ecological Indicators, 87, 117–126. https://doi.org/10.1016/j.ecolind.2017.12.046spa
dc.relation.referencesConforti, M., Buttafuoco, G., Leone, A. P., Aucelli, P. P. C., Robustelli, G., & Scarciglia, F. (2013). Studying the relationship between water-induced soil erosion and soil organic matter using Vis-NIR spectroscopy and geomorphological analysis: A case study in southern Italy. Catena, 110, 44–58. https://doi.org/10.1016/j.catena.2013.06.013spa
dc.relation.referencesConforti, M., Castrignanò, A., Robustelli, G., Scarciglia, F., Stelluti, M., & Buttafuoco, G. (2015). Laboratory-based Vis-NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content. Catena, 124, 60–67. https://doi.org/10.1016/j.catena.2014.09.004spa
dc.relation.referencesCortés, A., & Malagón, D. (1984). Los levantamientos agrológicos y sus aplicaciones múltiples. Universidad de Bogotá Jorge Tadeo Lozano.spa
dc.relation.referencesCurcio, D., Ciraolo, G., Asaro, F. D., & Minacapilli, M. (2013). Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences, 19, 494–503. https://doi.org/10.1016/j.proenv.2013.06.056spa
dc.relation.referencesDay, P. R. (1965). Particle fractionation and particle size analysis. In C. A. Black (Ed.), Method of soil analysis, Part I (pp. 565–566). Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.1.c43spa
dc.relation.referencesDemattê, José, Horák-Terra, I., Beirigo, R. M., Terra, F. da S., Marques, K. P. P., Fongaro, C. T., Silva, A. C., & Vidal-Torrado, P. (2017). Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring. Journal of Environmental Management, 197, 50–62. https://doi.org/10.1016/j.jenvman.2017.03.014spa
dc.relation.referencesDemattê, José, Sousa, A. A., Alves, M. C., Nanni, M. R., Fiorio, P. R., & Campos, R. C. (2006). Determining soil water status and other soil characteristics by spectral proximal sensing. Geoderma, 135, 179–195. https://doi.org/10.1016/j.geoderma.2005.12.002spa
dc.relation.referencesDemattê, Jose, Terra, F. da S., & Quartaroli, C. F. (2012). Spectral behavior of some modal soil profiles from São Paulo State, Brazil. Soil and Plant Nutrition, 71(3), 413–423.spa
dc.relation.referencesDokuchaev, V. (1883). Russian Chernozem. In Selected works of V.V. Dokuchaev, Vol I. Israel Program for Scientific Translations, Jerusalem (translated in 1967).spa
dc.relation.referencesDumas, J. B. A. (1831). Procédés de l’analyse organique. Annales de Chimie et de Physique, 247(47), 198–213.spa
dc.relation.referencesEscribano, P., Schmid, T., Chabrillat, S., Rodríguez C, E., & García, M. (2017). Optical Remote Sensing for Soil Mapping and Monitoring. In Soil Mapping and Process Modeling for Sustainable Land Use Management (p. 39). Elsevier.spa
dc.relation.referencesESRI. (2018). ArcGIS 10.6 (10.6). Environmental Systems Research Institute.spa
dc.relation.referencesFAO. (2009). Guía para la descripción de suelos. In Organización de las Naciones Unidas para la Agricultura y la Alimentación. FAO. http://www.fao.org/3/a-a0541s.pdfspa
dc.relation.referencesFAO. (2011). El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. Roma, 50. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesFAO. (2019). Measuring and modelling soil carbon stocks and stock changes in livestock production systems Guidelines for assessment (Version 1). FAO. http://www.fao.org/3/ca2934en/CA2934EN.pdfspa
dc.relation.referencesGamez Ávila, C. C. (2019). Uso de modelos espectrales VIS – NIR para la determinación del contenido de carbono del suelo [Universidad Nacional de Colombia, Sede Bogotá]. https://repositorio.unal.edu.co/handle/unal/76626spa
dc.relation.referencesGras, J. P., Barthès, B. G., Mahaut, B., & Trupin, S. (2014). Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils. Geoderma, 214–215, 126–134. https://doi.org/10.1016/j.geoderma.2013.09.021spa
dc.relation.referencesHengl, T. (2009). A Practical guide to Geostatistical Mapping (2nd ed.). Office for Official Publications of the European Communities.spa
dc.relation.referencesHobley, E., & Prater, I. (2019). Estimating soil texture from vis–NIR spectra. European Journal of Soil Science, 70(1), 83–95. https://doi.org/10.1111/ejss.12733spa
dc.relation.referencesHuang, J., Hartemink, A. E., & Zhang, Y. (2019). Climate and land-use change effects on soil carbon stocks over 150 years in Wisconsin, USA. Remote Sensing, 11(12), 1504. https://doi.org/10.3390/rs11121504spa
dc.relation.referencesHuertas, H. D., Rangel, J. A., & Parra, A. S. (2018). Caracterización de la fertilidad química de los suelos en sistemas productivos de la altillanura plana, Meta, Colombia. Revista Luna Azul, 46(46), 54–69. https://doi.org/10.17151/luaz.2018.46.5spa
dc.relation.referencesIGAC. (2004). Estudio general de suelos y zonificación de tierras: Departamento de Meta. Instituto Geográfico Agustín Codazzi, Subdirección de Agrología.spa
dc.relation.referencesIPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 4 - Agriculture, forestry and other land use (E. Calvo Buendia, K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, S. Ngarize, A. Osako, Y. Pyrozhenko, P. Shermanau, & S. Federici (eds.)). The Intergovernmental Panel on Climate Change (IPCC).spa
dc.relation.referencesIUSS Working Group WRB. (2015). Base referencial mundial del recurso suelo 2014, Actualización 2015. In Base referencial mundial del recurso suelo. FAO. http://www.fao.org/3/i3794es/I3794es.pdfspa
dc.relation.referencesJaconi, A., Don, A., & Freibauer, A. (2017). Prediction of soil organic carbon at the country scale : stratification strategies for near-infrared data. European Journal of Soil Science, 68(6), 1–11. https://doi.org/10.1111/ejss.12485spa
dc.relation.referencesJaimes, W., Navas, G., Salamanca, C., & Conde, A. (2003). Estudio Detallado de Suelos de la Estación Experimental de CORPOICA “Sabanas” en la Altillanura Colombiana. Corpoica.spa
dc.relation.referencesJandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., Harrison, R. B., Guerrini, I. A., Richter, D. de B., Rustad, L., Lorenz, K., Chabbi, A., & Miglietta, F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 468–469, 376–383. https://doi.org/10.1016/j.scitotenv.2013.08.026spa
dc.relation.referencesJenny, H. (1941). Factors of soil formation: a system of quantitative pedology (Vol. 68, Issue 4). Dover Publications. https://doi.org/10.1016/0016-7061(95)90014-4spa
dc.relation.referencesJia, X., Chen, S., Yang, Y., Zhou, L., Yu, W., & Shi, Z. (2017). Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape. Scientific Reports, 7(1), 2144. https://doi.org/10.1038/s41598-017-02061-zspa
dc.relation.referencesJohnson, J. M. F., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150(1), 107–124. https://doi.org/10.1016/j.envpol.2007.06.030spa
dc.relation.referencesKatuwal, S., Knadel, M., Norgaard, T., Moldrup, P., Greve, M. H., & de Jonge, L. W. (2020). Predicting the dry bulk density of soils across Denmark: Comparison of single-parameter, multi-parameter, and vis–NIR based models. Geoderma, 361(May 2019), 114080. https://doi.org/10.1016/j.geoderma.2019.114080spa
dc.relation.referencesKennard, R. W., & Stone, L. A. (1969). Computer Aided Design of Experiments. Technometrics, 11(1), 137–148.spa
dc.relation.referencesKuang, B., & Mouazen, A. M. (2013). Non-biased prediction of soil organic carbon and total nitrogen with vis-NIR spectroscopy, as affected by soil moisture content and texture. Biosystems Engineering, 114(3), 249–258. https://doi.org/10.1016/j.biosystemseng.2013.01.005spa
dc.relation.referencesLaamrani, A., Berg, A. A., Voroney, P., Feilhauer, H., Blackburn, L., March, M., Dao, P. D., He, Y., & Martin, R. C. (2019). Ensemble Identification of Spectral Bands Related to Soil Organic Carbon Levels over an Agricultural Field in Southern Ontario , Canada. Remote Sensing, 11(11), 1–15.spa
dc.relation.referencesLandcare Research. (2016). Agricultural Greenhouse Gases: Mapping Soil Organic. https://www.nzagrc.org.nz/fact-sheets,listing,232,reducing-new-zealands-agricultural-emissions-mapping-soil-organic-carbon-stocks.htmlspa
dc.relation.referencesLee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G., & Six, J. (2009). Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems and Environment, 134(3–4), 251–256. https://doi.org/10.1016/j.agee.2009.07.006spa
dc.relation.referencesLeone, A. P., Leone, G., Leone, N., Galeone, C., Grilli, E., Orefice, N., & Ancona, V. (2019). Capability of Diffuse Reflectance Spectroscopy to Predict Soil Water Retention and Related Soil. Water (Switzerland), 11(1712), 1–16.spa
dc.relation.referencesLeone, A. P., Viscarra-Rossel, R. A., Amenta, P., & Buondonno, A. (2012). Prediction of Soil Properties with PLSR and vis-NIR Spectroscopy: Application to Mediterranean Soils from Southern Italy. Current Analytical Chemistry, 8(2), 283–299. https://doi.org/10.2174/157341112800392571spa
dc.relation.referencesLiu, S., Shen, H., Chen, S., Zhao, X., Biswas, A., Jia, X., Shi, Z., & Fang, J. (2019). Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment. Geoderma, 348, 37–44. https://doi.org/10.1016/j.geoderma.2019.04.003spa
dc.relation.referencesMalone, B. (2016). ithir: Functions and Algorithms Specific to Pedometrics. R package version 1.0/r126. https://rdrr.io/rforge/ithir/spa
dc.relation.referencesMalone, B. P., Styc, Q., Minasny, B., & McBratney, A. B. (2017). Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma, 290, 91–99. https://doi.org/10.1016/j.geoderma.2016.12.008spa
dc.relation.referencesMarques, J. D. de O., Luizão, F. J., Teixeira, W. G., Vitel, C. M., & Marques, E. M. de A. (2016). Soil organic carbon, carbon stock and their relationships to physical attributes under forest soils in central Amazonia. Revista Arvore, 40(2), 197–208. https://doi.org/10.1590/0100-67622016000200002spa
dc.relation.referencesMartín-López, J. M., & Quintero-Arias, G. (2017). Effect of soil use and coverage on the spectral response of an oxisol in the VIS-NIR-MIR region. Journal of Imaging, 3(1). https://doi.org/10.3390/jimaging3010010spa
dc.relation.referencesMatheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246spa
dc.relation.referencesMcBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. In Geoderma (Vol. 117, Issues 1–2). https://doi.org/10.1016/S0016-7061(03)00223-4spa
dc.relation.referencesMcBratney, A. B., & Viscarra Rossel, R. A. (2008). Diffuse Reflectance Spectroscopy as a Tool for Digital Soil Mapping. In A. E. Hartemink, A. McBratney, & M. L. Mendonça Santos (Eds.), Digital Soil Mapping with Limited Data (1st ed., pp. 165–172). Springer.spa
dc.relation.referencesMoreira, C. S., Brunet, D., Verneyre, L., Sá, S. M. O., Galdos, M. V., Cerri, C. C., & Bernoux, M. (2009). Near infrared spectroscopy for soil bulk density assesment. European Journal of Soil Science, 60, 785–791. https://doi.org/10.1111/j.1365-2389.2009.01170.xspa
dc.relation.referencesMurphy, B. W. (2015). Impact of soil organic matter on soil properties - A review with emphasis on Australian soils. Soil Research, 53(6), 605–635. https://doi.org/10.1071/SR14246spa
dc.relation.referencesNawar, S., & Mouazen, A. M. (2019). On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning. Soil and Tillage Research, 190, 120–127. https://doi.org/10.1016/j.still.2019.03.006spa
dc.relation.referencesNawar, Said, Buddenbaum, H., Hill, J., Kozak, J., & Mouazen, A. M. (2016). Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research, 155, 510–522. https://doi.org/10.1016/j.still.2015.07.021spa
dc.relation.referencesNocita, M., Kooistra, L., Bachmann, M., Müller, A., Powell, M., & Weel, S. (2011). Predictions of soil surface and topsoil organic carbon content through the use of laboratory and field spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South Africa. Geoderma, 167–168, 295–302. https://doi.org/10.1016/j.geoderma.2011.09.018spa
dc.relation.referencesNocita, M., Stevens, A., Noon, C., & Van Wesemael, B. (2013). Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma, 199, 37–42. https://doi.org/10.1016/j.geoderma.2012.07.020spa
dc.relation.referencesNocita, M., Stevens, A., Toth, G., Panagos, P., van Wesemael, B., & Montanarella, L. (2014). Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biology and Biochemistry, 68, 337–347. https://doi.org/10.1016/j.soilbio.2013.10.022spa
dc.relation.referencesNocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., Ben Dor, E., Brown, D. J., Clairotte, M., Csorba, A., Dardenne, P., Demattê, J. A. M., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, J., … Wetterlind, J. (2015). Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring (pp. 139–159). https://doi.org/10.1016/bs.agron.2015.02.002spa
dc.relation.referencesOliver, M. A., & Webster, R. (2015). Basics Steps in Geostatistics: The Variogram and Kriging. Springer. https://doi.org/10.1007/978-3-319-15865-5spa
dc.relation.referencesPinheiro, É. F. M., Ceddia, M. B., Clingensmith, C. M., Grunwald, S., & Vasques, G. M. (2017). Prediction of Soil Physical and Chemical Properties by Visible and Near-Infrared Diffuse Reflectance Spectroscopy in the Central Amazon. Remote Sensing, 9(4), 1–22. https://doi.org/10.3390/rs9040293spa
dc.relation.referencesPonce‐Hernandez, R., Marriott, F. H. C., & Beckett, P. H. T. (1986). An improved method for reconstructing a soil profile from analyses of a small number of samples. Journal of Soil Science, 37(3), 455–467. https://doi.org/10.1111/j.1365-2389.1986.tb00377.xspa
dc.relation.referencesPoppiel, R. R., Lacerda P., M., Pereira, M., Almeida Junior, D. O., Demattê, J., Romero, D. J., Sato, M., Almeida J, L. R., & Moreira C, L. F. (2018). Surface Spectroscopy of Oxisols, Entisols and Inceptisol and Relationships with Selected Soil Properties. Revista Brasilera de Ciencia Do Solo, 42, 1–26.spa
dc.relation.referencesR Core Team. (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/spa
dc.relation.referencesRamirez-Lopez, L., Reina-Sánchez, A., & Camacho-Tamayo, J. H. (2008). Variabilidad espacial de atributos físicos de un Typic Haplustox de los Llanos Orientales de Colombia. Engenharia Agrícola, 28(1), 55–63. https://doi.org/10.1590/S0100-69162008000100006spa
dc.relation.referencesRamirez-Lopez, L. (2009). Pedologia quantitativa: espectrometria VIS-NIR-SWIR e mapeamento digital de solos [Universidade de São Paulo]. https://teses.usp.br/teses/disponiveis/11/11140/tde-23062009-140151/publico/Leonardo_Lopez.pdfspa
dc.relation.referencesRamirez-Lopez, L., Schmidt, K., Behrens, T., van Wesemael, B., Demattê, J. A. M., & Scholten, T. (2014). Sampling optimal calibration sets in soil infrared spectroscopy. Geoderma, 226–227(1), 140–150. https://doi.org/10.1016/j.geoderma.2014.02.002spa
dc.relation.referencesRatner, B. (2009). The correlation coefficient: Its values range between +1/-1, or do they. Journal of Targeting, Measurement and Analysis for Marketing, 17(2), 139–142. https://doi.org/10.1057/jt.2009.5spa
dc.relation.referencesRippstein, G., Escobar, E., Toledo, J. M., Fisher, M., & Mesa, E. (2001). Caracterización de comunidades vegetales de la altillanura en el Centro de Investigación Agropecuaria Carimagua, en Meta, Colombia. In Georges Rippstein, G. Escobar, & F. Motta (Eds.), Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales (pp. 22–45). CIAT, Centro Internacional de Agricultura Tropical.spa
dc.relation.referencesRivera, M., Amezquita, E., Bernal, J. H., & Rao, I. M. (2013). Las Sabanas de los Llanos Orientales de Colombia: Caracterización Biofísica e Importancia para la Producción Agropecuaria. In Sistemas Agropastoriles: un Enfoque Integrado para el Manejo Sostenible de Oxisoles de los Llanos Orientales de Colombia (pp. 3–13). Centro Internacional de Agricultura Tropical (CIAT).spa
dc.relation.referencesRodríguez-Cabrera., J., Cortiza Mora, A. W., Pereira Marín, C. A., Chacón Iznaga, A., Gattorno Muñoz, S., Rodríguez López, O., Rodríguez Urrutia, A., Jiménez Carrazana, R., & Torres Artiles, P. N. (2015). Determinación VIS/NIR del contenido de materia orgánica en suelos agrícolas Pardos mullidos medianamente lavados. (Spanish). Revista Centro Agrícola, 42(3), 5–12. http://cagricola.uclv.edu.cu/index.php/es/volumen-42-2015/numero-3-2015/47-determinacion-vis-nir-del-contenido-de-materia-organica-en-suelos-agricolas-pardos-mullidos-medianamente-lavadosspa
dc.relation.referencesRoudier, P., Hedley, C. B., Lobsey, C. R., Viscarra Rossel, R. A., & Leroux, C. (2017). Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon. Geoderma, 296, 98–107. https://doi.org/10.1016/j.geoderma.2017.02.014spa
dc.relation.referencesSá, J. C. de M., & Lal, R. (2009). Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil and Tillage Research, 103(1), 46–56. https://doi.org/10.1016/j.still.2008.09.003spa
dc.relation.referencesSavitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639.spa
dc.relation.referencesSerna-Izasa, R. A., Rippstein, G., Grollier, C., & Mesa, E. (2001). Biodiversidad de la vegetación de la sabana en la altillanura plana y la serranía de los llanos orientales. In Georges Rippstein, G. Escobar, & F. Motta (Eds.), Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales (pp. 46–63). CIAT, Centro Internacional de Agricultura Tropical.spa
dc.relation.referencesShenk, J. S., & Westerhaus, M. O. (1996). Calibration the ISI way. In A. M. C. Davis & P. Williams (Eds.), Near infrared spectroscopy : the future waves (pp. 198–202). NIR Publications.spa
dc.relation.referencesSilva-Parra, A. (2018). Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana. ORINOQUIA, 22(2), 158–171. https://doi.org/10.22579/20112629.525spa
dc.relation.referencesSoil Survey Staff. (2014). Keys to soil taxonomy. In Soil Conservation Service (Vol. 12). https://doi.org/10.1109/TIP.2005.854494spa
dc.relation.referencesStenberg, B. (2010). Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma, 158, 15–22. https://doi.org/10.1016/j.geoderma.2010.04.008spa
dc.relation.referencesStenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Visible and Near Infrared Spectroscopy in Soil Science. In Advances in Agronomy (1st ed., Vol. 107). Elsevier Inc. https://doi.org/10.1016/S0065-2113(10)07005-7spa
dc.relation.referencesStevens, A., Nocita, M., Tóth, G., Montanarella, L., & van Wesemael, B. (2013). Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy. PloS One, 8(6), e66409. https://doi.org/10.1371/journal.pone.0066409spa
dc.relation.referencesStevens, A., Ramirez-Lopez, L., & Hans, G. (2020). Prospectr package: Miscellaneous Functions for Processing and Sample Selection of Spectroscopic Data. https://cran.r-project.org/web/packages/prospectr/index.htmlspa
dc.relation.referencesStevens, A., van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B., & Ben-Dor, E. (2008). Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma, 144, 395–404. https://doi.org/10.1016/j.geoderma.2007.12.009spa
dc.relation.referencesStockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164, 80–99. https://doi.org/10.1016/j.agee.2012.10.001spa
dc.relation.referencesSummers, D., Lewis, M., Ostendorf, B., & Chittleborough, D. (2011). Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators, 11, 123–131. https://doi.org/10.1016/j.ecolind.2009.05.001spa
dc.relation.referencesTümsavaş, Z., Tekin, Y., Ulusoy, Y., & Mouazen, A. M. (2019). Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy. Biosystems Engineering, 177, 90–100. https://doi.org/10.1016/j.biosystemseng.2018.06.008spa
dc.relation.referencesViscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006a). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007spa
dc.relation.referencesViscarra Rossel, R. A., McGlynn, R. N., & McBratney, A. B. (2006b). Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma, 137(1–2), 70–82. https://doi.org/10.1016/j.geoderma.2006.07.004spa
dc.relation.referencesViscarra Rossel, R. A., & Webster, R. (2012). Predicting soil properties from the Australian soil visible – near infrared spectroscopic database. European Journal of Soil Science, 63, 848–860. https://doi.org/10.1111/j.1365-2389.2012.01495.xspa
dc.relation.referencesViscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J., Demattê, J. A. M., Shepherd, K. D., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V., Aïchi, H., Barthès, B. G., Bartholomeus, H. M., Bayer, A. D., Bernoux, M., Böttcher, K., Brodský, L., Du, C. W., Chappell, A., … Ji, W. (2016). A global spectral library to characterize the world’s soil. Earth-Science Reviews, 155, 198–230. https://doi.org/10.1016/j.earscirev.2016.01.012spa
dc.relation.referencesWetterlind, J., Stenberg, B., & Söderström, M. (2008). The use of near infrared (NIR) spectroscopy to improve soil mapping at the farm scale. Precision Agriculture, 9(1–2), 57–69. https://doi.org/10.1007/s11119-007-9051-zspa
dc.relation.referencesWilding, L. P. (1985). Soil spatial variability: Its documentation, accommodation and implication to soil surveys. In D. R. Nielsen & J. Bouma (Eds.), Soil Spatial Variability (pp. 166–194). Pudoc.spa
dc.relation.referencesWilliams, P. C. (2003). Near-infrared technology ‒ Getting the best out of light: A short course in the practical implementation of near-infrared spectroscopy for the user. (2 ed). PDK Projects Inc.spa
dc.relation.referencesWold, S., Ruhe, A., Wold, H., & Dunn III, W. L. (1984). The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing, 5(3), 735–743. https://doi.org/https://doi.org/10.1137/0905052spa
dc.relation.referencesXie, X. L., & Li, A. B. (2016). Improving spatial estimation of soil organic matter in a subtropical hilly area using covariate derived from vis-NIR spectroscopy. Biosystems Engineering, 152, 126–137. https://doi.org/10.1016/j.biosystemseng.2016.06.007spa
dc.relation.referencesZimmermann, M., Leifeld, J., & Fuhrer, J. (2007). Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biology and Biochemistry, 39(1), 224–231. https://doi.org/10.1016/j.soilbio.2006.07.010spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocReflectanciaspa
dc.subject.agrovocreflectanceeng
dc.subject.agrovocEstimación de las existencias de carbonospa
dc.subject.agrovoccarbon stock assessmentseng
dc.subject.agrovocPropiedades del suelospa
dc.subject.agrovocsoil propertieseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalSoil organic carbon stockeng
dc.subject.proposalStock de carbono orgánico de suelospa
dc.subject.proposalDensidad aparentespa
dc.subject.proposalBulk densityeng
dc.subject.proposalSoil spectroscopyeng
dc.subject.proposalEspectroscopía de suelosspa
dc.subject.proposalNIReng
dc.subject.proposalNIRspa
dc.subject.proposalSplineeng
dc.subject.proposalSplinespa
dc.subject.proposalGeostatisticseng
dc.subject.proposalGeoestadísticaspa
dc.titleDesarrollo de modelo para determinar el stock de carbono orgánico del suelo con base en reflectancia difusa. Caso: Carimagua – Metaspa
dc.title.translatedModel development to determine the soil organic carbon stock based on diffuse reflectance. Case: Carimagua – Metaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020780896.2020.pdf
Tamaño:
6.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: