Implementation of some Bayesian Filters for structural system identification

dc.contributor.advisorAlvarez Marín, Diego Andrés
dc.contributor.authorJaramillo Moreno, Sebastian
dc.date.accessioned2022-08-24T21:38:00Z
dc.date.available2022-08-24T21:38:00Z
dc.date.issued2018-12
dc.descriptiongráficos, tablasspa
dc.description.abstractThe present study deals with three different methods for structural identification: the Kalman filter, the Unscented Kalman filter and the Particle filter. The Kalman filter is a known filter for state estimation in linear systems. To perform the estimation in non-linear systems, methods such as the Unscented Kalman filter and the Particle filter were developed. The Unscented Kalman filter uses the Unscented transform to approximate the different distributions to a Gaussian, allowing it to have certain similarities with the Kalman filter. The Particle filter uses Monte Carlo methods to generate samples of arbitrary probability distributions in various dimensions, which are propagated through the system in order to approximate values of the new probability distribution. Finally, a set of examples are made that allow to compare the accuracy and computational speed of the different filters and evaluate their performance. (Texto tomado de la fuente)eng
dc.description.abstractEl presente estudio trata tres diferentes métodos para identificación estructural: el Filtro de Kalman, el Filtro de Kalman Unscented y el Filtro de Partículas. El Filtro de Kalman es un conocido Filtro para la estimación de estados en sistemas lineales. Para realizar la estimación en sistemas no-lineales, se desarrollaron métodos como el Filtro de Kalman Unscented y el Filtro de Partículas. El Filtro de Kalman Unscented usa la transformada Unscented para aproximar las diferentes distribuciones a Gaussianas, permitiéndole tener ciertas similitudes con el Filtro de Kalman. El Filtro de Partículas usa métodos de Monte Carlo para generar muestras de distribuciones de probabilidad arbitrarias en varias dimensiones, las cuales se propagan por el sistema para conocer una forma aproximada de la nueva distribución de probabilidad. Finalmente, se realiza una serie de ejemplos que permiten comparar la precisión y la velocidad computacional de los diferentes filtros y evaluar su desempeño.spa
dc.description.curricularareaIngeniería Civilspa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Civilspa
dc.description.tableofcontentsGanador de la Convocatoria: “Mejores Trabajos de Grado de Pregrado” Versión XXVIII - Resolución 010 de 2019spa
dc.format.extentxviii, 90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82084
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Civilspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Civilspa
dc.relation.references[Ahsan and O’Connor, 1994] Ahsan, M. and O’Connor, K. M. (1994). A reappraisal of the kalman filtering technique, as applied in river flow forecasting. Journal of Hydrology, 161(1-4):197–226.spa
dc.relation.references[Arulampalam et al., 2002] Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on signal processing, 50(2):174–188.spa
dc.relation.references[Bertsekas and Tsitsiklis, 2002] Bertsekas, D. P. and Tsitsiklis, J. N. (2002). Introduction to probability, volume 1. Athena Scientific Belmont, MA.spa
dc.relation.references[Bouc, 1967] Bouc, R. (1967). Forced vibrations of mechanical systems with hysteresis. In Proc. of the Fourth Conference on Nonlinear Oscillations, Prague.spa
dc.relation.references[Chen, 1998] Chen, C.-T. (1998). Linear system theory and design. Oxford University Press, Inc.spa
dc.relation.references[Clough and Penzien, 1995] Clough, R. W. and Penzien, J. (1995). Dynamics of Structures. Berkeley: Computers & Structures, Inc.spa
dc.relation.references[Doucet et al., 2001] Doucet, A., De Freitas, N., and Gordon, N. (2001). An introduction to sequential monte carlo methods. Sequential Monte Carlo Methods in Practice, pages 3–13.spa
dc.relation.references[Doucet et al., 2000] Doucet, A., Godsill, S., and Andrieu, C. (2000). On sequential monte carlo sampling methods for bayesian filtering. Statistics and computing.spa
dc.relation.references[Farrar and Worden, 2012] Farrar, C. R. and Worden, K. (2012). Structural health monitoring: a machine learning perspective. John Wiley & Sons.spa
dc.relation.references[Majidi Khalilabad et al., 2018] Majidi Khalilabad, N., Mollazadeh, M., Akbarpour, A., and Khorashadizadeh, S. a. (2018). Leak detection in water distribution system using non-linear kalman filter. International Journal of Optimization in Civil Engineering.spa
dc.relation.references[Mendenhall et al., 2012] Mendenhall, W., Beaver, R. J., and Beaver, B. M. (2012). Introduction to probability and statistics. Cengage Learning.spa
dc.relation.references[Papoulis and Pillai, 2002] Papoulis, A. and Pillai, S. U. (2002). Probability, random variables, and stochastic processes. Tata McGraw-Hill Education.spa
dc.relation.references[Särkkä, 2013] Särkkä, S. (2013). Bayesian Filtering and Smoothing. Bayesian Filtering and Smoothing. Cambridge University Press.spa
dc.relation.references[Wan and Van Der Merwe, 2001] Wan, E. A. and Van Der Merwe, R. (2001). The unscented kalman filter. Kalman filtering and neural networks.spa
dc.relation.references[Wikipedia, 2018] Wikipedia (2018). Bouc–wen model of hysteresis. https:// en.wikipedia.org/wiki/Bouc-Wen_model_of_hysteresis. [Online; accessed 7- November-2018].spa
dc.relation.references[Wu and Smyth, 2007] Wu, M. and Smyth, A. W. (2007). Application of the unscented kalman filter for real-time nonlinear structural system identification. Structural Control and Health Monitoring.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembSistemas Estructuralesspa
dc.subject.lembStructural Systemseng
dc.subject.proposalBayesian filterseng
dc.subject.proposalBayesian inferenceeng
dc.subject.proposalKalman filtereng
dc.subject.proposalUnscented Kalman filtereng
dc.subject.proposalParticle filtereng
dc.subject.proposalFiltros bayesianosspa
dc.subject.proposalInferencia bayesianaspa
dc.subject.proposalFiltro de Kalmanspa
dc.subject.proposalFiltro de Kalman Unscentedspa
dc.subject.proposalFiltro de Partículasspa
dc.titleImplementation of some Bayesian Filters for structural system identificationeng
dc.title.translatedImplementación de algunos Filtros Bayesianos para la identificación de sistemas estructuralesspa
dc.typeTrabajo de grado - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
114026.2018.pdf
Tamaño:
9.99 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Ingeniería Civil

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: