Compensación del efecto de variaciones fisiológicas en la glucemia de pacientes diabéticos tipo 1 utilizando control predictivo con entradas impulsivas

dc.contributor.advisorRivadeneira Paz, Pablo Santiago
dc.contributor.authorVilla Tamayo, María Fernanda
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN EN TECNOLOGÍAS APLICADAS - GITAspa
dc.date.accessioned2021-05-20T15:04:50Z
dc.date.available2021-05-20T15:04:50Z
dc.date.issued2021
dc.description.abstractLos pacientes con diabetes mellitus tipo 1 requieren de un tratamiento estricto para regular la concentración de glucosa en la sangre dentro del rango de normoglucemia. Uno de los tratamientos actuales es el conocido como ``Páncreas Artificial”, conformado por un sensor continuo de glucosa, una bomba de infusión continua de insulina y un algoritmo de control, para emular el comportamiento natural del páncreas. Sin embargo, pese al desarrollo de diferentes estrategias de control, las variaciones fisiológicas en un paciente continúan afectando la regulación adecuada de la glucemia. Estas variaciones conllevan a un cambio de los requerimientos de insulina en el transcurso del día, por lo que se hace necesario compensar el efecto de las variaciones fisiológicas en la glucemia para evitar una sobredosis o insuficiencia de insulina que resulta en hipoglucemia o hiperglucemia respectivamente. En esta tesis de maestría, se estudia el problema de regulación de la glucemia bajo un esquema de control predictivo basado en modelo (MPC, por sus siglas en inglés) para compensar el efecto de las variaciones fisiológicas en la glucemia del paciente. Con este fin se parte de una explicación detallada de la homeostasis de la glucosa, la diabetes mellitus y un modelo que describe adecuadamente las dinámicas de la glucosa incluyendo la absorción de insulina y carbohidratos en los pacientes con esta enfermedad. Tras esto, se desarrolla un MPC con garantía de eliminación de offset, cuyo objetivo es contrarrestar variaciones constantes de la planta usando la estimación del error planta-modelo. A continuación, se desarrollan dos estrategias para mejorar el esquema de control. El primer acercamiento es un MPC con matrices de penalización adaptable con base en el valor de la glucemia, su tasa de cambio y la estimación del error planta-modelo. El segundo acercamiento consiste en la inclusión de la estimación de la insulina a bordo para evitar el acumulamiento de insulina en el cuerpo que puede causar eventos de hipoglucemia. Ambos acercamientos se evalúan en escenarios en donde se generan diferentes cambios paramétricos en la planta para simular las variaciones fisiológicas, además de la inclusión de comidas anunciadas y no anunciadas, y ruido en el sensor. Adicionalmente, para las estrategias de control, se considera un esquema con entradas impulsivas debido a la corta duración de las inyecciones de insulina en relación al tiempo de muestreo del sistema.spa
dc.description.abstractSubjects with type 1 diabetes mellitus require a strict treatment to regulate the blood glucose concentration within the normoglycemic range. One of the current treatments is known as ``Artificial Pancreas", consisting of a continuous glucose monitor, a continuous insulin infusion pump, and a control algorithm, to emulate the natural behavior of the pancreas. However, despite the development of different control strategies, physiological variations in a patient continue to affect the adequate regulation of glycemia. These variations lead to a change in insulin requirements throughout the day, thus, it is necessary to compensate for the effect of physiological variations in blood glucose to avoid an overdose or insufficiency of insulin that results in hypoglycemia or hyperglycemia, respectively. In this master's thesis, the problem of glycemic regulation is studied under a model predictive control (MPC) scheme to compensate for the effect of physiological variations in the patient's blood glucose. To this end, a detailed explanation of glucose homeostasis, diabetes mellitus, and a model that adequately describes the dynamics of glucose including insulin and carbohydrate absorption in patients with this disease are presented. Afterwards, an offset-free MPC is developed whose objective is to counteract constant variations of the plant using the estimation of the plant-model error. Next, two strategies are developed to improve the control scheme. The first approach is an MPC with adaptive penalty matrices based on the value of blood glucose, its rate of change, and the estimation of the plant-model error. The second approach consists of including the insulin-on-board estimation to avoid insulin stacking in the body that can cause hypoglycemic events. Both approaches are evaluated in scenarios where different parametric changes are generated in the plant to simulate physiological variations, in addition to the inclusion of announced and unannounced meals, and sensor noise. Additionally, a scheme with impulsive inputs is considered for the control strategies due to the short duration of the insulin injections in relation to the sampling time of the system.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Automatización Industrialspa
dc.description.researchareaIngeniería Biomédicaspa
dc.format.extent132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombia - Sede Medellínspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps:/repositorio.una.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79540
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automáticaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Automatización Industrialspa
dc.relation.referencesAbu-Rmileh, Amjad ; Garcia-Gabin, Winston: A Gain-Scheduling Model Predictive Controller for Blood Glucose Control in Type 1 Diabetes. En: IEEE Transactions on Biomedical Engineering 57 (2010), Nr. 10, p. 2478-2484spa
dc.relation.referencesAbuin, P. ; Rivadeneira, Pablo S. ; Ferramosca, Alejandro ; González, Alejandro:Artificial pancreas under stable pulsatile MPC: improving the closed-loop performance. En: Journal of Process Control 92 (2020), p. 246- 260spa
dc.relation.referencesAyers, Gregory D. ; McKinley, Eliot T. ; Zhao, Ping ; Fritz, Jordan M. ; Metry, Rebecca E. ; Deal, Brenton C. ; Adlerz, Katrina M. ; Coffey, Robert J. ; Manning, H C.: Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements. En: Journal of Ultrasound in Medicine 29 (2010), Nr. 6, p. 891-901spa
dc.relation.referencesBailey, Timothy S. ; Grunberger, George ; Bode, Bruce W. ; Handelsman, Yehuda ; Hirsch, Irl B. ; Jovanovic, Lois ; Lawrence Roberts, Victor ; Rodbard, David ; Tamborlane, William V. ; Walsh, John: American Association of Clinical Endocrinologists and American College of Endocrinology 2016 Outpatient Glucose Monitoring Consensus Statement. En: Endocrine Practice 22 (2016), Nr. 2, p. 231-261spa
dc.relation.referencesBaker, Alexander T. ; Aguirre-Hernández, Carmen ; Halldén, Gunnel ; Parker, Alan L.: Designer oncolytic adenovirus: coming of age. En: Cancers 10 (2018), Nr. 6, p. 201spa
dc.relation.referencesBarish, Syndi ; Ochs, Michael F. ; Sontag, Eduardo D. ; Gevertz, Jana L.: Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy. En: Proceedings of the National Academy of Sciences 114 (2017), Nr. 31, p. E6277-E6286. ISSN 0027-8424spa
dc.relation.referencesBetti, Giulio ; Farina, Marcello ; Scattolini, Riccardo: A robust MPC algorithm for o_set-free tracking of constant reference signals. En: IEEE Transactions on AutomaticControl 58 (2013), Nr. 9, p. 2394-2400spa
dc.relation.referencesBock, A. ; Francois, G. ; Gillet, D.: A therapy parameter-based model for predicting blood glucose concentrations in patients with type 1 diabetes. En: Computer methods and programs in biomedicine 118 (2015), Nr. 2, p. 107-123spa
dc.relation.referencesBoianelli, A. ; Sharma-Chawla, N. ; Bruder, D. ; Hernandez-Vargas, E. A.: Oseltamivir PK/PD modeling and simulation to evaluate treatment strategies against Inuenza-Pneumococcus coinfection. En: Frontiers in Cellular and Infection Microbiology 6 (2016), Nr. 60, p. 1-11spa
dc.relation.referencesBrown, Sue A. ; the others: Six-Month Randomized, Multicenter Trial of Closed Loop Control in Type 1 Diabetes. En: New England Journal of Medicine 381 (2019), oct, Nr. 18, p. 1707-1717. ISSN 0028-4793spa
dc.relation.referencesCaicedo, Michelle A.: Control predictivo robusto basado en modelo para sistemas impulsivos: Aplicación al tratamiento de diabetes mellitus tipo 1, Universidad Nacional de Colombia, Tesis de Grado, 2018spa
dc.relation.referencesCassidy, Tyler ; Craig, Morgan: Determinants of combination GM-CSF immunotherapy and oncolytic virotherapy success identified through in silico treatment personalization. En: PLOS Computational Biology 15 (2019), 11, Nr. 11, p. 1-16spa
dc.relation.referencesChang, H. ; Astolfi, A. ; Shim, H.: A control theoretic approach to malaria immunotherapy with state jumps. En: Automatica 47 (2011), p. 1271-1277spa
dc.relation.referencesChis, Oana T. ; Banga, Julio R. ; Balsa-Canto, Eva: Structural identi_ability of systems biology models: A critical comparison of methods. En: PLoS ONE 6 (2011), Nr. 11. - ISSN 19326203spa
dc.relation.referencesCobelli, Claudio ; the others.: Diabetes: Models, Signals, and Control Claudio. En: IEEE Rev Biomed Eng 2 (2009), p. 54-96spa
dc.relation.referencesDassau, E. ; the others: Twelve-week 24/7 ambulatory artificial pancreas with weekly adaptation of insulin delivery settings: Effect on hemoglobin A1c and hypoglycemia. En: Diabetes Care 40 (2017), Nr. 12, p. 1719-1726spa
dc.relation.referencesDassau, Eyal ; Zisser, Howard ; Harvey, Rebecca A. ; Percival, Matthew W. ; Grosman, Benyamin ; Bevier, Wendy ; Atlas, Eran ; Miller, Shahar ; Nimri, Revital ; Jovanovic, Lois ; Doyle III, Francis J.: Clinical evaluation of a personalized Artificial pancreas. En: Diabetes Care 36 (2013), Nr. 4, p. 801-809spa
dc.relation.referencesDavison, E. J. ; Smith, H. W.: Pole assignment in linear time-invariant multivariable systems with constant disturbances. En: Automatica 7 (1971), Nr. 4, p. 489-498spa
dc.relation.referencesDonga, Esther ; Van Dijk, Marieke ; Van Dijk, J. G. ; Biermasz, Nienke R. Lammers, Gert J. ; Van Kralingen, Klaas ; Hoogma, Roel P. ; Corssmit, Eleonora P. ; Romijn, Johannes A.: Partial sleep restriction decreases insulin sensitivity in type 1 diabetes. En: Diabetes Care 33 (2010), Nr. 7, p. 1573-1577spa
dc.relation.referencesDoyle III, Francis J. ; Huyett, Lauren M. ; Lee, Joon B. ; Zisser, Howard C. ; Dassau, Eyal: Closed-loop Artificial pancreas systems: Engineering the algorithms. En: Diabetes Care 37 (2014), Nr. 5, p. 1191-1197spa
dc.relation.referencesDyer, Arthur ; Baugh, Richard ; Chia, Suet L. ; Frost, Sally ; Jacobus, Egon J. ; Khalique, Hena ; Pokrovska, Tzveta D. ; Scott, Eleanor M. ; Taverner, William K. ; Seymour, Len W. [u. a.]: Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference. En: Cancer gene therapy 26 (2019), Nr. 3, p. 59-73spa
dc.relation.referencesEftimie, Raluca ; Eftimie, G: Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics. En: Letters in Biomathematics 5 (2018), Nr. sup1, p. S6-S35spa
dc.relation.referencesEl Fathi, Anas ; Smaoui, Mohamed R. ; Gingras, V_eronique ; Boulet, Benoit ; Haidar, Ahmad: The Artificial Pancreas and meal control: An overview of postprandial glucose regulation in type 1 diabetes. En: IEEE Control Systems Magazine 38 (2018), Nr. 1, p. 67-85spa
dc.relation.referencesEllingsen, Christian ; the others: Safety constraints in an Artificial pancreatic cell: An implementation of model predictive control with insulin on board. En: Journal of Diabetes Science and Technology 3 (2009), Nr. 3, p. 536-544. - ISSN 19322968spa
dc.relation.referencesEren-Oruklu, M. ; Cinar, A. ; Quinn, L. ; Smith, D.: Adaptive Control Strategy for Regulation of Blood Glucose Levels in Patients with Type 1 Diabetes. En: Journal of Process Control 19 (2009), Nr. 8, p. 1333-1346spa
dc.relation.referencesFarabi, Sarah S.: Type 1 diabetes and sleep. En: Diabetes Spectrum 29 (2016), Nr.1, p. 10-13spa
dc.relation.referencesFederation, International D. IDF Diabetes Atlas: Ninth edition 2019. https://www.diabetesatlas.org/en/resources/spa
dc.relation.referencesFeldman, John P. ; Goldwasser, Ron ; Mark, Shlomo ; Schwartz, Jeremy ; Orion, Itzhak: A mathematical model for tumor volume evaluation using twodimensions. En: J appl quant methods 4 (2009), Nr. 4, p. 455-462spa
dc.relation.referencesFerramosca, A. ; Gonzalez, A.H. ; Odloak, D. ; Camacho, E.F.: MPC for tracking target sets. En: Proceedings of the 48h IEEE Conference on Decision and Control held jointly with 2009 28th Chinese Control Conference (2009), p. 8020-8025spa
dc.relation.referencesFerramosca, A. ; Limon, D. ; Gonzalez, A.H. ; Odloak, D. ; Camacho, E.F.: MPC for tracking zone regions. En: Journal of Process Control 20 (2010), Nr. 4, p. 506-516spa
dc.relation.referencesF.G., Banting ; C.H., Best ; Collip, J.B. ; Campbell, W.R. ; A.A., Fletcher: Pancreatic extract in the treatment of diabetes mellitus. En: The Canadian Medical Association Journal 12 (1922), Nr. 3, p. 141-146spa
dc.relation.referencesFood ; Administration, Drug. FDA approves automated insulin delivery and monitoring system for use in younger pediatric patients. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm611475.htm. 2018spa
dc.relation.referencesFushimi, Emilia ; the others: Artificial pancreas clinical trials: Moving towards closed-loop control using insulin-on-board constraints. En: Biomedical Signal Processing and Control 45 (2018), p. 1-9. - ISSN 17468108spa
dc.relation.referencesGarcia-Tirado, Jose ; Zuluaga-Bedoya, Christian ; Breton, Marc D.: Identifiability Analysis of Three Control-Oriented Models for Use in Artificial Pancreas Systems. En: Journal of Diabetes Science and Technology 12 (2018), Nr. 5, p. 937- 952. - ISBN 1932296818788spa
dc.relation.referencesGingras, Veronique ; the others: E_cacy of Dual-Hormone Artificial Pancreas to Alleviate the Carbohydrate Counting Burden in Type 1 Diabetes: Randomized Crossover Trial. En: Canadian Journal of Diabetes 38 (2014), Nr. 5, p. S12-S13. ISSN 14992671spa
dc.relation.referencesGonder-Frederick, Linda A. ; Grabman, Jesse H. ; Kovatchev, Boris ; Brown, Sue A. ; Patek, Stephen ; Basu, Ananda ; Pinsker, Jordan E. ; Kudva, Yogish C. ; Wakeman, Christian A. ; Dassau, Eyal ; Cobelli, Claudio ; Zisser, Howard C. ; Doyle, Francis J.: Is Psychological Stress a Factor for Incorporation into Future Closed-Loop Systems? En: Journal of Diabetes Science and Technology 10 (2016), Nr. 3, p. 640-646spa
dc.relation.referencesGondhalekar, R. ; Dassau, E. ; Doyle, F. J.: Periodic zone-MPC with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. En: Automatica 71 (2016), p. 237-246spa
dc.relation.referencesGrosman, Benyamin ; Dassau, Eyal ; Zisser, Howard ; Jovanovic, Lois ; Doyle III, Fracis J.: Multi-zone-MPC: Clinical inspired control algorithm for the Artificial pancreas. En: IFAC Proceedings Volumes (IFAC-PapersOnline) 44 (2011), p. 7120-7125spa
dc.relation.referencesGrosman, Benyamin ; Wu, Di ; Miller, Diana ; Lintereur, Louis ; Roy, Anirban ; Parikh, Neha ; Kaufman, Francine R.: Sensor-augmented pump-based customized mathematical model for type 1 diabetes. En: Diabetes Technology and Therapeutics 20 (2018), Nr. 3, p. 207-221spa
dc.relation.referencesHaidar, Ahmad: The Artificial Pancreas: How closed-loop control is revolutionizing diabetes. En: IEEE Control Systems 36 (2016), Nr. 5, p. 28-47spa
dc.relation.referencesHajizadeh, Iman ; Samadi, Sediqeh ; Sevil, Mert ; Rashid, Mudassir ; Cinar, Ali: Performance Assessment and Modification of an Adaptive Model Predictive Control for Automated Insulin Delivery by a Multivariable Artificial Pancreas. En: Industrial and Engineering Chemistry Research 58 (2019), Nr. 26, p. 11506-11520spa
dc.relation.referencesHovorka, R.: Continuous glucose monitoring and closed-loop systems. En: Diabetic Medicine 23 (2005), Nr. 1, p. 1-12spa
dc.relation.referencesHovorka, Roman ; the others: Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. En: The Lancet 375 (2010), Nr. 9716, p. 743-751spa
dc.relation.referencesIncremona, Gian P. ; Messori, Mirko ; Toffanin, Chiara ; Cobelli, Claudio ; Magni, Lalo: Model predictive control with integral action for Artificial pancreas. En: Control Engineering Practice 77 (201), p. 86-94spa
dc.relation.referencesJDRF. Artificial Pancreas. https://www.jdrf.org/research/Artificial-pancreas/spa
dc.relation.referencesJenner, Adrianne L. ; Kim, Peter S. ; Frascoli, Federico: Oncolytic virotherapy for tumours following a Gompertz growth law. En: J Theor Biol 480 (2019), p. 129-140spa
dc.relation.referencesJenner, Adrianne L. ; Yun, Chae-Ok ; Kim, Peter S. ; Coster, Adelle C.: Mathematical modelling of the interaction between cancer cells and an oncolytic virus: insights into the effects of treatment protocols. En: Bulletin of mathematical biology 80 (2018), Nr. 6, p. 1615-1629spa
dc.relation.referencesKasper, Dennis L. ; Braunwald, Eugene ; Faucy, Antony S. ; Hauser, Stephen L. ; Longo, Dan L. ; Jameson, J. L.: Harrisons Principles of Internal Medicine. 19. New York : McGraw-hill, 2006spa
dc.relation.referencesKelly, Elizabeth ; Russell, Stephen J.: History of oncolytic viruses: genesis to genetic engineering. En: Molecular Therapy 15 (2007), Nr. 4, p. 651-659spa
dc.relation.referencesKhalil, Hassan K.: Nonlinear systems. 2. Prentice Hall, 1996spa
dc.relation.referencesKhodaei, M. J. ; Candelino, N. ; Mehrvarz, A. ; Jalili, N.: Physiological Closed Loop Control (PCLC) Systems: Review of a Modern Frontier in Automation. En: IEEE Access 8 (2020), Nr. 1, p. 23965-24005spa
dc.relation.referencesKim, Pyung-Hwan ; Sohn, Joo-Hyuk ; Choi, Joung-Woo ; Jung, Yukyung ; Kim, Sung W. ; Haam, Seungjoo ; Yun, Chae-Ok: Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin. En: Biomaterials 32 (2011), Nr. 9, p. 2314 - 2326. - ISSN 0142-9612spa
dc.relation.referencesKomarova, Natalia L. ; Wodarz, Dominik: ODE models for oncolytic virus dynamics. En: Journal of Theoretical Biology 263 (2010), Nr. 4, p. 530 - 543. - ISSN 0022-5193spa
dc.relation.referencesKovatchev, Boris ; the others: Randomized Controlled Trial of Mobile Closed Loop Control. En: Diabetes Care (2020)spa
dc.relation.referencesLal, Rayhan A. ; Ekhlaspour, Laya ; Hood, Korey ; Buckingham, Bruce: Realizing a Closed-Loop (Artificial Pancreas) System for the Treatment of Type 1 Diabetes. En: Endocrine Reviews 40 (2019), Nr. 6, p. 1521-1546. - ISBN 0000000280spa
dc.relation.referencesLarson, Christopher ; Oronsky, Bryan ; Scicinski, Jan ; Fanger, Gary R. ; Stirn, Meaghan ; Oronsky, Arnold ; Reid, Tony R.: Going viral: a review of replicationselective oncolytic adenoviruses. En: Oncotarget 6 (2015), Nr. 24, p. 19976spa
dc.relation.referencesLeon-Vargas, Fabian ; Garelli, Fabricio ; De Battista, Hernan ; Vehi, Josep: Postprandial blood glucose control using a hybrid adaptive PD controller with insulin-on-board limitation. En: Biomedical Signal Processing and Control 8 (2013), Nr. 6, p. 724-732. - ISSN 17468094spa
dc.relation.referencesLi, Lizhi ; Liu, Shixin ; Han, Duoduo ; Tang, Bin ; Ma, Jian: Delivery and Biosafety of Oncolytic Virotherapy. En: Frontiers in Oncology 10 (2020), p. 475spa
dc.relation.referencesLuo, R. ; Piovoso, M. J. ; Martinez-Picado, J. ; Zurakowski, R.: Optimal antiviral switching to minimize resistance risk in HIV therapy. En: PLoS ONE 6 (2011), Nr. 11, p. e27047spa
dc.relation.referencesMaahs, David M. ; Buckingham, Bruce A. ; Castle, Jessica R. ; Cinar, Ali ; Damiano, Edward R. ; Dassau, Eyal ; Hans De Vries, J. ; Doyle, Francis J. ; Griffen, Steven C. ; Haidar, Ahmad ; Heinemann, Lutz ; Hovorka, Roman ; Jones, Timothy W. ; Kollman, Craig ; Kovatchev, Boris ; Levy, Brian L. ; Nimri, Revital ; ONeal, David N. ; Philip, Moshe ; Renard, Eric ; Russell, Steven J. ; Weinzimer, Stuart A. ; Zisser, Howard ; Lum, John W.: Outcome measures for artificial pancreas clinical trials: A consensus report. En: Diabetes Care 39 (2016), Nr. 7, p. 1175-1179spa
dc.relation.referencesMadrid, Asociación D. Historia del tratamiento de la diabetes. https://diabetesmadrid.org/historia-del-tratamiento-de-la-diabetes/spa
dc.relation.referencesMaeder, Urban ; Borrelli, Francesco ; Morari, Manfred: Linear offset-free model predictive control. En: Automatica 45 (2009), Nr. 10, p. 2214-2222spa
dc.relation.referencesMagdelaine, Nicolas ; Chaillous, Lucy ; Guilhem, Isabelle ; Poirier, Jean-Yves ; Krempf, Michel ; Moog, Claude H.: A long-term model of the glucose-insulin dynamics of type 1 diabetes. En: IEEE Transactions on Biomedical Engineering 62 (2015), Nr. 6, p. 1546-1552spa
dc.relation.referencesMagdelaine, Nicolas ; the others: Hypoglycaemia-free Artificial pancreas project. En: IET Systems Biology 14 (2019), Nr. 1, p. 16-23. - ISSN 1751-8849spa
dc.relation.referencesMahasa, Khaphetsi J. ; Eladdadi, Amina ; De Pillis, Lisette ; Ouifki, Rachid: Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach. En: Plos one 12 (2017), Nr. 9, p. e0184347spa
dc.relation.referencesMallad, Ashwini ; Hinshaw, Ling ; Dalla Man, Chiara ; Cobelli, Claudio ; Basu,Rita ; Lingineni, Ravi ; Carter, Rickey E. ; Kudva, Yogish C. ; Basu, Ananda: Nocturnal Glucose Metabolism in Type 1 Diabetes: A Study Comparing Single Versus Dual Tracer Approaches. En: Diabetes Technology and Therapeutics 17 (2015), Nr. 8, p. 587-595spa
dc.relation.referencesMan, C. D. ; Micheletto, F. ; Lv, D. ; Breton, M. ; B., Kovatchev ; Cobelli, C.: The UVA/PADOVA type 1 diabetes simulator: new features. En: Journal of diabetes science and technology 8 (2014), Nr. 1, p. 26-34spa
dc.relation.referencesMarchetti, G. ; Barolo, M. ; Jovanovic, L. ; H, Zisser. ; Seborg, D.E.: An improved PID switching control strategy for type 1 diabetes. En: IEEE Trans Biomed Eng 55 (2006), Nr. 3, p. 857-865. ISBN 1424400333spa
dc.relation.referencesMayne, D.Q.: Model predictive control: Recent developments and future promise. En: Automatica 50 (2014), Nr. 12, p. 2967-2986spa
dc.relation.referencesMedtronic. MiniMed 530G System. https://www.medtronicdiabetes.com/products/minimed-530g-diabetes-system-with-enlitespa
dc.relation.referencesMessori, Mirko ; Incremona, Gian P. ; Cobelli, Claudio ; Magni, Lalo: Individualized Model Predictive Control for the Artificial Pancreas. En: IEEE Control Systems Magazine 38 (2018), Nr. 1, p. 86-104spa
dc.relation.referencesMoscoso-Vasquez, Marcela ; Colmegna, Patricio ; Rosales, Nicolas ; Garelli, Fabricio ; Sanchez-Pena, Ricardo: Control-Oriented Model with Intra-PatientVariations for an Artificial Pancreas. En: IEEE Journal of Biomedical and Health Informatics 24 (2020), Nr. 9, p. 2681-2689spa
dc.relation.referencesMoscoso-Vasquez, Marcela ; Colmegna, Patricio ; Sanchez-Pena, Ricardo S.: Intra-patient dynamic variations in Type 1 Diabetes: A review. En: 2016 IEEE Conference on Control Applications (CCA) (2016), p. 416-421spa
dc.relation.referencesMuske, K. R. ; Badgwell, T. A.: Disturbance modeling for offset-free linear model predictive control. En: Journal of Process Control 12 (2002), Nr. 5, p. 617-632spa
dc.relation.referencesNath, Anirudh ; Deb, Dipankar ; Dey, Rajeeb ; Das, Sipon: Blood glucose regulation in type 1 diabetic patients: an adaptive parametric compensation control-based approach. En: IET Systems Biology 12 (2018), Nr. 5, p. 219-225spa
dc.relation.referencesNaumova, V. ; Pereverzyev, S. V. ; Sampath, S.: A meta-learning approach to the regulatrized learning - case study: Blood glucose prediction. En: Neural Networks 33 (2012), p. 181 - 193spa
dc.relation.referencesOviedo, Silvia ; Vehi, Josep ; Calm, Remei ; Armengol, Joaquim: A review of personalized blood glucose prediction strategies for T1DM patients. En: International Journal for Numerical Methods in Biomedical Engineering 33 (2017), Nr. 6, p. e2833spa
dc.relation.referencesPannocchia, G.; Rawlings, J. B.: Disturbance Models for Offset-Free Model Predictive Control. En: AIChE Journal 49 (2003), Nr. 2, p. 426-437spa
dc.relation.referencesPannocchia, Grabriele: Offset-free tracking MPC: A tutorial review and comparison of different formulations. En: 2015 European Control Conference (ECC) (2015), p. 527-532spa
dc.relation.referencesPannocchia, Grabriele ; Gabiccini, Marco ; Artoni, Alessio: Offset-free MPC explained: novelties, subtleties, and applications. En: IFAC Papers Online 48 (2015), Nr. 23, p. 342-351spa
dc.relation.referencesPapadakis, Maxine A. ; McPhee, Stephen J. ; Rabow, Michael W.: Diagnostico cloinico y tratamiento. 56. McGraw-hill, 2017spa
dc.relation.referencesParker, Robert S. ; Doyle III, Francis J. ; Peppas, Nicholas A.: The intravenous route to blood glucose control. En: IEEE Engineering in Medicine and Biology 20 (1999), Nr. 1, p. 65-73spa
dc.relation.referencesParker, Robert S. ; Doyle III, Francis J. ; Peppas, Nicholas A.: A model-based algorithm for blood glucose control in type I diabetic patients. En: IEEE Transactions on Biomedical Engineering 46 (1999), Nr. 2, p. 148-157spa
dc.relation.referencesPercival, M.W. ; Bevier, W.C. ; Wang, Y. ; Dassau, E. ; Zisser, H.C. ; Jonovic, L. ; Doyle, F.J.: Modeling the effects of subcutaneous insulin administration and carbohydrate consumption on blood glucose. En: Journal of Diabetes Science and Technology 4 (2010), Nr. 5, p. 1214-1228spa
dc.relation.referencesPerriello, G. ; De Feo, P. ; Torlone, E. ; Fanelli, C. ; Santeusanio, F. ; Brunetti, P. ; Bolli, G. B.: The dawn phenomenon in Type 1 (insulin-dependent) diabetes mellitus: magnitude, frequency, variability, and dependency on glucose counterregulation and insulin sensitivity. En: Diabetologia 34 (1991), p. 21-28spa
dc.relation.referencesPinsker, J. E. ; Lee, E. ; Seborg, D. E. ; Bradley, P. K. ; Gondhalekar, R. ; Bevier, W. C. ; Huyett, L. ; Zisser, H. C. ; Doyle, F. J.: Randomized crossover comparison of personalized MPC and PID control algorithms for the artificial pancreas. En: Diabetes Care 39 (2016), Nr. 7, p. 1135-1142spa
dc.relation.referencesPinsker, Jordan E. ; Deshpande, Sunil ; McCrady-Spitzer, Shelly ; Church, Mei M. ; Kaur, Ravinder J. ; Perez, Jimena ; Desjardins, Donna ; Piper, Molly ; Reid, Corey ; Doyle, Francis J. ; Kudva, Yogish C. ; Dassau, Eyal: Use of the Interoperable Artificial Pancreas System for Type 1 Diabetes Management During Psychological Stress. En: Journal of Diabetes Science and Technology 15 (2020), Nr. 1, p. 184-185spa
dc.relation.referencesPombo, M. ; Aud, L. ; Bueno, M. ; Clazada, R. ; Cassoria, F. ; Dieguez, C. ; Ferrandez, A. ; Heinrich, J.J. ; Lanes, R. ; Moya, M. ; Sandrini, R. ; Tojo, R.: Tratado de endocrinología pediátrica. 4. Madrid: McGraw-Hill Interamericana, 2010spa
dc.relation.referencesPowers, Alvin C. ; DAlessio, David: Goodman and Gilman: Las bases farmacológicas de la terapéutica. 12. New York : McGraw-hill, 2012spa
dc.relation.referencesRawlings, J. B. ; Meadows, E. S. ; Muske, K. R.: Model predictive control: A tutorial and survey. En: IFAC Proceedings Volumes 27 (1994), Nr. 2, p. 185-197spa
dc.relation.referencesResalat, Navid ; El Youssef, Joseph ; Reddy, Ravi ; Castle, Jessica ; Jacobs, Peter G.: Adaptive tuning of basal and bolus insulin to reduce postprandial hypoglycemia in a hybrid Artificial pancreas. En: Journal of Process Control 80 (2019), p. 247-254spa
dc.relation.referencesRivadeneira, P. S. ; Gonzalez, A. H.: Non-zero set-point affine feedback control of impulsive systems with application to biomedical processes. En: International Journal of Systems Science 49 (2018), Nr. 15, p. 3082 - 3093spa
dc.relation.referencesRivadeneira, P. S. ; Moog, C. H.: Impulsive control of single-input nonlinear systems with application to HIV dynamics. En: Applied Mathematics and Computation 218 (2012), Nr. 17, p. 8462-8474spa
dc.relation.referencesRivadeneira, Pablo S. ; Ferramosca, Antonio ; Gonzalez, Alejandro H.: Control strategies for non-zero set-point regulation of linear impulsive systems. En: IEEE Transactions on Automatic Control 63 (2018), Nr. 9, p. 2994-3001spa
dc.relation.referencesRivadeneira, Pablo S. ; Moog, Claude H.: Observability criteria for impulsive control systems with applications to biomedical engineering processes. En: Automatica 55 (2015), p. 125-131spa
dc.relation.referencesRuan, Y. ; Wilinska, M. E. ; Thabit, H. ; Hovorka, R.: Modeling day-to-day variability of glucose-insulin regulation over 12-week home use of closed-loop insulin delivery. En: IEEE Transactions on Biomedical Engineering 64 (2017), Nr. 6, p. 1412-1419spa
dc.relation.referencesShi, Dawei ; Dassau, Eyal ; Doyle III, Francis J.: Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties. En: IEEE Transactions on Biomedical Engineering 66 (2019), Nr. 4, p. 1045-1054spa
dc.relation.referencesSimon, Dan: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. 1. New Jersey : Wiley Interscience, 2006spa
dc.relation.referencesSopasakis, P. ; P., Patrinos ; Haralambos, S. ; Bemporad, A.: Model predictive control for linear impulsive systems. En: IEEE Trasactions on Automatic Control 60 (2015), Nr. 8, p. 2277-2282spa
dc.relation.referencesSteil, Garry M.: Algorithms for a closed-loop Artificial pancreas: The case for proportional-integral-derivative control. En: Journal of Diabetes Science and Technology 7 (2013), Nr. 6, p. 1621-1631spa
dc.relation.referencesTedcastle, A. ; Illingworth, S. ; Brown, A. ; Seymour, L. W. ; Fisher, K. D.: Actin-resistant DNAse I Expression From Oncolytic Adenovirus Enadenotucirev Enhances Its Intratumoral Spread and Reduces Tumor Growth. En: Molecular Therapy 24 (2016), Nr. 4, p. 796-804spa
dc.relation.referencesTintinalli, Judith E. ; Stapczynski, Stephan ; Jhon Ma, O. ; Cline, David .. ; D., Meckler G. ; Cydulka, Rita K.: Tintinalli. Medicina de Urgencias. 7. New York : McGraw-Hill Interamericana, 2013spa
dc.relation.referencesTitze, Melanie I. ; Frank, Julia ; Ehrhardt, Michael ; Smola, Sigrun ; Graf, Norbert ; Lehr, Thorsten: A generic viral dynamic model to systematically characterize the interaction between oncolytic virus kinetics and tumor growth. En: European Journal of Pharmaceutical Sciences 97 (2017), p. 38 - 46. - ISSN 0928-0987spa
dc.relation.referencesToffanin, C. ; Zisser, H. ; Doyle, F. J. ; Dassau, E.: Dynamic insulin on board: Incorporation of circadian insulin sensitivity variation. En: Journal of Diabetes Science and Technology 7 (2013), Nr. 4, p. 928-940spa
dc.relation.referencesToffanin, Chiara ; Visentin, Roberto ; Messori, Federico D. ; Magni, Lalo ; Cobelli, Claudio: Toward a Run-to-Run Adaptive Artificial Pancreas: In Silico Results. En: IEEE Transactions on Biomedical Engineering 65 (2018), Nr. 3, p. 479-488spa
dc.relation.referencesTurksoy, Kamuran ; Bayrak, Elif S. ; Quinn, Lauretta ; Littlejohn, Elizabeth ; Cinar, Ali: Multivariable Adaptive Closed-Loop Control of an Artificial Pancreas Without Meal and Activity Announcement. En: Diabetes Technology and Therapeutics 15 (2013), Nr. 5, p. 386-400spa
dc.relation.referencesTurksoy, Kamuran ; Cinar, Ali: Adaptive Control of Artificial Pancreas Systems A Review. En: Journal of Healthcare Engineering 5 (2014), Nr. 1, p. 1-22spa
dc.relation.referencesUusi-Kerttula, Hanni ; Hulin-Curtis, Sarah ; Davies, James ; Parker, Alan L.: Oncolytic adenovirus: strategies and insights for vector design and immuno-oncolytic applications. En: Viruses 7 (2015), Nr. 11, p. 6009-6042spa
dc.relation.referencesVettoretti, Martina ; Facchinetti, Andrea ; Sparacino, Giovanni ; Cobelli, Claudio: Type-1 diabetes patient decision simulator for in silico testing safety and effectiveness of insulin treatments. En: IEEE Transactions on Biomedical Engineering 65 (2018), Nr. 6, p. 1281-1290spa
dc.relation.referencesWang, Youqing ; Dassau, Eyal ; Zisser, Howard ; Jovanovic, Lois ; Doyle III, Francis J.: Automatic Bolus and Adaptive Basal Algorithm for the Artificial Pancreatic beta-Cell. En: Diabetes Technology and Therapeutics 12 (2010), Nr. 11, p. 879-887spa
dc.relation.referencesXu, Bo ; Ma, Rui ; Russell, Luke ; Yoo, Ji Y. ; Han, Jianfeng ; Cui, Hanwei ; Yi, Ping ; Zhang, Jianying ; Nakashima, Hiroshi ; Dai, Hongsheng [u. a.]: An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma. En: Nature biotechnology 37 (2019), Nr. 1, p. 45-54spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembInsulina
dc.subject.lembDiabetes
dc.subject.proposalDiabetes mellitus tipo 1spa
dc.subject.proposalControl predictivo basado en modelospa
dc.subject.proposalcontrol adaptablespa
dc.subject.proposalControl con eliminación de offsetspa
dc.subject.proposalInsulina a bordospa
dc.subject.proposalPáncreas artificialspa
dc.subject.proposalType 1 diabeteseng
dc.subject.proposalModel predictive controleng
dc.subject.proposalAdaptive controleng
dc.subject.proposalOffset-free controleng
dc.subject.proposalInsulin on boardeng
dc.subject.proposalArtificial pancreaseng
dc.titleCompensación del efecto de variaciones fisiológicas en la glucemia de pacientes diabéticos tipo 1 utilizando control predictivo con entradas impulsivasspa
dc.title.translatedCompensation for the effect of physiological variations in blood glucose of type 1 diabetic patients using predictive control with impulsive inputseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo de un sistema integral de gestión y control de pacientes diabéticos tipo 1 para el tratamiento con y sin bomba de insulinaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152457490.2021.pdf
Tamaño:
5.54 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Automatización Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: