Compensación del efecto de variaciones fisiológicas en la glucemia de pacientes diabéticos tipo 1 utilizando control predictivo con entradas impulsivas
dc.contributor.advisor | Rivadeneira Paz, Pablo Santiago | |
dc.contributor.author | Villa Tamayo, María Fernanda | |
dc.contributor.researchgroup | GRUPO DE INVESTIGACIÓN EN TECNOLOGÍAS APLICADAS - GITA | spa |
dc.date.accessioned | 2021-05-20T15:04:50Z | |
dc.date.available | 2021-05-20T15:04:50Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Los pacientes con diabetes mellitus tipo 1 requieren de un tratamiento estricto para regular la concentración de glucosa en la sangre dentro del rango de normoglucemia. Uno de los tratamientos actuales es el conocido como ``Páncreas Artificial”, conformado por un sensor continuo de glucosa, una bomba de infusión continua de insulina y un algoritmo de control, para emular el comportamiento natural del páncreas. Sin embargo, pese al desarrollo de diferentes estrategias de control, las variaciones fisiológicas en un paciente continúan afectando la regulación adecuada de la glucemia. Estas variaciones conllevan a un cambio de los requerimientos de insulina en el transcurso del día, por lo que se hace necesario compensar el efecto de las variaciones fisiológicas en la glucemia para evitar una sobredosis o insuficiencia de insulina que resulta en hipoglucemia o hiperglucemia respectivamente. En esta tesis de maestría, se estudia el problema de regulación de la glucemia bajo un esquema de control predictivo basado en modelo (MPC, por sus siglas en inglés) para compensar el efecto de las variaciones fisiológicas en la glucemia del paciente. Con este fin se parte de una explicación detallada de la homeostasis de la glucosa, la diabetes mellitus y un modelo que describe adecuadamente las dinámicas de la glucosa incluyendo la absorción de insulina y carbohidratos en los pacientes con esta enfermedad. Tras esto, se desarrolla un MPC con garantía de eliminación de offset, cuyo objetivo es contrarrestar variaciones constantes de la planta usando la estimación del error planta-modelo. A continuación, se desarrollan dos estrategias para mejorar el esquema de control. El primer acercamiento es un MPC con matrices de penalización adaptable con base en el valor de la glucemia, su tasa de cambio y la estimación del error planta-modelo. El segundo acercamiento consiste en la inclusión de la estimación de la insulina a bordo para evitar el acumulamiento de insulina en el cuerpo que puede causar eventos de hipoglucemia. Ambos acercamientos se evalúan en escenarios en donde se generan diferentes cambios paramétricos en la planta para simular las variaciones fisiológicas, además de la inclusión de comidas anunciadas y no anunciadas, y ruido en el sensor. Adicionalmente, para las estrategias de control, se considera un esquema con entradas impulsivas debido a la corta duración de las inyecciones de insulina en relación al tiempo de muestreo del sistema. | spa |
dc.description.abstract | Subjects with type 1 diabetes mellitus require a strict treatment to regulate the blood glucose concentration within the normoglycemic range. One of the current treatments is known as ``Artificial Pancreas", consisting of a continuous glucose monitor, a continuous insulin infusion pump, and a control algorithm, to emulate the natural behavior of the pancreas. However, despite the development of different control strategies, physiological variations in a patient continue to affect the adequate regulation of glycemia. These variations lead to a change in insulin requirements throughout the day, thus, it is necessary to compensate for the effect of physiological variations in blood glucose to avoid an overdose or insufficiency of insulin that results in hypoglycemia or hyperglycemia, respectively. In this master's thesis, the problem of glycemic regulation is studied under a model predictive control (MPC) scheme to compensate for the effect of physiological variations in the patient's blood glucose. To this end, a detailed explanation of glucose homeostasis, diabetes mellitus, and a model that adequately describes the dynamics of glucose including insulin and carbohydrate absorption in patients with this disease are presented. Afterwards, an offset-free MPC is developed whose objective is to counteract constant variations of the plant using the estimation of the plant-model error. Next, two strategies are developed to improve the control scheme. The first approach is an MPC with adaptive penalty matrices based on the value of blood glucose, its rate of change, and the estimation of the plant-model error. The second approach consists of including the insulin-on-board estimation to avoid insulin stacking in the body that can cause hypoglycemic events. Both approaches are evaluated in scenarios where different parametric changes are generated in the plant to simulate physiological variations, in addition to the inclusion of announced and unannounced meals, and sensor noise. Additionally, a scheme with impulsive inputs is considered for the control strategies due to the short duration of the insulin injections in relation to the sampling time of the system. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ingeniería - Automatización Industrial | spa |
dc.description.researcharea | Ingeniería Biomédica | spa |
dc.format.extent | 132 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https:/repositorio.una.edu.co | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79540 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Departamento de Ingeniería Eléctrica y Automática | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | Abu-Rmileh, Amjad ; Garcia-Gabin, Winston: A Gain-Scheduling Model Predictive Controller for Blood Glucose Control in Type 1 Diabetes. En: IEEE Transactions on Biomedical Engineering 57 (2010), Nr. 10, p. 2478-2484 | spa |
dc.relation.references | Abuin, P. ; Rivadeneira, Pablo S. ; Ferramosca, Alejandro ; González, Alejandro:Artificial pancreas under stable pulsatile MPC: improving the closed-loop performance. En: Journal of Process Control 92 (2020), p. 246- 260 | spa |
dc.relation.references | Ayers, Gregory D. ; McKinley, Eliot T. ; Zhao, Ping ; Fritz, Jordan M. ; Metry, Rebecca E. ; Deal, Brenton C. ; Adlerz, Katrina M. ; Coffey, Robert J. ; Manning, H C.: Volume of preclinical xenograft tumors is more accurately assessed by ultrasound imaging than manual caliper measurements. En: Journal of Ultrasound in Medicine 29 (2010), Nr. 6, p. 891-901 | spa |
dc.relation.references | Bailey, Timothy S. ; Grunberger, George ; Bode, Bruce W. ; Handelsman, Yehuda ; Hirsch, Irl B. ; Jovanovic, Lois ; Lawrence Roberts, Victor ; Rodbard, David ; Tamborlane, William V. ; Walsh, John: American Association of Clinical Endocrinologists and American College of Endocrinology 2016 Outpatient Glucose Monitoring Consensus Statement. En: Endocrine Practice 22 (2016), Nr. 2, p. 231-261 | spa |
dc.relation.references | Baker, Alexander T. ; Aguirre-Hernández, Carmen ; Halldén, Gunnel ; Parker, Alan L.: Designer oncolytic adenovirus: coming of age. En: Cancers 10 (2018), Nr. 6, p. 201 | spa |
dc.relation.references | Barish, Syndi ; Ochs, Michael F. ; Sontag, Eduardo D. ; Gevertz, Jana L.: Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy. En: Proceedings of the National Academy of Sciences 114 (2017), Nr. 31, p. E6277-E6286. ISSN 0027-8424 | spa |
dc.relation.references | Betti, Giulio ; Farina, Marcello ; Scattolini, Riccardo: A robust MPC algorithm for o_set-free tracking of constant reference signals. En: IEEE Transactions on AutomaticControl 58 (2013), Nr. 9, p. 2394-2400 | spa |
dc.relation.references | Bock, A. ; Francois, G. ; Gillet, D.: A therapy parameter-based model for predicting blood glucose concentrations in patients with type 1 diabetes. En: Computer methods and programs in biomedicine 118 (2015), Nr. 2, p. 107-123 | spa |
dc.relation.references | Boianelli, A. ; Sharma-Chawla, N. ; Bruder, D. ; Hernandez-Vargas, E. A.: Oseltamivir PK/PD modeling and simulation to evaluate treatment strategies against Inuenza-Pneumococcus coinfection. En: Frontiers in Cellular and Infection Microbiology 6 (2016), Nr. 60, p. 1-11 | spa |
dc.relation.references | Brown, Sue A. ; the others: Six-Month Randomized, Multicenter Trial of Closed Loop Control in Type 1 Diabetes. En: New England Journal of Medicine 381 (2019), oct, Nr. 18, p. 1707-1717. ISSN 0028-4793 | spa |
dc.relation.references | Caicedo, Michelle A.: Control predictivo robusto basado en modelo para sistemas impulsivos: Aplicación al tratamiento de diabetes mellitus tipo 1, Universidad Nacional de Colombia, Tesis de Grado, 2018 | spa |
dc.relation.references | Cassidy, Tyler ; Craig, Morgan: Determinants of combination GM-CSF immunotherapy and oncolytic virotherapy success identified through in silico treatment personalization. En: PLOS Computational Biology 15 (2019), 11, Nr. 11, p. 1-16 | spa |
dc.relation.references | Chang, H. ; Astolfi, A. ; Shim, H.: A control theoretic approach to malaria immunotherapy with state jumps. En: Automatica 47 (2011), p. 1271-1277 | spa |
dc.relation.references | Chis, Oana T. ; Banga, Julio R. ; Balsa-Canto, Eva: Structural identi_ability of systems biology models: A critical comparison of methods. En: PLoS ONE 6 (2011), Nr. 11. - ISSN 19326203 | spa |
dc.relation.references | Cobelli, Claudio ; the others.: Diabetes: Models, Signals, and Control Claudio. En: IEEE Rev Biomed Eng 2 (2009), p. 54-96 | spa |
dc.relation.references | Dassau, E. ; the others: Twelve-week 24/7 ambulatory artificial pancreas with weekly adaptation of insulin delivery settings: Effect on hemoglobin A1c and hypoglycemia. En: Diabetes Care 40 (2017), Nr. 12, p. 1719-1726 | spa |
dc.relation.references | Dassau, Eyal ; Zisser, Howard ; Harvey, Rebecca A. ; Percival, Matthew W. ; Grosman, Benyamin ; Bevier, Wendy ; Atlas, Eran ; Miller, Shahar ; Nimri, Revital ; Jovanovic, Lois ; Doyle III, Francis J.: Clinical evaluation of a personalized Artificial pancreas. En: Diabetes Care 36 (2013), Nr. 4, p. 801-809 | spa |
dc.relation.references | Davison, E. J. ; Smith, H. W.: Pole assignment in linear time-invariant multivariable systems with constant disturbances. En: Automatica 7 (1971), Nr. 4, p. 489-498 | spa |
dc.relation.references | Donga, Esther ; Van Dijk, Marieke ; Van Dijk, J. G. ; Biermasz, Nienke R. Lammers, Gert J. ; Van Kralingen, Klaas ; Hoogma, Roel P. ; Corssmit, Eleonora P. ; Romijn, Johannes A.: Partial sleep restriction decreases insulin sensitivity in type 1 diabetes. En: Diabetes Care 33 (2010), Nr. 7, p. 1573-1577 | spa |
dc.relation.references | Doyle III, Francis J. ; Huyett, Lauren M. ; Lee, Joon B. ; Zisser, Howard C. ; Dassau, Eyal: Closed-loop Artificial pancreas systems: Engineering the algorithms. En: Diabetes Care 37 (2014), Nr. 5, p. 1191-1197 | spa |
dc.relation.references | Dyer, Arthur ; Baugh, Richard ; Chia, Suet L. ; Frost, Sally ; Jacobus, Egon J. ; Khalique, Hena ; Pokrovska, Tzveta D. ; Scott, Eleanor M. ; Taverner, William K. ; Seymour, Len W. [u. a.]: Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference. En: Cancer gene therapy 26 (2019), Nr. 3, p. 59-73 | spa |
dc.relation.references | Eftimie, Raluca ; Eftimie, G: Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics. En: Letters in Biomathematics 5 (2018), Nr. sup1, p. S6-S35 | spa |
dc.relation.references | El Fathi, Anas ; Smaoui, Mohamed R. ; Gingras, V_eronique ; Boulet, Benoit ; Haidar, Ahmad: The Artificial Pancreas and meal control: An overview of postprandial glucose regulation in type 1 diabetes. En: IEEE Control Systems Magazine 38 (2018), Nr. 1, p. 67-85 | spa |
dc.relation.references | Ellingsen, Christian ; the others: Safety constraints in an Artificial pancreatic cell: An implementation of model predictive control with insulin on board. En: Journal of Diabetes Science and Technology 3 (2009), Nr. 3, p. 536-544. - ISSN 19322968 | spa |
dc.relation.references | Eren-Oruklu, M. ; Cinar, A. ; Quinn, L. ; Smith, D.: Adaptive Control Strategy for Regulation of Blood Glucose Levels in Patients with Type 1 Diabetes. En: Journal of Process Control 19 (2009), Nr. 8, p. 1333-1346 | spa |
dc.relation.references | Farabi, Sarah S.: Type 1 diabetes and sleep. En: Diabetes Spectrum 29 (2016), Nr.1, p. 10-13 | spa |
dc.relation.references | Federation, International D. IDF Diabetes Atlas: Ninth edition 2019. https://www.diabetesatlas.org/en/resources/ | spa |
dc.relation.references | Feldman, John P. ; Goldwasser, Ron ; Mark, Shlomo ; Schwartz, Jeremy ; Orion, Itzhak: A mathematical model for tumor volume evaluation using twodimensions. En: J appl quant methods 4 (2009), Nr. 4, p. 455-462 | spa |
dc.relation.references | Ferramosca, A. ; Gonzalez, A.H. ; Odloak, D. ; Camacho, E.F.: MPC for tracking target sets. En: Proceedings of the 48h IEEE Conference on Decision and Control held jointly with 2009 28th Chinese Control Conference (2009), p. 8020-8025 | spa |
dc.relation.references | Ferramosca, A. ; Limon, D. ; Gonzalez, A.H. ; Odloak, D. ; Camacho, E.F.: MPC for tracking zone regions. En: Journal of Process Control 20 (2010), Nr. 4, p. 506-516 | spa |
dc.relation.references | F.G., Banting ; C.H., Best ; Collip, J.B. ; Campbell, W.R. ; A.A., Fletcher: Pancreatic extract in the treatment of diabetes mellitus. En: The Canadian Medical Association Journal 12 (1922), Nr. 3, p. 141-146 | spa |
dc.relation.references | Food ; Administration, Drug. FDA approves automated insulin delivery and monitoring system for use in younger pediatric patients. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm611475.htm. 2018 | spa |
dc.relation.references | Fushimi, Emilia ; the others: Artificial pancreas clinical trials: Moving towards closed-loop control using insulin-on-board constraints. En: Biomedical Signal Processing and Control 45 (2018), p. 1-9. - ISSN 17468108 | spa |
dc.relation.references | Garcia-Tirado, Jose ; Zuluaga-Bedoya, Christian ; Breton, Marc D.: Identifiability Analysis of Three Control-Oriented Models for Use in Artificial Pancreas Systems. En: Journal of Diabetes Science and Technology 12 (2018), Nr. 5, p. 937- 952. - ISBN 1932296818788 | spa |
dc.relation.references | Gingras, Veronique ; the others: E_cacy of Dual-Hormone Artificial Pancreas to Alleviate the Carbohydrate Counting Burden in Type 1 Diabetes: Randomized Crossover Trial. En: Canadian Journal of Diabetes 38 (2014), Nr. 5, p. S12-S13. ISSN 14992671 | spa |
dc.relation.references | Gonder-Frederick, Linda A. ; Grabman, Jesse H. ; Kovatchev, Boris ; Brown, Sue A. ; Patek, Stephen ; Basu, Ananda ; Pinsker, Jordan E. ; Kudva, Yogish C. ; Wakeman, Christian A. ; Dassau, Eyal ; Cobelli, Claudio ; Zisser, Howard C. ; Doyle, Francis J.: Is Psychological Stress a Factor for Incorporation into Future Closed-Loop Systems? En: Journal of Diabetes Science and Technology 10 (2016), Nr. 3, p. 640-646 | spa |
dc.relation.references | Gondhalekar, R. ; Dassau, E. ; Doyle, F. J.: Periodic zone-MPC with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes. En: Automatica 71 (2016), p. 237-246 | spa |
dc.relation.references | Grosman, Benyamin ; Dassau, Eyal ; Zisser, Howard ; Jovanovic, Lois ; Doyle III, Fracis J.: Multi-zone-MPC: Clinical inspired control algorithm for the Artificial pancreas. En: IFAC Proceedings Volumes (IFAC-PapersOnline) 44 (2011), p. 7120-7125 | spa |
dc.relation.references | Grosman, Benyamin ; Wu, Di ; Miller, Diana ; Lintereur, Louis ; Roy, Anirban ; Parikh, Neha ; Kaufman, Francine R.: Sensor-augmented pump-based customized mathematical model for type 1 diabetes. En: Diabetes Technology and Therapeutics 20 (2018), Nr. 3, p. 207-221 | spa |
dc.relation.references | Haidar, Ahmad: The Artificial Pancreas: How closed-loop control is revolutionizing diabetes. En: IEEE Control Systems 36 (2016), Nr. 5, p. 28-47 | spa |
dc.relation.references | Hajizadeh, Iman ; Samadi, Sediqeh ; Sevil, Mert ; Rashid, Mudassir ; Cinar, Ali: Performance Assessment and Modification of an Adaptive Model Predictive Control for Automated Insulin Delivery by a Multivariable Artificial Pancreas. En: Industrial and Engineering Chemistry Research 58 (2019), Nr. 26, p. 11506-11520 | spa |
dc.relation.references | Hovorka, R.: Continuous glucose monitoring and closed-loop systems. En: Diabetic Medicine 23 (2005), Nr. 1, p. 1-12 | spa |
dc.relation.references | Hovorka, Roman ; the others: Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. En: The Lancet 375 (2010), Nr. 9716, p. 743-751 | spa |
dc.relation.references | Incremona, Gian P. ; Messori, Mirko ; Toffanin, Chiara ; Cobelli, Claudio ; Magni, Lalo: Model predictive control with integral action for Artificial pancreas. En: Control Engineering Practice 77 (201), p. 86-94 | spa |
dc.relation.references | JDRF. Artificial Pancreas. https://www.jdrf.org/research/Artificial-pancreas/ | spa |
dc.relation.references | Jenner, Adrianne L. ; Kim, Peter S. ; Frascoli, Federico: Oncolytic virotherapy for tumours following a Gompertz growth law. En: J Theor Biol 480 (2019), p. 129-140 | spa |
dc.relation.references | Jenner, Adrianne L. ; Yun, Chae-Ok ; Kim, Peter S. ; Coster, Adelle C.: Mathematical modelling of the interaction between cancer cells and an oncolytic virus: insights into the effects of treatment protocols. En: Bulletin of mathematical biology 80 (2018), Nr. 6, p. 1615-1629 | spa |
dc.relation.references | Kasper, Dennis L. ; Braunwald, Eugene ; Faucy, Antony S. ; Hauser, Stephen L. ; Longo, Dan L. ; Jameson, J. L.: Harrisons Principles of Internal Medicine. 19. New York : McGraw-hill, 2006 | spa |
dc.relation.references | Kelly, Elizabeth ; Russell, Stephen J.: History of oncolytic viruses: genesis to genetic engineering. En: Molecular Therapy 15 (2007), Nr. 4, p. 651-659 | spa |
dc.relation.references | Khalil, Hassan K.: Nonlinear systems. 2. Prentice Hall, 1996 | spa |
dc.relation.references | Khodaei, M. J. ; Candelino, N. ; Mehrvarz, A. ; Jalili, N.: Physiological Closed Loop Control (PCLC) Systems: Review of a Modern Frontier in Automation. En: IEEE Access 8 (2020), Nr. 1, p. 23965-24005 | spa |
dc.relation.references | Kim, Pyung-Hwan ; Sohn, Joo-Hyuk ; Choi, Joung-Woo ; Jung, Yukyung ; Kim, Sung W. ; Haam, Seungjoo ; Yun, Chae-Ok: Active targeting and safety profile of PEG-modified adenovirus conjugated with herceptin. En: Biomaterials 32 (2011), Nr. 9, p. 2314 - 2326. - ISSN 0142-9612 | spa |
dc.relation.references | Komarova, Natalia L. ; Wodarz, Dominik: ODE models for oncolytic virus dynamics. En: Journal of Theoretical Biology 263 (2010), Nr. 4, p. 530 - 543. - ISSN 0022-5193 | spa |
dc.relation.references | Kovatchev, Boris ; the others: Randomized Controlled Trial of Mobile Closed Loop Control. En: Diabetes Care (2020) | spa |
dc.relation.references | Lal, Rayhan A. ; Ekhlaspour, Laya ; Hood, Korey ; Buckingham, Bruce: Realizing a Closed-Loop (Artificial Pancreas) System for the Treatment of Type 1 Diabetes. En: Endocrine Reviews 40 (2019), Nr. 6, p. 1521-1546. - ISBN 0000000280 | spa |
dc.relation.references | Larson, Christopher ; Oronsky, Bryan ; Scicinski, Jan ; Fanger, Gary R. ; Stirn, Meaghan ; Oronsky, Arnold ; Reid, Tony R.: Going viral: a review of replicationselective oncolytic adenoviruses. En: Oncotarget 6 (2015), Nr. 24, p. 19976 | spa |
dc.relation.references | Leon-Vargas, Fabian ; Garelli, Fabricio ; De Battista, Hernan ; Vehi, Josep: Postprandial blood glucose control using a hybrid adaptive PD controller with insulin-on-board limitation. En: Biomedical Signal Processing and Control 8 (2013), Nr. 6, p. 724-732. - ISSN 17468094 | spa |
dc.relation.references | Li, Lizhi ; Liu, Shixin ; Han, Duoduo ; Tang, Bin ; Ma, Jian: Delivery and Biosafety of Oncolytic Virotherapy. En: Frontiers in Oncology 10 (2020), p. 475 | spa |
dc.relation.references | Luo, R. ; Piovoso, M. J. ; Martinez-Picado, J. ; Zurakowski, R.: Optimal antiviral switching to minimize resistance risk in HIV therapy. En: PLoS ONE 6 (2011), Nr. 11, p. e27047 | spa |
dc.relation.references | Maahs, David M. ; Buckingham, Bruce A. ; Castle, Jessica R. ; Cinar, Ali ; Damiano, Edward R. ; Dassau, Eyal ; Hans De Vries, J. ; Doyle, Francis J. ; Griffen, Steven C. ; Haidar, Ahmad ; Heinemann, Lutz ; Hovorka, Roman ; Jones, Timothy W. ; Kollman, Craig ; Kovatchev, Boris ; Levy, Brian L. ; Nimri, Revital ; ONeal, David N. ; Philip, Moshe ; Renard, Eric ; Russell, Steven J. ; Weinzimer, Stuart A. ; Zisser, Howard ; Lum, John W.: Outcome measures for artificial pancreas clinical trials: A consensus report. En: Diabetes Care 39 (2016), Nr. 7, p. 1175-1179 | spa |
dc.relation.references | Madrid, Asociación D. Historia del tratamiento de la diabetes. https://diabetesmadrid.org/historia-del-tratamiento-de-la-diabetes/ | spa |
dc.relation.references | Maeder, Urban ; Borrelli, Francesco ; Morari, Manfred: Linear offset-free model predictive control. En: Automatica 45 (2009), Nr. 10, p. 2214-2222 | spa |
dc.relation.references | Magdelaine, Nicolas ; Chaillous, Lucy ; Guilhem, Isabelle ; Poirier, Jean-Yves ; Krempf, Michel ; Moog, Claude H.: A long-term model of the glucose-insulin dynamics of type 1 diabetes. En: IEEE Transactions on Biomedical Engineering 62 (2015), Nr. 6, p. 1546-1552 | spa |
dc.relation.references | Magdelaine, Nicolas ; the others: Hypoglycaemia-free Artificial pancreas project. En: IET Systems Biology 14 (2019), Nr. 1, p. 16-23. - ISSN 1751-8849 | spa |
dc.relation.references | Mahasa, Khaphetsi J. ; Eladdadi, Amina ; De Pillis, Lisette ; Ouifki, Rachid: Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach. En: Plos one 12 (2017), Nr. 9, p. e0184347 | spa |
dc.relation.references | Mallad, Ashwini ; Hinshaw, Ling ; Dalla Man, Chiara ; Cobelli, Claudio ; Basu,Rita ; Lingineni, Ravi ; Carter, Rickey E. ; Kudva, Yogish C. ; Basu, Ananda: Nocturnal Glucose Metabolism in Type 1 Diabetes: A Study Comparing Single Versus Dual Tracer Approaches. En: Diabetes Technology and Therapeutics 17 (2015), Nr. 8, p. 587-595 | spa |
dc.relation.references | Man, C. D. ; Micheletto, F. ; Lv, D. ; Breton, M. ; B., Kovatchev ; Cobelli, C.: The UVA/PADOVA type 1 diabetes simulator: new features. En: Journal of diabetes science and technology 8 (2014), Nr. 1, p. 26-34 | spa |
dc.relation.references | Marchetti, G. ; Barolo, M. ; Jovanovic, L. ; H, Zisser. ; Seborg, D.E.: An improved PID switching control strategy for type 1 diabetes. En: IEEE Trans Biomed Eng 55 (2006), Nr. 3, p. 857-865. ISBN 1424400333 | spa |
dc.relation.references | Mayne, D.Q.: Model predictive control: Recent developments and future promise. En: Automatica 50 (2014), Nr. 12, p. 2967-2986 | spa |
dc.relation.references | Medtronic. MiniMed 530G System. https://www.medtronicdiabetes.com/products/minimed-530g-diabetes-system-with-enlite | spa |
dc.relation.references | Messori, Mirko ; Incremona, Gian P. ; Cobelli, Claudio ; Magni, Lalo: Individualized Model Predictive Control for the Artificial Pancreas. En: IEEE Control Systems Magazine 38 (2018), Nr. 1, p. 86-104 | spa |
dc.relation.references | Moscoso-Vasquez, Marcela ; Colmegna, Patricio ; Rosales, Nicolas ; Garelli, Fabricio ; Sanchez-Pena, Ricardo: Control-Oriented Model with Intra-PatientVariations for an Artificial Pancreas. En: IEEE Journal of Biomedical and Health Informatics 24 (2020), Nr. 9, p. 2681-2689 | spa |
dc.relation.references | Moscoso-Vasquez, Marcela ; Colmegna, Patricio ; Sanchez-Pena, Ricardo S.: Intra-patient dynamic variations in Type 1 Diabetes: A review. En: 2016 IEEE Conference on Control Applications (CCA) (2016), p. 416-421 | spa |
dc.relation.references | Muske, K. R. ; Badgwell, T. A.: Disturbance modeling for offset-free linear model predictive control. En: Journal of Process Control 12 (2002), Nr. 5, p. 617-632 | spa |
dc.relation.references | Nath, Anirudh ; Deb, Dipankar ; Dey, Rajeeb ; Das, Sipon: Blood glucose regulation in type 1 diabetic patients: an adaptive parametric compensation control-based approach. En: IET Systems Biology 12 (2018), Nr. 5, p. 219-225 | spa |
dc.relation.references | Naumova, V. ; Pereverzyev, S. V. ; Sampath, S.: A meta-learning approach to the regulatrized learning - case study: Blood glucose prediction. En: Neural Networks 33 (2012), p. 181 - 193 | spa |
dc.relation.references | Oviedo, Silvia ; Vehi, Josep ; Calm, Remei ; Armengol, Joaquim: A review of personalized blood glucose prediction strategies for T1DM patients. En: International Journal for Numerical Methods in Biomedical Engineering 33 (2017), Nr. 6, p. e2833 | spa |
dc.relation.references | Pannocchia, G.; Rawlings, J. B.: Disturbance Models for Offset-Free Model Predictive Control. En: AIChE Journal 49 (2003), Nr. 2, p. 426-437 | spa |
dc.relation.references | Pannocchia, Grabriele: Offset-free tracking MPC: A tutorial review and comparison of different formulations. En: 2015 European Control Conference (ECC) (2015), p. 527-532 | spa |
dc.relation.references | Pannocchia, Grabriele ; Gabiccini, Marco ; Artoni, Alessio: Offset-free MPC explained: novelties, subtleties, and applications. En: IFAC Papers Online 48 (2015), Nr. 23, p. 342-351 | spa |
dc.relation.references | Papadakis, Maxine A. ; McPhee, Stephen J. ; Rabow, Michael W.: Diagnostico cloinico y tratamiento. 56. McGraw-hill, 2017 | spa |
dc.relation.references | Parker, Robert S. ; Doyle III, Francis J. ; Peppas, Nicholas A.: The intravenous route to blood glucose control. En: IEEE Engineering in Medicine and Biology 20 (1999), Nr. 1, p. 65-73 | spa |
dc.relation.references | Parker, Robert S. ; Doyle III, Francis J. ; Peppas, Nicholas A.: A model-based algorithm for blood glucose control in type I diabetic patients. En: IEEE Transactions on Biomedical Engineering 46 (1999), Nr. 2, p. 148-157 | spa |
dc.relation.references | Percival, M.W. ; Bevier, W.C. ; Wang, Y. ; Dassau, E. ; Zisser, H.C. ; Jonovic, L. ; Doyle, F.J.: Modeling the effects of subcutaneous insulin administration and carbohydrate consumption on blood glucose. En: Journal of Diabetes Science and Technology 4 (2010), Nr. 5, p. 1214-1228 | spa |
dc.relation.references | Perriello, G. ; De Feo, P. ; Torlone, E. ; Fanelli, C. ; Santeusanio, F. ; Brunetti, P. ; Bolli, G. B.: The dawn phenomenon in Type 1 (insulin-dependent) diabetes mellitus: magnitude, frequency, variability, and dependency on glucose counterregulation and insulin sensitivity. En: Diabetologia 34 (1991), p. 21-28 | spa |
dc.relation.references | Pinsker, J. E. ; Lee, E. ; Seborg, D. E. ; Bradley, P. K. ; Gondhalekar, R. ; Bevier, W. C. ; Huyett, L. ; Zisser, H. C. ; Doyle, F. J.: Randomized crossover comparison of personalized MPC and PID control algorithms for the artificial pancreas. En: Diabetes Care 39 (2016), Nr. 7, p. 1135-1142 | spa |
dc.relation.references | Pinsker, Jordan E. ; Deshpande, Sunil ; McCrady-Spitzer, Shelly ; Church, Mei M. ; Kaur, Ravinder J. ; Perez, Jimena ; Desjardins, Donna ; Piper, Molly ; Reid, Corey ; Doyle, Francis J. ; Kudva, Yogish C. ; Dassau, Eyal: Use of the Interoperable Artificial Pancreas System for Type 1 Diabetes Management During Psychological Stress. En: Journal of Diabetes Science and Technology 15 (2020), Nr. 1, p. 184-185 | spa |
dc.relation.references | Pombo, M. ; Aud, L. ; Bueno, M. ; Clazada, R. ; Cassoria, F. ; Dieguez, C. ; Ferrandez, A. ; Heinrich, J.J. ; Lanes, R. ; Moya, M. ; Sandrini, R. ; Tojo, R.: Tratado de endocrinología pediátrica. 4. Madrid: McGraw-Hill Interamericana, 2010 | spa |
dc.relation.references | Powers, Alvin C. ; DAlessio, David: Goodman and Gilman: Las bases farmacológicas de la terapéutica. 12. New York : McGraw-hill, 2012 | spa |
dc.relation.references | Rawlings, J. B. ; Meadows, E. S. ; Muske, K. R.: Model predictive control: A tutorial and survey. En: IFAC Proceedings Volumes 27 (1994), Nr. 2, p. 185-197 | spa |
dc.relation.references | Resalat, Navid ; El Youssef, Joseph ; Reddy, Ravi ; Castle, Jessica ; Jacobs, Peter G.: Adaptive tuning of basal and bolus insulin to reduce postprandial hypoglycemia in a hybrid Artificial pancreas. En: Journal of Process Control 80 (2019), p. 247-254 | spa |
dc.relation.references | Rivadeneira, P. S. ; Gonzalez, A. H.: Non-zero set-point affine feedback control of impulsive systems with application to biomedical processes. En: International Journal of Systems Science 49 (2018), Nr. 15, p. 3082 - 3093 | spa |
dc.relation.references | Rivadeneira, P. S. ; Moog, C. H.: Impulsive control of single-input nonlinear systems with application to HIV dynamics. En: Applied Mathematics and Computation 218 (2012), Nr. 17, p. 8462-8474 | spa |
dc.relation.references | Rivadeneira, Pablo S. ; Ferramosca, Antonio ; Gonzalez, Alejandro H.: Control strategies for non-zero set-point regulation of linear impulsive systems. En: IEEE Transactions on Automatic Control 63 (2018), Nr. 9, p. 2994-3001 | spa |
dc.relation.references | Rivadeneira, Pablo S. ; Moog, Claude H.: Observability criteria for impulsive control systems with applications to biomedical engineering processes. En: Automatica 55 (2015), p. 125-131 | spa |
dc.relation.references | Ruan, Y. ; Wilinska, M. E. ; Thabit, H. ; Hovorka, R.: Modeling day-to-day variability of glucose-insulin regulation over 12-week home use of closed-loop insulin delivery. En: IEEE Transactions on Biomedical Engineering 64 (2017), Nr. 6, p. 1412-1419 | spa |
dc.relation.references | Shi, Dawei ; Dassau, Eyal ; Doyle III, Francis J.: Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties. En: IEEE Transactions on Biomedical Engineering 66 (2019), Nr. 4, p. 1045-1054 | spa |
dc.relation.references | Simon, Dan: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. 1. New Jersey : Wiley Interscience, 2006 | spa |
dc.relation.references | Sopasakis, P. ; P., Patrinos ; Haralambos, S. ; Bemporad, A.: Model predictive control for linear impulsive systems. En: IEEE Trasactions on Automatic Control 60 (2015), Nr. 8, p. 2277-2282 | spa |
dc.relation.references | Steil, Garry M.: Algorithms for a closed-loop Artificial pancreas: The case for proportional-integral-derivative control. En: Journal of Diabetes Science and Technology 7 (2013), Nr. 6, p. 1621-1631 | spa |
dc.relation.references | Tedcastle, A. ; Illingworth, S. ; Brown, A. ; Seymour, L. W. ; Fisher, K. D.: Actin-resistant DNAse I Expression From Oncolytic Adenovirus Enadenotucirev Enhances Its Intratumoral Spread and Reduces Tumor Growth. En: Molecular Therapy 24 (2016), Nr. 4, p. 796-804 | spa |
dc.relation.references | Tintinalli, Judith E. ; Stapczynski, Stephan ; Jhon Ma, O. ; Cline, David .. ; D., Meckler G. ; Cydulka, Rita K.: Tintinalli. Medicina de Urgencias. 7. New York : McGraw-Hill Interamericana, 2013 | spa |
dc.relation.references | Titze, Melanie I. ; Frank, Julia ; Ehrhardt, Michael ; Smola, Sigrun ; Graf, Norbert ; Lehr, Thorsten: A generic viral dynamic model to systematically characterize the interaction between oncolytic virus kinetics and tumor growth. En: European Journal of Pharmaceutical Sciences 97 (2017), p. 38 - 46. - ISSN 0928-0987 | spa |
dc.relation.references | Toffanin, C. ; Zisser, H. ; Doyle, F. J. ; Dassau, E.: Dynamic insulin on board: Incorporation of circadian insulin sensitivity variation. En: Journal of Diabetes Science and Technology 7 (2013), Nr. 4, p. 928-940 | spa |
dc.relation.references | Toffanin, Chiara ; Visentin, Roberto ; Messori, Federico D. ; Magni, Lalo ; Cobelli, Claudio: Toward a Run-to-Run Adaptive Artificial Pancreas: In Silico Results. En: IEEE Transactions on Biomedical Engineering 65 (2018), Nr. 3, p. 479-488 | spa |
dc.relation.references | Turksoy, Kamuran ; Bayrak, Elif S. ; Quinn, Lauretta ; Littlejohn, Elizabeth ; Cinar, Ali: Multivariable Adaptive Closed-Loop Control of an Artificial Pancreas Without Meal and Activity Announcement. En: Diabetes Technology and Therapeutics 15 (2013), Nr. 5, p. 386-400 | spa |
dc.relation.references | Turksoy, Kamuran ; Cinar, Ali: Adaptive Control of Artificial Pancreas Systems A Review. En: Journal of Healthcare Engineering 5 (2014), Nr. 1, p. 1-22 | spa |
dc.relation.references | Uusi-Kerttula, Hanni ; Hulin-Curtis, Sarah ; Davies, James ; Parker, Alan L.: Oncolytic adenovirus: strategies and insights for vector design and immuno-oncolytic applications. En: Viruses 7 (2015), Nr. 11, p. 6009-6042 | spa |
dc.relation.references | Vettoretti, Martina ; Facchinetti, Andrea ; Sparacino, Giovanni ; Cobelli, Claudio: Type-1 diabetes patient decision simulator for in silico testing safety and effectiveness of insulin treatments. En: IEEE Transactions on Biomedical Engineering 65 (2018), Nr. 6, p. 1281-1290 | spa |
dc.relation.references | Wang, Youqing ; Dassau, Eyal ; Zisser, Howard ; Jovanovic, Lois ; Doyle III, Francis J.: Automatic Bolus and Adaptive Basal Algorithm for the Artificial Pancreatic beta-Cell. En: Diabetes Technology and Therapeutics 12 (2010), Nr. 11, p. 879-887 | spa |
dc.relation.references | Xu, Bo ; Ma, Rui ; Russell, Luke ; Yoo, Ji Y. ; Han, Jianfeng ; Cui, Hanwei ; Yi, Ping ; Zhang, Jianying ; Nakashima, Hiroshi ; Dai, Hongsheng [u. a.]: An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma. En: Nature biotechnology 37 (2019), Nr. 1, p. 45-54 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.lemb | Insulina | |
dc.subject.lemb | Diabetes | |
dc.subject.proposal | Diabetes mellitus tipo 1 | spa |
dc.subject.proposal | Control predictivo basado en modelo | spa |
dc.subject.proposal | control adaptable | spa |
dc.subject.proposal | Control con eliminación de offset | spa |
dc.subject.proposal | Insulina a bordo | spa |
dc.subject.proposal | Páncreas artificial | spa |
dc.subject.proposal | Type 1 diabetes | eng |
dc.subject.proposal | Model predictive control | eng |
dc.subject.proposal | Adaptive control | eng |
dc.subject.proposal | Offset-free control | eng |
dc.subject.proposal | Insulin on board | eng |
dc.subject.proposal | Artificial pancreas | eng |
dc.title | Compensación del efecto de variaciones fisiológicas en la glucemia de pacientes diabéticos tipo 1 utilizando control predictivo con entradas impulsivas | spa |
dc.title.translated | Compensation for the effect of physiological variations in blood glucose of type 1 diabetic patients using predictive control with impulsive inputs | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Desarrollo de un sistema integral de gestión y control de pacientes diabéticos tipo 1 para el tratamiento con y sin bomba de insulina | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1152457490.2021.pdf
- Tamaño:
- 5.54 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Automatización Industrial
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: