Optimización exergética de una planta de separación de aire en función de la demanda con integración energética

dc.contributor.advisorOrjuela, Alvaro
dc.contributor.authorMora Molano, Camilo Andres
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2021-05-03T16:38:13Z
dc.date.available2021-05-03T16:38:13Z
dc.date.issued2021
dc.descriptionIlustraciones, diagramas, graficas, tablasspa
dc.description.abstractLa tecnología de separación criogénica de aire es el método común para la producción de oxígeno, nitrógeno y argón puro a escala industrial. Sin embargo, el alto consumo de energía es el problema más importante para una operación rentable. El objetivo de este trabajo es realizar una simulación y optimización de una planta de destilación criogénica existente, ubicada en Tocancipá – Colombia, la cual presenta una alta integración térmica en su diseño, minimizando la intensidad de energía por kilogramo de productos líquidos. La comparación del consumo específico de energía entre la simulación y las condiciones industriales reales mostró errores relativos absolutos inferiores al 10.4% y respecto al manual de operación (EDM) del 9.4%, validando así el modelo simulado. Para identificar las principales variables que afectan la intensidad energética del proceso, se realizó un análisis de exergía de los principales equipos (intercambiador de múltiples etapas, compresor y columnas de destilación). La optimización empleó el método NSGA-II, utilizando de forma combinada el modelo simulado en Aspen Hysys y la optimización en Matlab. La optimización se realizó resolviendo el problema multiobjetivo de maximizar la eficiencia exergética y la relación de producción de argón, considerando una demanda variable. Finalmente se generan sugerencias basadas en criterios de seguridad, operacionales y financieras para mejorar el desempeño de la planta.spa
dc.description.abstractThe cryogenic air separation process is the most common technique for the production of pure oxygen, nitrogen and argon on an industrial scale. However, high energy consumption is a major problem for a profitable operation. The aim of this work is to perform a simulation and optimization from an existing air separation facility, located in Tocancipá - Colombia, with a high thermal integration in its design, that intends to minimize energy intensity per standard volume of the current processed air stream. The comparison of the specific energy consumption between simulation and real industrial conditions showed absolute relative error lower than 10.4% and regard to engineering manual (EDM) of 9.4%, thus validating the developed model. In order to identify the main variables affecting energy intensity, an exergy analysis of the main equipment (multi-stage exchanger, compressor and distillation columns). The optimization employs the NSGA-II method, carrying out a combination between the simulated model in Aspen Hysys and an optimization in MATLAB. The optimization involved solving a multi-objective problem of maximizing exergy efficiency and argon production ratio, considering a variable demand. Finally, suggestions are generated based on safety, operational and financial criteria to improve the performance of the plant.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaSimulación y Optimización de Procesosspa
dc.format.extent1 recurso en linea (167 paginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79463
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAlsultanny, Y. A., & Al-Shammari, N. N. (2014). Oxygen specific power consumption comparison for air separation units. Engineering Journal, 18(2), 67–80. https://doi.org/10.4186/ej.2014.18.2.67spa
dc.relation.referencesAnania, B. P. V, & Llc, L. (2006). Mergers & Acquisitions in the US Industrial Gas Business. PART II – THE MAJOR INDUSTRY SHAPERS.spa
dc.relation.referencesANDI. (2018). 7 Acciones Prioritarias. Cámara Sectorial de Gases Industriales y Medicinales.spa
dc.relation.referencesANDI. (2016). Presentación sector gases industriales y medicinales. In ANDI (Ed.), Cámara sectorial de gases industriales y medicinales.spa
dc.relation.referencesBanco de la República. (2017). Grupos económicos de Colombia. https://enciclopedia.banrepcultural.org/index.php/Grupos_económicos_en_Colombiaspa
dc.relation.referencesBriones, A., & Gutiérrez, C. (2018). Multiobjective Optimization of Chemical Processes with Complete Models using MATLAB and Aspen plus. Computacion y Sistemas, 22(4), 1157–1170. https://doi.org/10.13053/CyS-22-4-3087spa
dc.relation.referencesBritish Petroleum. (2020). The use of energy within industry shifts towards developing economies and lower carbon energy. https://www.bp.com/en/global/corporate/energy-economics/energy-outlook/demand-by-sector/industry.htmlspa
dc.relation.referencesCarlson, E. C. (1996). Don’t gamble with physical properties for simulations. Chemical Engineering Progress, October, 35–46.spa
dc.relation.referencesChart. (2020). Brazed Aluminum Heat Exchangers. https://www.chartindustries.com/Energy/Brazed-Aluminum-Heat-Exchangersspa
dc.relation.referencesCodensa. (2020). Tarifas de energía eléctrica reguladas por la CREG. https://www.enel.com.co/content/dam/enel-co/español/personas/1-17-1/2020/Tarifario-enero-2020.pdfspa
dc.relation.referencesCornelissen, R. . (1997). Thermodynamics and sustainable development: The use of exergy analysis and the reduction of irreversibility.spa
dc.relation.referencesCornelissen, R. L., & Hirs, G. G. (1998). Exergy analysis of cryogenic air separation. Energy Conversion and Management, 39(16–18), 1821–1826. https://doi.org/10.1016/s0196-8904(98)00062-4spa
dc.relation.referencesCorpoema. (2014). Determinación y priorización de alternativas de eficiencia energética para los subsectores manufactureros códigos CIIU 19 a 31 en Colombia. 1(Contrato UPME C006 – 2014).spa
dc.relation.referencesCryogas Grupo Air Prodcuts. (2020). Historia corporativa Cryogas. https://www.cryogas.com.co/web/co/compania/historia#:~:text=Cryogas es una empresa del,15.000 trabajadores en 50 países.&text=Te invitamos a que viajes,desde el nacimiento de Cryogas.spa
dc.relation.referencesDANE. (2007). Encuesta anual manufacturera. https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anual-manufacturera-enamspa
dc.relation.referencesDeb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017spa
dc.relation.referencesDemirel, Y. (2004). Thermodynamic analysis of separation systems. Separation Science and Technology, 39(16), 3897–3942. https://doi.org/10.1081/SS-200041152spa
dc.relation.referencesEbrahimi, A., Meratizaman, M., Reyhani, H. A., Pourali, O., & Amidpour, M. (2015). Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy, 90, 1298–1316. https://doi.org/10.1016/j.energy.2015.06.083spa
dc.relation.referencesEbrahimi, A., & Ziabasharhagh, M. (2017). Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses. Energy, 126, 868–885. https://doi.org/10.1016/j.energy.2017.02.145spa
dc.relation.referencesEuropean Industrial Gases Association AISBL. (2005). Safe Practices Guide for Cryogenic Air Separation Plants Safe Practices Guide for Cryogenic.spa
dc.relation.referencesFernández, D., Pozo, C., Folgado, R., Jiménez, L., & Guillén-Gosálbez, G. (2018). Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index. Applied Energy, 212(applied energy), 1563–1577. https://doi.org/10.1016/j.apenergy.2017.12.008 Fu, Q., Zhu, L., & Chen, X. (2015). Complete Equation-Oriented Approach for Process Analysis and Optimization of a Cryogenic Air Separation Unit. Industrial and Engineering Chemistry Research, 54(48), 12096–12107. https://doi.org/10.1021/acs.iecr.5b02768spa
dc.relation.referencesGarside, M. (2018). Global industrial gases market share by company 2017. Statista. https://www.statista.com/statistics/933494/global-market-share-industrial-gases-by-company/spa
dc.relation.referencesGhosh, I., Sarangi, S. K., & Das, P. K. (2006). An alternate algorithm for the analysis of multistream plate fin heat exchangers. International Journal of Heat and Mass Transfer, 49(17–18), 2889–2902. https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.022spa
dc.relation.referencesGrasys. (2020). Tecnología por adsorción. https://www.grasys.com/es/technologies/adsorption/spa
dc.relation.referencesGuo, K., Zhang, N., & Smith, R. (2015). Optimisation of fin selection and thermal design of counter- current plate-fin heat exchangers. Applied Thermal Engineering, 78, 491–499. https://doi.org/10.1016/j.applthermaleng.2014.11.071spa
dc.relation.referencesHäring, H.-W. (2008). Industrial Gas Processing. WILEY-VCH Verlag GmbH & Co. KGaA. Hill, M., & Technical, G. (1987). Group, Inc.* Group Technical 100 Mountain Avenue Murray Hill, NJ 07974. 37, 153–167.spa
dc.relation.referencesIndex Mundi. (2020). Consumo de electricidad mundial. https://www.indexmundi.com/map/?v=81&l=esspa
dc.relation.referencesJohansson, T. (2015). Integrated Scheduling and control of Air Separation Unit Subject to Time-Varying Electricity Price.spa
dc.relation.referencesKalavani, F., Mohammadi-Ivatloo, B., & Zare, K. (2019). Optimal stochastic scheduling of cryogenic energy storage with wind power in the presence of a demand response program. Renewable Energy, 130, 268–280. https://doi.org/10.1016/j.renene.2018.06.070spa
dc.relation.referencesKerry, F. G. (2007). Industrial gas handbook: Gas separation and purification. In Industrial Gas Handbook: Gas Separation and Purification. https://doi.org/10.1201/9781420008265spa
dc.relation.referencesKhalel, Z., Rabah, A., & Barakat, T. A. M. (2014). Exergy Analysis of Cryogenic Air Separation Unit with Flash Separator. ICASTOR Journal of Engineering, 7(3), 135 – 147.spa
dc.relation.referencesKita, H., Tanaka, K., & Koga, T. (2008). Gas Separation Membranes. In Kobunshi (Vol. 57, Issue 11). https://doi.org/10.1295/kobunshi.57.894spa
dc.relation.referencesLemmon, E. W., Jacobsen, R. T., Penoncello, S. G., & Friend, D. G. (2000). Thermodynamic properties of air and mixtures of nitrogen, argon, and oxygen from 60 to 2000 K at pressures to 2000 MPa. Journal of Physical and Chemical Reference Data, 29(3), 331–362. https://doi.org/10.1063/1.1285884spa
dc.relation.referencesLin, S. (2011). NGPM — A NSGA-II Program in Matlab. College of Astronautics, Northwestern Polytechnical University, China. https://www.mathworks.com/matlabcentral/fileexchange/31166-ngpm-a-nsga-ii-program-in-matlab-v1-4spa
dc.relation.referencesLong, K., & Murphy, M. (2009). World Industrial Gases.spa
dc.relation.referencesMarshall, R., & Scales, B. (2020). Compressed Air Controls. Compressed Air Challenge. https://www.airbestpractices.com/technology/compressor-controls/compressed-air-controlsspa
dc.relation.referencesMiller, J., Luyben, W. L., Belanger, P., Blouin, S., & Megan, L. (2008). Improving agility of cryogenic air separation plants. Industrial and Engineering Chemistry Research, 47(2), 394–404. https://doi.org/10.1021/ie070975tspa
dc.relation.referencesMoran, M. J., Shapiro, H. N., Boettner, S., Daisie D., B., & B., M. (2001). Fundamentals of Engineering Thermodynamics. In International Journal of Mechanical Engineering Education (Vol. 29, Issue 1). https://doi.org/10.7227/ijmee.29.1.2spa
dc.relation.referencesOmar, Q., Mukhtar, A., Shafiq, U., Safdar, F., & Iqbal Ch, S. (2017). Simulation Study for Energy Minimization and Performance Enhancement Using Cryogenic Plate and Packed Bed Column Networks for Air. Austin Chemical Engineering, 4(2), 1053.spa
dc.relation.referencesPacio, J. C., & Dorao, C. A. (2011). A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics, 51(7), 366–379. https://doi.org/10.1016/j.cryogenics.2011.04.005spa
dc.relation.referencesPeng, D. Y., & Robinson, D. B. (1976). A New Two-Constant Equation of State. Industrial and Engineering Chemistry Fundamentals, 15(1), 59–64. https://doi.org/10.1021/i160057a011spa
dc.relation.referencesPerry, R. H., & Green, D. W. (2008). Chemical engineer’s handbook. Journal of the Society of Chemical Industry. https://doi.org/10.1002/jctb.5000534310spa
dc.relation.referencesPopov, D., Fikiin, K., Stankov, B., Alvarez, G., Youbi-Idrissi, M., Damas, A., Evans, J., & Brown, T. (2019). Cryogenic heat exchangers for process cooling and renewable energy storage: A review. Applied Thermal Engineering, 153(June 2018), 275–290. https://doi.org/10.1016/j.applthermaleng.2019.02.106spa
dc.relation.referencesRamírez Medina, C. (2008). Modelo y control de una columna de destilación continua. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesRedacción El Tiempo. (1998). Fusión en sector de gases. https://www.eltiempo.com/archivo/documento/MAM-834532spa
dc.relation.referencesRedacción El Tiempo. (2003). Una empresa con excelencia. https://www.eltiempo.com/archivo/documento/MAM-1017540spa
dc.relation.referencesResearch, G. view. (2020). Industrial Gases Market Size, Share & Trends Analysis Report By Product (Nitrogen, Oxygen), By Application (Healthcare, Manufacturing), By Distribution (Onsite, Bulk), By Region, And Segment Forecasts, 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/industrial-gases-marketspa
dc.relation.referencesRobert R., S., & F. James, R. (1969). Introduction to Biostatistics (Second). Dover Publications. Inc.spa
dc.relation.referencesRobeson, L. M. (1991). Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 62(2), 165–185. https://doi.org/10.1016/0376-7388(91)80060-Jspa
dc.relation.referencesSchmidt, W.Kovak, K. Licht, W., & Feldman, S. (2000). Managing Trace Contaminants in Cryogenic Air Separation.spa
dc.relation.referencesSchmidt, W. P., Winegardner, K. S., Dennehy, M., & Castle-Smith, H. (2001). Safe design and operation of a cryogenic air separation unit. Process Safety Progress, 20(4), 269–279. https://doi.org/10.1002/prs.680200409spa
dc.relation.referencesShanghai T.S. Industrial Co., L. S. I. C. (2015). High flux tube and heat exchanger. http://www.lordfintube.com/productShow.asp?Id=765spa
dc.relation.referencesSmith, A. ., & Klosek, J. (2001). A review of air separation technologies and their integration with energy conversion processes. Fuel Processing Technology, 70(2), 115–134. https://doi.org/10.1016/S0378-3820(01)00131-Xspa
dc.relation.referencesSulzer. (2020). Structured Packings Energy-efficient , innovative and profitable Sulzer Chemtech – Mass Transfer Technology. https://www.sulzer.com/-/media/files/products/separation-technology/distillation-and-absorption/brochures/structured_packings.ashx?la=enhttps://www.sulzer.com/en/shared/products/2017/03/28/13/27/laboratory-packingsspa
dc.relation.referencesThe Linde Group. (2017). Compelling Perspectives. 1–230.spa
dc.relation.referencesTheophilos, N. P. (1979). Engineering fundamentals analytical design data and cryogenic equipment applications. Union Carbide Corporation.spa
dc.relation.referencesVan Der Ham, L. V. (2012). Improving the exergy efficiency of a cryogenic air separation unit as part of an integrated gasification combined cycle. Energy Conversion and Management, 61, 31–42. https://doi.org/10.1016/j.enconman.2012.03.004spa
dc.relation.referencesWeller, S., & Steiner, W. A. (1950). Separation of Gases by Fractional Permeation through Membranes. Journal of Applied Physics, 21(4), 279–283. https://doi.org/10.1063/1.1699653spa
dc.relation.referencesYan, L., Yu, Y., Li, Y., & Zhang, Z. (2010). Energy Saving Opportunities in an Air Separation Process. International Refrigeration and Air Conditioning Conference, 1131.spa
dc.relation.referencesYao, L., Tong, L., Zhang, A., Xie, Y., Shen, J., Li, H., Wang, L., & Li, S. (2015). Exergy Analysis for Air Separation Process Under Off-Design Conditions. Journal of Energy Resources Technology, 137(4). https://doi.org/10.1115/1.4029911spa
dc.relation.referencesZheng, J., Ye, H., Li, Y., Yang, Y., & Si, B. (2019). A Parametric Sensitivity Study and Comparison Analysis on Multiple Air Separation Processes. Industrial and Engineering Chemistry Research, 58(21), 9087–9098. https://doi.org/10.1021/acs.iecr.8b06046spa
dc.relation.referencesZhu, L., Chen, Z., Chen, X., Shao, Z., & Qian, J. (2009). Simulation and optimization of cryogenic air separation units using a homotopy-based backtracking method. Separation and Purification Technology, 67(3), 262–270. https://doi.org/10.1016/j.seppur.2009.03.032spa
dc.relation.referencesZiębik, A., & Gładysz, P. (2018). Systems approach to energy and exergy analyses. Energy, 165, 396–407. https://doi.org/10.1016/j.energy.2018.08.214spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalSeparación de aire criogénicospa
dc.subject.proposalAnálisis de exergíaspa
dc.subject.proposalMétodo NSGA-IIspa
dc.subject.proposalDemanda variablespa
dc.subject.proposalCryogenic air separationeng
dc.subject.proposalExergy analysiseng
dc.subject.proposalNSGA-II methodeng
dc.subject.proposalVariable demandeng
dc.subject.unescoTecnología química
dc.subject.unescoIndustria química
dc.subject.unescoGas
dc.titleOptimización exergética de una planta de separación de aire en función de la demanda con integración energéticaspa
dc.title.translatedExergetic optimization of a cryogenic air separation plant according to demand with energy integrationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020736280.2021.pdf
Tamaño:
3.8 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: