Sistema robusto de gestión predictiva de energía en redes de distribución con múltiples microrredes con inclusión de energías renovables

dc.contributor.advisorRivera, Sergiospa
dc.contributor.advisorMojica Nava, Eduardo Aliriospa
dc.contributor.authorCervera Farfán, Edwin Albertospa
dc.contributor.orcidhttps://orcid.org/0009-0000-4241-4023spa
dc.contributor.researchgroupPrograma de Investigacion sobre Adquisicion y Analisis de Señales Paas-Unspa
dc.date.accessioned2025-03-17T20:05:28Z
dc.date.available2025-03-17T20:05:28Z
dc.date.issued2024-10
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEsta tesis aborda el desafío de modelar y optimizar la operación de sistemas de múltiples microrredes interconectadas (NMG) bajo condiciones de incertidumbre. Las microrredes, como evolución de los sistemas de distribución eléctrica, integran fuentes de generación distribuida —principalmente renovables— junto con sistemas de almacenamiento y cargas. Sin embargo, la variabilidad inherente a las fuentes renovables y al comportamiento de la demanda introduce importantes incertidumbres en su operación. El trabajo explora distintas metodologías para gestionar estas incertidumbres, enfocándose en la Optimización Robusta Distribucional (DRO) mediante la distancia de Wasserstein. Esta metodología se presenta como un enfoque intermedio entre la programación estocástica y la optimización robusta, ofreciendo una toma de decisiones más equilibrada, realista y menos conservadora frente a la incertidumbre. Se desarrolla un modelo de despacho económico para microrredes aisladas, utilizando el enfoque DRO-W para optimizar su operación. Además, se amplía el análisis a sistemas de múltiples microrredes interconectadas, introduciendo el concepto de energía transactiva para evaluar sus beneficios en el despacho eficiente de energía entre varias microrredes. Este estudio contribuye al desarrollo de herramientas para la gestión eficiente y confiable de sistemas energéticos distribuidos, incorporando las incertidumbres de las fuentes renovables y la demanda. De este modo, promueve la transición hacia sistemas energéticos más sostenibles, resilientes y orientados al futuro. (Texto tomado de la fuente).spa
dc.description.abstractThis thesis addresses the challenge of modeling and optimizing the operation of interconnected multi-microgrid systems (NMG) under uncertainty. Microgrids, as an evolution of electrical distribution systems, integrate distributed generation sources—mainly renewables—alongside storage systems and loads. However, the inherent variability of renewable sources and demand behavior introduces significant uncertainties into their operation. The study explores various methodologies for managing these uncertainties, focusing on Distributionally Robust Optimization (DRO) using the Wasserstein distance. This approach offers a middle ground between stochastic programming and robust optimization, enabling more balanced, realistic, and less conservative decision-making under uncertainty. An economic dispatch model is developed for isolated microgrids, applying the DRO-W approach to optimize their operation. Additionally, the analysis extends to interconnected multi-microgrid systems, incorporating the concept of transactive energy to evaluate its benefits for efficient energy dispatch across multiple microgrids. This research contributes to the advancement of tools for efficient and reliable management of distributed energy systems by accounting for the uncertainties of renewable sources and demand. In doing so, it promotes the transition toward more sustainable, resilient, and future-oriented energy systems.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaSistemas de potencia-optimizaciónspa
dc.format.extentx, 66 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87678
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesAboli, R., Ramezani, M., and Falaghi, H. A hybrid robust distributed model for short-term operation of multi-microgrid distribution networks. Electric Power Systems Research 177 (2019), 106011.spa
dc.relation.referencesAhl, A., Yarime, M., Tanaka, K., and Sagawa, D. Review of blockchain-based distributed energy: Implications for institutional development. Renewable and Sustainable Energy Reviews 107 (2019), 200--211.spa
dc.relation.referencesAhmed, M., Meegahapola, L., Vahidnia, A., and Datta, M. Stability and control aspects of microgrid architectures–a comprehensive review. IEEE Access 8 (2020), 144730--144766.spa
dc.relation.referencesAlam, M. N., Chakrabarti, S., and Ghosh, A. Networked microgrids: State-of-the-art and future perspectives. IEEE Transactions on Industrial Informatics 15, 3 (2019), 1238--1250.spa
dc.relation.referencesAlam, M. N., Chakrabarti, S., and Liang, X. A benchmark test system for networked microgrids. IEEE Transactions on Industrial Informatics 16, 10 (Oct 2020), 6217--6226.spa
dc.relation.referencesAndyysun, X., and Conejo, A. Robust Optimization in Electric Energy Systems. International Series in Operations Research and Management Science. Springer, 2020.spa
dc.relation.referencesBaringo, L., and Conejo, A. J. Strategic offering for a wind power producer. IEEE Transactions on Power Systems 28, 4 (2013), 4645--4654.spa
dc.relation.referencesBordons, C., García-Torres, F., and Valverde, L. Gestión óptima de la energía en microrredes con generación renovable. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 12, 2 (2015), 117--132.spa
dc.relation.referencesBullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., and Sumper, A. Microgrid clustering architectures. Applied Energy 212 (2018), 340--361spa
dc.relation.referencesCagnano, A., De Tuglie, E., and Mancarella, P. Microgrids: Overview and guidelines for practical implementations and operation. Applied Energy 258 (2020), 114039.spa
dc.relation.referencesCagnano, A., De Tuglie, E., Mancarella, P., and Mitolo, M. Online optimal reactive power control strategy of pv inverters. IEEE Transactions on Industrial Electronics 58, 10 (2011), 4549--4558.spa
dc.relation.referencesCai, C., Liu, H., Tao, Y., Deng, Z., Dai, W., and Chen, J. Microgrid equivalent modeling based on long short-term memory neural network. IEEE Access 8 (2020), 23120--23133.spa
dc.relation.referencesCervera, E., Morales, P., Linares-Rugeles, S., Rivera, S., and Mojica-Nava, E. Distributionally robust optimization for networked microgrids: An overview. In Applied Computer Sciences in Engineering (Cham, 2023), J. C. Figueroa-García, G. Hernández, J. L. Villa Ramirez, and E. E. Gaona García, Eds., Springer Nature Switzerland, pp. 311--323.spa
dc.relation.referencesChen, R., and Paschalidis, I. C. Distributionally robust learning. Foundations and Trends® in Optimization 4 (2020), 1--243.spa
dc.relation.referencesEsfahani, P. M., and Kuhn, D. Data-driven distributionally robust optimization using the wasserstein metric: performance guarantees and tractable reformulations. Mathematical Programming 171 (9 2018), 115--166.spa
dc.relation.referencesFarzin, H., Fotuhi-Firuzabad, M., and Moeini-Aghtaie, M. Enhancing power system resilience through hierarchical outage management in multi-microgrids. IEEE Transactions on Smart Grid 7, 6 (2016), 2869--2879.spa
dc.relation.referencesGao, R., and Kleywegt, A. J. Distributionally robust stochastic optimization with wasserstein distance.spa
dc.relation.referencesGrainger, J. J. Análisis de Sistemas de Potencia, 1 ed. McGraw Hill, 1996.spa
dc.relation.referencesHatziargyriou, N. Microgrids: Architectures and Control, 1st ed. John Wiley and Sons Ltd, UK, 2014. Accessed: Jun. 11, 2022. [Online]. Available: https://ieeexplore-ieee-org.ezproxy.unal.edu.co/xpl/ebooks/bookPdfWithBanner.jsp?fileName=6685216.pdf& bkn=6685216&pdfType=book.spa
dc.relation.referencesHirsch, A., Parag, Y., and Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews 90 (2018), 402--411.spa
dc.relation.referencesHu, J., Shan, Y., Guerrero, J. M., Ioinovici, A., Chan, K. W., and Rodriguez, J. Model predictive control of microgrids – an overview. Renewable and Sustainable Energy Reviews 136 (2021), 110422.spa
dc.relation.referencesHull, J. C. Risk Management and Financial Institutions, fourth edition ed. Wiley Finance Series. John Wiley & Sons, Inc., Hoboken, New Jersey, 2015spa
dc.relation.referencesInstitute, W. R. World greenhouse gas emissions in 2018 (sector | end use | gas). Tech. rep., World Resources Institute, 2020.spa
dc.relation.referencesKumar, D., Zare, F., and Ghosh, A. Dc microgrid technology: System architectures, ac grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects. IEEE Access 5 (2017), 12230--12256.spa
dc.relation.referencesKumar, K. P., and Saravanan, B. Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids – a review. Renewable and Sustainable Energy Reviews 71 (2017), 348--358.spa
dc.relation.referencesLi, P., Yang, M., and Wu, Q. Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk. IEEE Transactions on Sustainable Energy 12, 1 (2021), 58--69.spa
dc.relation.referencesLi, Y., Wang, Z., Yang, J., Wang, X., and Feng, J. Dynamic equivalence modeling for microgrid cluster by using physicaldata-driven method. IEEE Transactions on Applied Superconductivity 31, 8 (2021), 1--4.spa
dc.relation.referencesLi, Z., Bahramirad, S., Paaso, A., Yan, M., and Shahidehpour, M. Blockchain for decentralized transactive energy management system in networked microgrids. The Electricity Journal 32, 4 (2019), 58--72. Special Issue on Strategies for a sustainable, reliable and resilient grid.spa
dc.relation.referencesLin, F., Fang, X., and Gao, Z. Distributionally robust optimization: A review on theory and applications. Numerical Algorithms, Control and Optimization 12, 1 (2022), 159--212.spa
dc.relation.referencesLotfi, H., and Khodaei, A. Ac versus dc microgrid planning. IEEE Transactions on Smart Grid 8, 1 (2017).spa
dc.relation.referencesMa, W.-J., Wang, J., Gupta, V., and Chen, C. Distributed energy management for networked microgrids using online admm with regret. IEEE Transactions on Smart Grid 9, 2 (2018), 847--856.spa
dc.relation.referencesMalekpour, A. R., and Pahwa, A. Stochastic networked microgrid energy management with correlated wind generators. IEEE Transactions on Power Systems 32, 5 (Sep. 2017), 3681--3693.spa
dc.relation.referencesMalekpour, A. R., and Pahwa, A. Stochastic networked microgrid energy management with correlated wind generators. IEEE Transactions on Power Systems 32, 5 (2017), 3681--3693.spa
dc.relation.referencesMariam, L., Basu, M., and Conlon, M. F. Microgrid: Architecture, policy and future trends. Renewable and Sustainable Energy Reviews 64 (2016), 477--489.spa
dc.relation.referencesOptimization, I. D. Ucp pandas: Model api - decision optimization for python 2.20.20210630 documentation. http: //ibmdecisionoptimization.github.io/docplex-doc/mp/ucp_pandas.html. [Online].spa
dc.relation.referencesOrji, U., Schantz, C., Leeb, S. B., Kirtley, J. L., Sievenpiper, B., Gerhard, K., and McCoy, T. Adaptive zonal protection for ring microgrids. IEEE Transactions on Smart Grid 8, 4 (2017), 1843--1851.spa
dc.relation.referencesParhizi, S., Lotfi, H., Khodaei, A., and Bahramirad, S. State of the art in research on microgrids: A review. IEEE Access 3 (Jun. 2015), 890--925.spa
dc.relation.referencesParisio, A., Wiezorek, C., Kyntäjä, T., Elo, J., Strunz, K., and Johansson, K. H. Cooperative mpc-based energy management for networked microgrids. IEEE Transactions on Smart Grid 8, 6 (2017), 3066--3074.spa
dc.relation.referencesPogaku, N., Prodanovic, M., and Green, T. C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Transactions on Power Electronics 22, 2 (2007), 613--625.spa
dc.relation.referencesPriyadharshini, N., Gomathy, S., and Sabarimuthu, M. A review on microgrid architecture, cyber security threats and standards. Materials Today: Proceedings (2020).spa
dc.relation.referencesRahbar, K., Chai, C. C., and Zhang, R. Energy cooperation optimization in microgrids with renewable energy integration. IEEE Transactions on Smart Grid 9, 2 (2018), 1482--1493.spa
dc.relation.referencesRoald, L., Pozo, D., Papavasiliou, A., Molzahn, D., Kazempour, J., Conejo, A., Papavasiliou, R., and Conejo, D. Power systems optimization under uncertainty: A review of methods and applications. IEEE Transactions on Power Systems 33, 6 (2018), 6630--6650.spa
dc.relation.referencesS., N., K.N., S., E.A., J., and Ahamed, T. P. I. Comparative analysis of communication assisted grid synchronization methods in microgrids. IEEE Systems Journal 14, 1 (2020), 1007--1014.spa
dc.relation.referencesSen, S., and Kumar, V. Microgrid modelling: A comprehensive survey. Annual Reviews in Control 46 (2018), 216--250.spa
dc.relation.referencesSerban, I., Céspedes, S., Marinescu, C., Azurdia-Meza, C. A., Gómez, J. S., and Hueichapan, D. S. Communication requirements in microgrids: A practical survey. IEEE Access 8 (2020), 47694--47712.spa
dc.relation.referencesSharifzadeh, M., Sikinioti-Lock, A., and Shah, N. Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and gaussian process regression. Renewable and Sustainable Energy Reviews 108 (2019), 513--538.spa
dc.relation.referencesShi, Z. Data-driven distributionally robust chance-constrained unit commitment with uncertain wind power. IEEE Transactions on Power Systems 34, 2 (March 2019), 1233--1244.spa
dc.relation.referencesShuai, Z., Peng, Y., Liu, X., Li, Z., Guerrero, J. M., and Shen, Z. J. Dynamic equivalent modeling for multi-microgrid based on structure preservation method. IEEE Transactions on Smart Grid 10, 4 (2019), 3929--3942.spa
dc.relation.referencesSilverman, B. W. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall, London, 1986.spa
dc.relation.referencesSood, V. K., and Abdelgawad, H. Chapter 1 - microgrids architectures. In Distributed Energy Resources in Microgrids, R. K. Chauhan and K. Chauhan, Eds. Academic Press, 2019, pp. 1--31.spa
dc.relation.referencesTang, Z., Zhang, P., Krawec, W. O., and Jiang, Z. Programmable quantum networked microgrids. IEEE Transactions on Quantum Engineering 1 (2020), 1--13.spa
dc.relation.referencesVorobev, P., Huang, P., Al Hosani, M., Kirtley, J. L., and Turitsyn, K. High-fidelity model order reduction for microgrids stability assessment. IEEE Transactions on Power Systems 33, 1 (2018), 874--887.spa
dc.relation.referencesWang, H., and Huang, J. Incentivizing energy trading for interconnected microgrids. IEEE Transactions on Smart Grid 9, 4 (2018), 2647--2657.spa
dc.relation.referencesWang, Y., Nguyen, T.-L., Xu, Y., Tran, Q.-T., and Caire, R. Peer-to-peer control for networked microgrids: Multi-layer and multi-agent architecture design. IEEE Transactions on Smart Grid 11, 6 (2020), 4688--4699.spa
dc.relation.referencesWang, Y., Rousis, A. O., and Strbac, G. On microgrids and resilience: A comprehensive review on modeling and operational strategies. Renewable and Sustainable Energy Reviews 134 (2020), 110313.spa
dc.relation.referencesWong, Y. C. C., Lim, C. S., Rotaru, M. D., Cruden, A., and Kong, X. Consensus virtual output impedance control based on the novel droop equivalent impedance concept for a multi-bus radial microgrid. IEEE Transactions on Energy Conversion 35, 2 (2020), 1078--1087.spa
dc.relation.referencesXiao, H., Pei, W., Deng, W., Kong, L., Sun, H., and Tang, C. A comparative study of deep neural network and meta-model techniques in behavior learning of microgrids. IEEE Access 8 (2020), 30104--30118.spa
dc.relation.referencesXiong, P., and Jirutitijaroen, P. A stochastic optimization formulation of unit commitment with reliability constraints. IEEE Trans Smart Grid 4, 4 (Dec. 2013), 2200--2208.spa
dc.relation.referencesXu, W., Li, J., Dehghani, M., and GhasemiGarpachi, M. Blockchain-based secure energy policy and management of renewable-based smart microgrids. Sustainable Cities and Society 72 (2021), 103010.spa
dc.relation.referencesYang, Y., and Wu, W. A distributionally robust optimization model for real-time power dispatch in distribution networks. IEEE Transactions on Smart Grid 10, 4 (2019), 3743--3752.spa
dc.relation.referencesYurdakul, O., Sivrikaya, F., and Albayrak, S. A distributionally robust optimization approach for unit commitment in microgrids. arXiv preprint (2020).spa
dc.relation.referencesZargar, R. H. M., and Yaghmaee, M. H. Energy exchange cooperative model in sdn-based interconnected multi-microgrids. Sustainable Energy, Grids and Networks 27 (2021), 100491.spa
dc.relation.referencesZhang, Y., Gatsis, N., and Giannakis, G. Robust energy management for microgrids with high-penetration renewables. IEEE Transactions on Sustainable Energy 4, 4 (2013).spa
dc.relation.referencesZhou, B., Zou, J., Chung, C. Y., Wang, H., Liu, N., Voropai, N., and Xu, D. Multi-microgrid energy management systems: Architecture, communication, and scheduling strategies. Journal of Modern Power Systems and Clean Energy 9, 3 (2021), 463--476.spa
dc.relation.referencesZhou, Q., Shahidehpour, M., Paaso, A., Bahramirad, S., Alabdulwahab, A., and Abusorrah, A. Distributed control and communication strategies in networked microgrids. IEEE Communications Surveys Tutorials 22, 4 (2020), 2586--2633.spa
dc.relation.referencesZhou, X., Zhou, L., Chen, Y., Guerrero, J. M., Luo, A., Wu, W., and Yang, L. A microgrid cluster structure and its autonomous coordination control strategy. International Journal of Electrical Power & Energy Systems 100 (2018), 69--80.spa
dc.relation.referencesZou, H., Mao, S., Wang, Y., Zhang, F., Chen, X., and Cheng, L. A survey of energy management in interconnected multi-microgrids. IEEE Access 7 (2019), 72158--72169.spa
dc.relation.referencesZubo, R. H. A., Mokryani, G., Rajamani, H. S., Aghaei, J., Niknam, T., and Pillai, P. Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review. Renewable and Sustainable Energy Reviews 72 (2017), 1177--1198spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalMicrorredesspa
dc.subject.proposalOptimización Robusta Distribucional (DRO)spa
dc.subject.proposalDistancia de Wassersteinspa
dc.subject.proposalEnergías renovablesspa
dc.subject.proposalIncertidumbrespa
dc.subject.proposalDespacho económicospa
dc.subject.proposalSistemas de múltiples microrredesspa
dc.subject.proposalGeneración distribuidaspa
dc.subject.proposalTransición energéticaspa
dc.subject.proposalMicrogridseng
dc.subject.proposalDistributionally Robust Optimization (DRO)eng
dc.subject.proposalWasserstein distanceeng
dc.subject.proposalRenewable energieseng
dc.subject.proposalUncertaintyeng
dc.subject.proposalEconomic dispatcheng
dc.subject.proposalMultiple microgrid systemseng
dc.subject.proposalDistributed generationeng
dc.subject.proposalEnergy transitioneng
dc.subject.unescoFuente de energía renovablespa
dc.subject.unescoRenewable energy sourceseng
dc.subject.unescoAbastecimiento de energíaspa
dc.subject.unescoEnergy supplyeng
dc.subject.wikidatagestión energéticaspa
dc.subject.wikidataenergy managementeng
dc.titleSistema robusto de gestión predictiva de energía en redes de distribución con múltiples microrredes con inclusión de energías renovablesspa
dc.title.translatedRobust predictive energy management system in distribution networks with multiple microgrids, including renewable energy sourceseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameColcienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030671990.2024.pdf
Tamaño:
1.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: