Sistema robusto de gestión predictiva de energía en redes de distribución con múltiples microrredes con inclusión de energías renovables
dc.contributor.advisor | Rivera, Sergio | spa |
dc.contributor.advisor | Mojica Nava, Eduardo Alirio | spa |
dc.contributor.author | Cervera Farfán, Edwin Alberto | spa |
dc.contributor.orcid | https://orcid.org/0009-0000-4241-4023 | spa |
dc.contributor.researchgroup | Programa de Investigacion sobre Adquisicion y Analisis de Señales Paas-Un | spa |
dc.date.accessioned | 2025-03-17T20:05:28Z | |
dc.date.available | 2025-03-17T20:05:28Z | |
dc.date.issued | 2024-10 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Esta tesis aborda el desafío de modelar y optimizar la operación de sistemas de múltiples microrredes interconectadas (NMG) bajo condiciones de incertidumbre. Las microrredes, como evolución de los sistemas de distribución eléctrica, integran fuentes de generación distribuida —principalmente renovables— junto con sistemas de almacenamiento y cargas. Sin embargo, la variabilidad inherente a las fuentes renovables y al comportamiento de la demanda introduce importantes incertidumbres en su operación. El trabajo explora distintas metodologías para gestionar estas incertidumbres, enfocándose en la Optimización Robusta Distribucional (DRO) mediante la distancia de Wasserstein. Esta metodología se presenta como un enfoque intermedio entre la programación estocástica y la optimización robusta, ofreciendo una toma de decisiones más equilibrada, realista y menos conservadora frente a la incertidumbre. Se desarrolla un modelo de despacho económico para microrredes aisladas, utilizando el enfoque DRO-W para optimizar su operación. Además, se amplía el análisis a sistemas de múltiples microrredes interconectadas, introduciendo el concepto de energía transactiva para evaluar sus beneficios en el despacho eficiente de energía entre varias microrredes. Este estudio contribuye al desarrollo de herramientas para la gestión eficiente y confiable de sistemas energéticos distribuidos, incorporando las incertidumbres de las fuentes renovables y la demanda. De este modo, promueve la transición hacia sistemas energéticos más sostenibles, resilientes y orientados al futuro. (Texto tomado de la fuente). | spa |
dc.description.abstract | This thesis addresses the challenge of modeling and optimizing the operation of interconnected multi-microgrid systems (NMG) under uncertainty. Microgrids, as an evolution of electrical distribution systems, integrate distributed generation sources—mainly renewables—alongside storage systems and loads. However, the inherent variability of renewable sources and demand behavior introduces significant uncertainties into their operation. The study explores various methodologies for managing these uncertainties, focusing on Distributionally Robust Optimization (DRO) using the Wasserstein distance. This approach offers a middle ground between stochastic programming and robust optimization, enabling more balanced, realistic, and less conservative decision-making under uncertainty. An economic dispatch model is developed for isolated microgrids, applying the DRO-W approach to optimize their operation. Additionally, the analysis extends to interconnected multi-microgrid systems, incorporating the concept of transactive energy to evaluate its benefits for efficient energy dispatch across multiple microgrids. This research contributes to the advancement of tools for efficient and reliable management of distributed energy systems by accounting for the uncertainties of renewable sources and demand. In doing so, it promotes the transition toward more sustainable, resilient, and future-oriented energy systems. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Eléctrica | spa |
dc.description.researcharea | Sistemas de potencia-optimización | spa |
dc.format.extent | x, 66 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87678 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | Aboli, R., Ramezani, M., and Falaghi, H. A hybrid robust distributed model for short-term operation of multi-microgrid distribution networks. Electric Power Systems Research 177 (2019), 106011. | spa |
dc.relation.references | Ahl, A., Yarime, M., Tanaka, K., and Sagawa, D. Review of blockchain-based distributed energy: Implications for institutional development. Renewable and Sustainable Energy Reviews 107 (2019), 200--211. | spa |
dc.relation.references | Ahmed, M., Meegahapola, L., Vahidnia, A., and Datta, M. Stability and control aspects of microgrid architectures–a comprehensive review. IEEE Access 8 (2020), 144730--144766. | spa |
dc.relation.references | Alam, M. N., Chakrabarti, S., and Ghosh, A. Networked microgrids: State-of-the-art and future perspectives. IEEE Transactions on Industrial Informatics 15, 3 (2019), 1238--1250. | spa |
dc.relation.references | Alam, M. N., Chakrabarti, S., and Liang, X. A benchmark test system for networked microgrids. IEEE Transactions on Industrial Informatics 16, 10 (Oct 2020), 6217--6226. | spa |
dc.relation.references | Andyysun, X., and Conejo, A. Robust Optimization in Electric Energy Systems. International Series in Operations Research and Management Science. Springer, 2020. | spa |
dc.relation.references | Baringo, L., and Conejo, A. J. Strategic offering for a wind power producer. IEEE Transactions on Power Systems 28, 4 (2013), 4645--4654. | spa |
dc.relation.references | Bordons, C., García-Torres, F., and Valverde, L. Gestión óptima de la energía en microrredes con generación renovable. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 12, 2 (2015), 117--132. | spa |
dc.relation.references | Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., and Sumper, A. Microgrid clustering architectures. Applied Energy 212 (2018), 340--361 | spa |
dc.relation.references | Cagnano, A., De Tuglie, E., and Mancarella, P. Microgrids: Overview and guidelines for practical implementations and operation. Applied Energy 258 (2020), 114039. | spa |
dc.relation.references | Cagnano, A., De Tuglie, E., Mancarella, P., and Mitolo, M. Online optimal reactive power control strategy of pv inverters. IEEE Transactions on Industrial Electronics 58, 10 (2011), 4549--4558. | spa |
dc.relation.references | Cai, C., Liu, H., Tao, Y., Deng, Z., Dai, W., and Chen, J. Microgrid equivalent modeling based on long short-term memory neural network. IEEE Access 8 (2020), 23120--23133. | spa |
dc.relation.references | Cervera, E., Morales, P., Linares-Rugeles, S., Rivera, S., and Mojica-Nava, E. Distributionally robust optimization for networked microgrids: An overview. In Applied Computer Sciences in Engineering (Cham, 2023), J. C. Figueroa-García, G. Hernández, J. L. Villa Ramirez, and E. E. Gaona García, Eds., Springer Nature Switzerland, pp. 311--323. | spa |
dc.relation.references | Chen, R., and Paschalidis, I. C. Distributionally robust learning. Foundations and Trends® in Optimization 4 (2020), 1--243. | spa |
dc.relation.references | Esfahani, P. M., and Kuhn, D. Data-driven distributionally robust optimization using the wasserstein metric: performance guarantees and tractable reformulations. Mathematical Programming 171 (9 2018), 115--166. | spa |
dc.relation.references | Farzin, H., Fotuhi-Firuzabad, M., and Moeini-Aghtaie, M. Enhancing power system resilience through hierarchical outage management in multi-microgrids. IEEE Transactions on Smart Grid 7, 6 (2016), 2869--2879. | spa |
dc.relation.references | Gao, R., and Kleywegt, A. J. Distributionally robust stochastic optimization with wasserstein distance. | spa |
dc.relation.references | Grainger, J. J. Análisis de Sistemas de Potencia, 1 ed. McGraw Hill, 1996. | spa |
dc.relation.references | Hatziargyriou, N. Microgrids: Architectures and Control, 1st ed. John Wiley and Sons Ltd, UK, 2014. Accessed: Jun. 11, 2022. [Online]. Available: https://ieeexplore-ieee-org.ezproxy.unal.edu.co/xpl/ebooks/bookPdfWithBanner.jsp?fileName=6685216.pdf& bkn=6685216&pdfType=book. | spa |
dc.relation.references | Hirsch, A., Parag, Y., and Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renewable and Sustainable Energy Reviews 90 (2018), 402--411. | spa |
dc.relation.references | Hu, J., Shan, Y., Guerrero, J. M., Ioinovici, A., Chan, K. W., and Rodriguez, J. Model predictive control of microgrids – an overview. Renewable and Sustainable Energy Reviews 136 (2021), 110422. | spa |
dc.relation.references | Hull, J. C. Risk Management and Financial Institutions, fourth edition ed. Wiley Finance Series. John Wiley & Sons, Inc., Hoboken, New Jersey, 2015 | spa |
dc.relation.references | Institute, W. R. World greenhouse gas emissions in 2018 (sector | end use | gas). Tech. rep., World Resources Institute, 2020. | spa |
dc.relation.references | Kumar, D., Zare, F., and Ghosh, A. Dc microgrid technology: System architectures, ac grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects. IEEE Access 5 (2017), 12230--12256. | spa |
dc.relation.references | Kumar, K. P., and Saravanan, B. Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids – a review. Renewable and Sustainable Energy Reviews 71 (2017), 348--358. | spa |
dc.relation.references | Li, P., Yang, M., and Wu, Q. Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk. IEEE Transactions on Sustainable Energy 12, 1 (2021), 58--69. | spa |
dc.relation.references | Li, Y., Wang, Z., Yang, J., Wang, X., and Feng, J. Dynamic equivalence modeling for microgrid cluster by using physicaldata-driven method. IEEE Transactions on Applied Superconductivity 31, 8 (2021), 1--4. | spa |
dc.relation.references | Li, Z., Bahramirad, S., Paaso, A., Yan, M., and Shahidehpour, M. Blockchain for decentralized transactive energy management system in networked microgrids. The Electricity Journal 32, 4 (2019), 58--72. Special Issue on Strategies for a sustainable, reliable and resilient grid. | spa |
dc.relation.references | Lin, F., Fang, X., and Gao, Z. Distributionally robust optimization: A review on theory and applications. Numerical Algorithms, Control and Optimization 12, 1 (2022), 159--212. | spa |
dc.relation.references | Lotfi, H., and Khodaei, A. Ac versus dc microgrid planning. IEEE Transactions on Smart Grid 8, 1 (2017). | spa |
dc.relation.references | Ma, W.-J., Wang, J., Gupta, V., and Chen, C. Distributed energy management for networked microgrids using online admm with regret. IEEE Transactions on Smart Grid 9, 2 (2018), 847--856. | spa |
dc.relation.references | Malekpour, A. R., and Pahwa, A. Stochastic networked microgrid energy management with correlated wind generators. IEEE Transactions on Power Systems 32, 5 (Sep. 2017), 3681--3693. | spa |
dc.relation.references | Malekpour, A. R., and Pahwa, A. Stochastic networked microgrid energy management with correlated wind generators. IEEE Transactions on Power Systems 32, 5 (2017), 3681--3693. | spa |
dc.relation.references | Mariam, L., Basu, M., and Conlon, M. F. Microgrid: Architecture, policy and future trends. Renewable and Sustainable Energy Reviews 64 (2016), 477--489. | spa |
dc.relation.references | Optimization, I. D. Ucp pandas: Model api - decision optimization for python 2.20.20210630 documentation. http: //ibmdecisionoptimization.github.io/docplex-doc/mp/ucp_pandas.html. [Online]. | spa |
dc.relation.references | Orji, U., Schantz, C., Leeb, S. B., Kirtley, J. L., Sievenpiper, B., Gerhard, K., and McCoy, T. Adaptive zonal protection for ring microgrids. IEEE Transactions on Smart Grid 8, 4 (2017), 1843--1851. | spa |
dc.relation.references | Parhizi, S., Lotfi, H., Khodaei, A., and Bahramirad, S. State of the art in research on microgrids: A review. IEEE Access 3 (Jun. 2015), 890--925. | spa |
dc.relation.references | Parisio, A., Wiezorek, C., Kyntäjä, T., Elo, J., Strunz, K., and Johansson, K. H. Cooperative mpc-based energy management for networked microgrids. IEEE Transactions on Smart Grid 8, 6 (2017), 3066--3074. | spa |
dc.relation.references | Pogaku, N., Prodanovic, M., and Green, T. C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Transactions on Power Electronics 22, 2 (2007), 613--625. | spa |
dc.relation.references | Priyadharshini, N., Gomathy, S., and Sabarimuthu, M. A review on microgrid architecture, cyber security threats and standards. Materials Today: Proceedings (2020). | spa |
dc.relation.references | Rahbar, K., Chai, C. C., and Zhang, R. Energy cooperation optimization in microgrids with renewable energy integration. IEEE Transactions on Smart Grid 9, 2 (2018), 1482--1493. | spa |
dc.relation.references | Roald, L., Pozo, D., Papavasiliou, A., Molzahn, D., Kazempour, J., Conejo, A., Papavasiliou, R., and Conejo, D. Power systems optimization under uncertainty: A review of methods and applications. IEEE Transactions on Power Systems 33, 6 (2018), 6630--6650. | spa |
dc.relation.references | S., N., K.N., S., E.A., J., and Ahamed, T. P. I. Comparative analysis of communication assisted grid synchronization methods in microgrids. IEEE Systems Journal 14, 1 (2020), 1007--1014. | spa |
dc.relation.references | Sen, S., and Kumar, V. Microgrid modelling: A comprehensive survey. Annual Reviews in Control 46 (2018), 216--250. | spa |
dc.relation.references | Serban, I., Céspedes, S., Marinescu, C., Azurdia-Meza, C. A., Gómez, J. S., and Hueichapan, D. S. Communication requirements in microgrids: A practical survey. IEEE Access 8 (2020), 47694--47712. | spa |
dc.relation.references | Sharifzadeh, M., Sikinioti-Lock, A., and Shah, N. Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and gaussian process regression. Renewable and Sustainable Energy Reviews 108 (2019), 513--538. | spa |
dc.relation.references | Shi, Z. Data-driven distributionally robust chance-constrained unit commitment with uncertain wind power. IEEE Transactions on Power Systems 34, 2 (March 2019), 1233--1244. | spa |
dc.relation.references | Shuai, Z., Peng, Y., Liu, X., Li, Z., Guerrero, J. M., and Shen, Z. J. Dynamic equivalent modeling for multi-microgrid based on structure preservation method. IEEE Transactions on Smart Grid 10, 4 (2019), 3929--3942. | spa |
dc.relation.references | Silverman, B. W. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall, London, 1986. | spa |
dc.relation.references | Sood, V. K., and Abdelgawad, H. Chapter 1 - microgrids architectures. In Distributed Energy Resources in Microgrids, R. K. Chauhan and K. Chauhan, Eds. Academic Press, 2019, pp. 1--31. | spa |
dc.relation.references | Tang, Z., Zhang, P., Krawec, W. O., and Jiang, Z. Programmable quantum networked microgrids. IEEE Transactions on Quantum Engineering 1 (2020), 1--13. | spa |
dc.relation.references | Vorobev, P., Huang, P., Al Hosani, M., Kirtley, J. L., and Turitsyn, K. High-fidelity model order reduction for microgrids stability assessment. IEEE Transactions on Power Systems 33, 1 (2018), 874--887. | spa |
dc.relation.references | Wang, H., and Huang, J. Incentivizing energy trading for interconnected microgrids. IEEE Transactions on Smart Grid 9, 4 (2018), 2647--2657. | spa |
dc.relation.references | Wang, Y., Nguyen, T.-L., Xu, Y., Tran, Q.-T., and Caire, R. Peer-to-peer control for networked microgrids: Multi-layer and multi-agent architecture design. IEEE Transactions on Smart Grid 11, 6 (2020), 4688--4699. | spa |
dc.relation.references | Wang, Y., Rousis, A. O., and Strbac, G. On microgrids and resilience: A comprehensive review on modeling and operational strategies. Renewable and Sustainable Energy Reviews 134 (2020), 110313. | spa |
dc.relation.references | Wong, Y. C. C., Lim, C. S., Rotaru, M. D., Cruden, A., and Kong, X. Consensus virtual output impedance control based on the novel droop equivalent impedance concept for a multi-bus radial microgrid. IEEE Transactions on Energy Conversion 35, 2 (2020), 1078--1087. | spa |
dc.relation.references | Xiao, H., Pei, W., Deng, W., Kong, L., Sun, H., and Tang, C. A comparative study of deep neural network and meta-model techniques in behavior learning of microgrids. IEEE Access 8 (2020), 30104--30118. | spa |
dc.relation.references | Xiong, P., and Jirutitijaroen, P. A stochastic optimization formulation of unit commitment with reliability constraints. IEEE Trans Smart Grid 4, 4 (Dec. 2013), 2200--2208. | spa |
dc.relation.references | Xu, W., Li, J., Dehghani, M., and GhasemiGarpachi, M. Blockchain-based secure energy policy and management of renewable-based smart microgrids. Sustainable Cities and Society 72 (2021), 103010. | spa |
dc.relation.references | Yang, Y., and Wu, W. A distributionally robust optimization model for real-time power dispatch in distribution networks. IEEE Transactions on Smart Grid 10, 4 (2019), 3743--3752. | spa |
dc.relation.references | Yurdakul, O., Sivrikaya, F., and Albayrak, S. A distributionally robust optimization approach for unit commitment in microgrids. arXiv preprint (2020). | spa |
dc.relation.references | Zargar, R. H. M., and Yaghmaee, M. H. Energy exchange cooperative model in sdn-based interconnected multi-microgrids. Sustainable Energy, Grids and Networks 27 (2021), 100491. | spa |
dc.relation.references | Zhang, Y., Gatsis, N., and Giannakis, G. Robust energy management for microgrids with high-penetration renewables. IEEE Transactions on Sustainable Energy 4, 4 (2013). | spa |
dc.relation.references | Zhou, B., Zou, J., Chung, C. Y., Wang, H., Liu, N., Voropai, N., and Xu, D. Multi-microgrid energy management systems: Architecture, communication, and scheduling strategies. Journal of Modern Power Systems and Clean Energy 9, 3 (2021), 463--476. | spa |
dc.relation.references | Zhou, Q., Shahidehpour, M., Paaso, A., Bahramirad, S., Alabdulwahab, A., and Abusorrah, A. Distributed control and communication strategies in networked microgrids. IEEE Communications Surveys Tutorials 22, 4 (2020), 2586--2633. | spa |
dc.relation.references | Zhou, X., Zhou, L., Chen, Y., Guerrero, J. M., Luo, A., Wu, W., and Yang, L. A microgrid cluster structure and its autonomous coordination control strategy. International Journal of Electrical Power & Energy Systems 100 (2018), 69--80. | spa |
dc.relation.references | Zou, H., Mao, S., Wang, Y., Zhang, F., Chen, X., and Cheng, L. A survey of energy management in interconnected multi-microgrids. IEEE Access 7 (2019), 72158--72169. | spa |
dc.relation.references | Zubo, R. H. A., Mokryani, G., Rajamani, H. S., Aghaei, J., Niknam, T., and Pillai, P. Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review. Renewable and Sustainable Energy Reviews 72 (2017), 1177--1198 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Microrredes | spa |
dc.subject.proposal | Optimización Robusta Distribucional (DRO) | spa |
dc.subject.proposal | Distancia de Wasserstein | spa |
dc.subject.proposal | Energías renovables | spa |
dc.subject.proposal | Incertidumbre | spa |
dc.subject.proposal | Despacho económico | spa |
dc.subject.proposal | Sistemas de múltiples microrredes | spa |
dc.subject.proposal | Generación distribuida | spa |
dc.subject.proposal | Transición energética | spa |
dc.subject.proposal | Microgrids | eng |
dc.subject.proposal | Distributionally Robust Optimization (DRO) | eng |
dc.subject.proposal | Wasserstein distance | eng |
dc.subject.proposal | Renewable energies | eng |
dc.subject.proposal | Uncertainty | eng |
dc.subject.proposal | Economic dispatch | eng |
dc.subject.proposal | Multiple microgrid systems | eng |
dc.subject.proposal | Distributed generation | eng |
dc.subject.proposal | Energy transition | eng |
dc.subject.unesco | Fuente de energía renovable | spa |
dc.subject.unesco | Renewable energy sources | eng |
dc.subject.unesco | Abastecimiento de energía | spa |
dc.subject.unesco | Energy supply | eng |
dc.subject.wikidata | gestión energética | spa |
dc.subject.wikidata | energy management | eng |
dc.title | Sistema robusto de gestión predictiva de energía en redes de distribución con múltiples microrredes con inclusión de energías renovables | spa |
dc.title.translated | Robust predictive energy management system in distribution networks with multiple microgrids, including renewable energy sources | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Colciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1030671990.2024.pdf
- Tamaño:
- 1.69 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: