La saliva como alternativa para la detección de drogas de abuso: una revisión sistemática de la literatura

dc.contributor.advisorChaves Silva, Diana Carolina
dc.contributor.authorHernandez Tilaguy, Lorena Sofia
dc.contributor.researchgroupSustancias Psicoactivasspa
dc.date.accessioned2022-06-28T16:31:58Z
dc.date.available2022-06-28T16:31:58Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractEl incremento en el consumo de drogas de abuso es una problemática mundial que afecta negativamente, no solo a la persona que decide consumir sino también a su entorno, la gran dificultad social que desencadena dicho consumo estimula a la comunidad científica a investigar sobre metodologías que ayuden a la detección de dichas sustancias. La detección de drogas de abuso en saliva es un tema que no cuenta con información detallada y consensuada, presentándose la necesidad de dar a conocer dichas metodologías con el fin de aportar evidencia científica que pueda ser usada en diferentes ámbitos poblacionales. El presente estudio tuvo como objetivo evaluar mediante una revisión sistemática los parámetros de desempeño analítico que presentan las pruebas de detección de drogas de abuso en saliva, mediante una búsqueda en las bases de datos: Pubmed, Scielo, Scopus, CINALH, Cochrane library, Redalyc y Doaj,, se tuvieron en cuenta artículos científicos (de tipo experimental, in vitro, in vivo, poblacional) con estudios de las drogas de abuso clásicas como: THC, cocaína, anfetaminas, benzodiacepinas y sobre nuevas sustancias psicoactivas. Se incluyeron 69 artículos de los últimos 10 años en los resultados y discusión donde se abarcó la toxicocinética de las drogas en saliva, se comparó dicha toxicocinética con otras matrices de análisis, se abarcaron los métodos de detección y los factores que influyen en la detección. Se concluye que la saliva es de utilidad en la detección de las drogas de abuso estudiadas tras un consumo agudo, sin embargo, se debe tener en cuenta diferentes variables que influyen en la detección de cada tipo de droga. (Texto tomado de la fuente)spa
dc.description.abstractThe increase in the consumption of drugs of abuse is a global problem that adversely affects not only the person who decides to consume but also their environment, the great social difficulty that triggers such consumption stimulates the scientific community to investigate methodologies that help to the detection of these substances. The detection of drugs of abuse in saliva it is a topic that does not have detailed and consensual information, presenting the need to publicize these methodologies to provide scientific evidence that can be used in different population settings. The objective of this study was to evaluate, through a systematic review, the analytical performance parameters presented by the tests for the detection of drugs of abuse in saliva, through a search in the following databases: Pubmed, Scielo, Scopus, CINALH, Cochrane library, Redalyc and Doaj,, scientific articles (experimental, in vitro, in vivo, population) were taken into account with studies of classic drugs of abuse such as: THC, cocaine, amphetamines, benzodiazepines and on novel psychoactive substances. 69 articles from the last 10 years were included in the results and discussion where the toxicokinetic of drugs in saliva were covered, said toxicokinetic was compared with other analysis samples, detection methods and factors that influence detection were covered. It is concluded that saliva is useful in the detection of drugs of abuse studied after acute consumption, however, different variables that influence the detection of each type of drug must be considered.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Toxicologíaspa
dc.description.researchareaSustancias Psicoactivasspa
dc.format.extentxvi, 112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81634
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Toxicologíaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Toxicologíaspa
dc.relation.referencesAccioni, F., Nieddu, M., Corona, P., & Boatto, G. (2020). Hexanol-Based Supramolecular Solvents Tool for the Determination of 11 Illicit Phenethylamines in Oral Fluid by LC-MS/MS. Journal of Analytical Toxicology, 44(1), 15–21. https://doi.org/10.1093/jat/bkz039spa
dc.relation.referencesAgencia Mundial Antidopaje. (2018). La lista de Prohibiciones. https://www.wada-ama.org/sites/default/files/prohibited_list_2018_sp.pdf%0Ahttps://cv.udl.cat/access/content/group/102716-1617/MERITXELL/2016-10-28_wada_prohibited_list_2017_sp_final.pdfspa
dc.relation.referencesAgencia Mundial Antidopaje. (2022). El codigo mundial antidopaje, estandar internacional, La lista de prohibiciones. 1–10. https://www.wada-ama.org/sites/default/files/prohibited_list_2018_sp.pdfspa
dc.relation.referencesÁlamo, C., Zaragozá Arnáez, C., Noriega Matanza, C., & Torres, L. M. (2017). Fentanilo: una molécula y múltiples formulaciones galénicas de trascendencia clínica en el tratamiento del dolor irruptivo oncológico. Revista de La Sociedad Espanola Del Dolor, 24(4), 188–200. https://doi.org/10.20986/resed.2017.3586/2017spa
dc.relation.referencesAlcaldía de Bogotá, UNODC, Cicad, & OEA. (2016). Estudio de consumo de sustancias psicoactivas en Bogotá D.C 2016. http://www.odc.gov.co/Portals/1/publicaciones/pdf/consumo/estudios/locales/CO031052016-estudio-consumo-sustancias-psicoactivas-bogota-2016.pdfspa
dc.relation.referencesAlcohol and Drug Foundation. (2021). Roadside drug testing. https://adf.org.au/insights/roadside-drug-testing/spa
dc.relation.referencesAllen, K. R. (2011). Screening for drugs of abuse: Which matrix, oral fluid or urine? Annals of Clinical Biochemistry, 48(6), 531–541. https://doi.org/10.1258/acb.2011.011116spa
dc.relation.referencesAlvarado, E. (2017). La Marihuana en Toxicología Forense. Slideshare. https://es.slideshare.net/agustinarenas1/la-marihuana-toxicologa-forense-74407203spa
dc.relation.referencesAmaratunga, P., Lorenz, B., & Lemberg, D. (2013). Quantitative measurement of synthetic cathinones in oral fluid. Journal of Analytical Toxicology, 37(9), 622–628. https://doi.org/10.1093/jat/bkt080spa
dc.relation.referencesAndas, H., Krabseth, H. M., Enger, A., Marcussen, B., Haneborg, A. M., Christophersen, A., Vindenes, V., & Øiestad, E. (2014). Detection time for thc in oral fluid after frequent cannabis smoking. Therapeutic Drug Monitoring, 36(6), 808–814. https://doi.org/10.1097/FTD.0000000000000092spa
dc.relation.referencesAngulo, G. B., & Aurora Hernández Sánchez. (2016). Utilidad de las muestras de saliva en el diagnóstico por el laboratorio. Rev Latinoam Patol Clin Med Lab, 63(1), 13–18. www.medigraphic.com/patologiaclinicawww.medigraphic.org.mxwww.medigraphic.org.mxspa
dc.relation.referencesAnizan, S., & Huestis, M. (2012). The Potential Role of Oral Fluid in Antidoping Testing. Nature Medicine, 17(7), 883–887. https://doi.org/10.1373/clinchem.2013.209676.spa
dc.relation.referencesAnizan, S., Milman, G., Desrosiers, N., Barnes, A. J., David, A., & Huestis, M. A. (2014). Oral fluid cannabinoid concentrations following controlled smoked cannabis in chronic frequent and occasional smokers. 405(26), 1–19. https://doi.org/10.1007/s00216-013-7291-5.Oralspa
dc.relation.referencesArizan, S., Bergamaschi, M., Barnes, A. J., Milman, G., Desrosiers, N. A., Lee, D., Gorelick, D. A., & Huestis, M. A. (2016). Impact of Oral Fluid Collection Device on Cannabinoid Stability Following Smoked Cannabis. Drug Testing and Analysis, 7(2), 114–120. https://doi.org/10.1002/dta.1688.AHspa
dc.relation.referencesArkell, T. R., Kevin, R. C., Stuart, J., Lintzeris, N., Haber, P. S., Ramaekers, J. G., & McGregor, I. S. (2019). Detection of Δ9 THC in oral fluid following vaporized cannabis with varied cannabidiol (CBD) content: An evaluation of two point-of-collection testing devices. Drug Testing and Analysis, 11(10), 1486–1497. https://doi.org/10.1002/dta.2687spa
dc.relation.referencesArroyo, A., Mora, A., Sanchez, M., Barbal, M., & Palahi, M. (2011). Times of Detection of Drugs of Abuse in Saliva: Study of Arrested Population. Journal of Forensic Research, 02(01), 10–13. https://doi.org/10.4172/2157-7145.1000114spa
dc.relation.referencesArroyo Fernández, A., Mora Font, A., Sánchez Fité, M., Barbal Pagés, M., & Palahí Adroher, M. (2010). Drogas de abuso en saliva de conductores: aspectos médico-legales. Revista Española de Medicina Legal, 34(1), 3–10. https://doi.org/10.1016/s0377-4732(08)70020-8spa
dc.relation.referencesBakke, E., Høiseth, G., Furuhaugen, H., Berg, T., Arnestad, M., & Gjerde, H. (2020). Oral Fluid to Blood Concentration Ratios of Different Psychoactive Drugs in Samples from Suspected Drugged Drivers. Therapeutic Drug Monitoring, 42(5), 795–800. https://doi.org/10.1097/FTD.0000000000000760spa
dc.relation.referencesBarnes, A. J., Scheidweiler, K. B., Kolbrich-Spargo, E. A., Gorelick, D. A., Goodwin, R. S., & Huestis, M. A. (2011). MDMA and metabolite disposition in expectorated oral fluid after controlled oral MDMA administration. Therapeutic Drug Monitoring, 33(5), 602–608. https://doi.org/10.1097/FTD.0b013e3182281975spa
dc.relation.referencesBarquero, M. (2006). Principios y Aplicaciones de la Cromatografía de Gases. Universidad de Costa Rica. https://books.google.com.co/books?id=g3o_PUTmr3wC&printsec=frontcover&dq=cromatografia+de+gases&hl=es-419&sa=X&ved=0ahUKEwiglovJkc_kAhWI1lkKHQdXAbUQ6AEIKTAA#v=onepage&q=cromatografia de gases&f=falsespa
dc.relation.referencesBarwick, V., Morrillas, P., Ellison, S., & Engman, J. (1990). La Adecuación al Uso de los Métodos Analíticos. In Eurachem (Vol. 56, Issue 6).spa
dc.relation.referencesBassotti, E., Merone, G. M., D’Urso, A., Savini, F., Locatelli, M., Tartaglia, A., Dossetto, P., D’Ovidio, C., & de Grazia, U. (2020). A new LC-MS/MS confirmation method for the determination of 17 drugs of abuse in oral fluid and its application to real samples. Forensic Science International, 312. https://doi.org/10.1016/j.forsciint.2020.110330spa
dc.relation.referencesBista, S. R., Haywood, A., Norris, R., Good, P., Tapuni, A., Lobb, M., & Hardy, J. (2015). Saliva versus Plasma for Pharmacokinetic and Pharmacodynamic Studies of Fentanyl in Patients with Cancer. Clinical Therapeutics, 37(11), 2468–2475. https://doi.org/10.1016/j.clinthera.2015.09.002spa
dc.relation.referencesBöttcher, M., Lierheimer, S., Peschel, A., & Beck, O. (2019). Detection of heroin intake in patients in substitution treatment using oral fluid as specimen for drug testing. Drug and Alcohol Dependence, 198(February), 136–139. https://doi.org/10.1016/j.drugalcdep.2019.02.011spa
dc.relation.referencesBruun, L. D., Kjeldstadli, K., Temte, V., Birdal, M., Bachs, L., Langødegård, M., Strand, D. H., Gaare, K. I., Øiestad, E., & Høiseth, G. (2019). Detection time of oxazepam and zopiclone in urine and oral fluid after experimental oral dosing. Journal of Analytical Toxicology, 43(5), 369–377. https://doi.org/10.1093/jat/bky083spa
dc.relation.referencesBueno, G., & Salazar, J. (2012). Validación del método para el análisis de cocaína, opiaceos y sus principales adulterantes por Cromatografía de gases acoplado a espectrometria de masas (GC-MS), en el Instituto Nacional de Medicina Legal de Ciencias Forenses. In UNIVERSIDAD TECNOLOGICA DE PEREIRA. http://recursosbiblioteca.utp.edu.co/tesisd/textoyanexos/66028423B928.pdfspa
dc.relation.referencesBusardo, F. P., Pichini, S., Pellegrini, M., Montana, A., lo Faro, A. F., Zaami, S., & Graziano, S. (2017). Correlation between Blood and Oral Fluid Psychoactive Drug Concentrations and Cognitive Impairment in Driving under the Influence of Drugs. Current Neuropharmacology, 16(1), 84–96. https://doi.org/10.2174/1570159x15666170828162057spa
dc.relation.referencesCalvin, G., & Roy, K. (2017). Liquid Chromatography. Britannica. https://www.britannica.com/science/chromatography/Liquid-chromatographyspa
dc.relation.referencesCardenas, K. (2012). PERFIL CLÍNICO Y DEMOGRÁFICO DE PACIENTES ATENDIDOS EN LOS SERVICIOS DE URGENCIAS, POR INTOXICACIÓN AGUDA CON SUSTANCIAS PSICOACTIVAS. BOGOTÁ D.C. JULIO 2010 – JUNIO 2011.Universidad Nacional de Colombia.spa
dc.relation.referencesCasadiego Mesa, A. F., & Lastra Bello, S. M. (2015). Cannabis sintético: aspectos toxicológicos, usos clínicos y droga de diseño. Revista de La Facultad de Medicina, 63(3), 501–510. https://doi.org/10.15446/revfacmed.v63n3.47460spa
dc.relation.referencesChow, A. T. Y., Ng, V. C. H., & Lau, F. L. (2015). Can “oral fluid” be used instead of “urine” for rapid screening of drug of abuse: A prospective pilot study. Hong Kong Journal of Emergency Medicinespa
dc.relation.referencesChristodoulides, N., de La Garza, R., Simmons, G. W., McRae, M. P., Wong, J., Newton, T. F., Smith, R., Mahoney, J. J., Hohenstein, J., Gomez, S., Floriano, P. N., Talavera, H., Sloan, D. J., Moody, D. E., Andrenyak, D. M., Kosten, T. R., Haque, A., & McDevitt, J. T. (2015). Application of programmable bio-nano-chip system for the quantitative detection of drugs of abuse in oral fluids. Drug and Alcohol Dependence, 153, 306–313. https://doi.org/10.1016/j.drugalcdep.2015.04.026spa
dc.relation.referencesCodigo sustantivo del trabajo. (1993). 1(August), 117–125.spa
dc.relation.referencesConcheiro, M., Newmeyer, M., Costa, J. L., Flegel, R., Gorelick, D. A., & Huestis, M. A. (2016). Morphine and Codeine in Oral Fluid after Controlled Poppy Seed Administration Marta. Drug Testing and Analysis, 176(1), 100–106. https://doi.org/10.1002/dta.1742.Morphinespa
dc.relation.referencesCone, E. J., & Huestis, M. A. (2007). Interpretation of oral fluid tests for drugs of abuse. Annals of the New York Academy of Sciences, 1098, 51–103. https://doi.org/10.1196/annals.1384.037spa
dc.relation.referencesCongreso de Colombia. (2002). Ley 734 de 2002. 2002. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=4589spa
dc.relation.referencesCongreso de la República de Colombia. (2003). Ley 845 del 2003. Diario Oficial, 2003(45), 10.spa
dc.relation.referencesCorte Constitucional de Colombia. (2019). Sentencia C-253-19. http://www.corteconstitucional.gov.co/relatoria/2019/C-253-19.htmspa
dc.relation.referencesCortez, R. (2000). Cromatografía de gases. SGPWE. http://sgpwe.izt.uam.mx/files/users/uami/jrvc/QA_II/Cromatografia_de_Gases.pdfspa
dc.relation.referencesCoulter, C. A., & Moore, C. M. (2019). Analysis of drugs in oral fluid using LC-MS/MS. In Methods in Molecular Biology (Vol. 1872, pp. 237–259). Humana Press Inc. https://doi.org/10.1007/978-1-4939-8823-5_22spa
dc.relation.referencesCrouch, D. J., Day, J., Baudys, J., & Fatah, A. A. (2005). Evaluation of Saliva/Oral Fluid as an Alternate Drug Testing Specimen. Departament of Justice US. https://www.ojp.gov/pdffiles1/nij/grants/203569.pdfspa
dc.relation.referencesDayong, L., Erin, K., Garry, M., Allan, B., Robert, G., & Huestis, M. A. (2013). Can oral fluid cannabinoid testing monitor medication compliance and/or cannabis smoking during oral THC and oromucosal Sativex administration? Early Human Development, 83(1), 1–11. https://doi.org/10.1016/j.drugalcdep.2012.10.011spa
dc.relation.referencesde Castro, A., Lendoiro, E., Fernández-Vega, H., López-Rivadulla, M., Steinmeyer, S., & Cruz, A. (2014). Assessment of different mouthwashes on cannabis oral fluid concentrations. Drug Testing and Analysis, 6(10), 1011–1019. https://doi.org/10.1002/dta.1605spa
dc.relation.referencesDecreto 1844. (2018). https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=88843spa
dc.relation.referencesDesrosiers, N. A., Barnes, A. J., Hartman, R. L., Scheidweiler, K. B., Kolbrich-Spargo, E. A., Gorelick, D. A., Goodwin, R. S., & Huestis, M. A. (2013). Oral Fluid and Plasma 3,4-Methylenedioxymethamphetamine (MDMA) and Metabolite Correlation after Controlled Oral MDMA Administration. Anal Bioanal Chem, 405(12), 4067–4076. https://doi.org/10.1007/s00216-013-6848-7.Oralspa
dc.relation.referencesDesrosiers, N. A., Ramaekers, J. G., Chauchard, E., Gorelick, D. A., & Huestis, M. A. (2015). Smoked Cannabis’ Psychomotor and Neurocognitive Effects in Occasional and Frequent Smokers. Journal of Analytical Toxicology, 39(4), 251–261. https://doi.org/10.1093/jat/bkv012spa
dc.relation.referencesdi Corcia, D., Lisi, S., Pirro, V., Gerace, E., Salomone, A., & Vincenti, M. (2013). Determination of pharmaceutical and illicit drugs in oral fluid by ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 927, 133–141. https://doi.org/10.1016/j.jchromb.2013.01.025spa
dc.relation.referencesdi Fazio, V., Wille, S. M. R., Toennes, S. W., van Wel, J. H. P., Ramaekers, J. G., & Samyn, N. (2018). Driving under the influence of cocaine: Quantitative determination of basic drugs in oral fluid obtained during roadside controls and a controlled study with cocaine users. Drug Testing and Analysis, 10(8), 1285–1296. https://doi.org/10.1002/dta.2379spa
dc.relation.referencesDireccion General de Seguridad Vial. (2015). Programa Control de Drogas. Buenos Aires Argentina. https://www.buenosaires.gob.ar/areas/seguridad_justicia/seguridad_urbana/seguridad_vial/programa_control_drogas.php?menu_id=34134spa
dc.relation.referencesDrummer, O. H. (2016). Drug Testing in Oral Fluid. Psychological Perspectives, 59(4), 524–525. https://doi.org/10.1080/00332925.2016.1240547spa
dc.relation.referencesDyer, K. R., & Wilkinson, C. (2008). The detection of illicit drugs in oral fluid: Another potential strategy to reduce illicit drug-related harm. Drug and Alcohol Review, 27(1), 99–107. https://doi.org/10.1080/09595230701727583spa
dc.relation.referencesEgea-Mellado, J. M. (2010). Fundamento de la espectrometria de masas en tándem (MS/MS). Sociedad Española de Bioquímica Clínica y Patología Molecular, 1–11.spa
dc.relation.referencesEllefsen, K., Concheiro, M., Pirard, S., Gorelick, D. A., & Huestis, M. (2016). Oral Fluid Cocaine and Benzoylecgonine Concentrations following Controlled Intravenous Cocaine Administration. Forensic Science International, 260(1), 95–101.spa
dc.relation.referencesEl tiempo. (2015). Aumenta consumo de drogas en el trabajo. El Tiempo. https://www.eltiempo.com/archivo/documento/CMS-14674817spa
dc.relation.referencesFabritius, M., Chtioui, H., Battistella, G., Annoni, J., Dao, K., Favrat, B., Fornari, E., Luer, E., Maeder, P., & Giroud, C. (2013). Comparasion of cannabinoid concentrations in oral fluid and whole blood between occasional and regular cannabis smokers prior to and after smoking a cannabis joint. Anal Bioanal Chem, 405, 9791–9803.spa
dc.relation.referencesFenoll, C., Muñoz, J., Sanchiz, V., Herreros, B., Hernandez, V., Minguez, M., & Benages, A. (2004). Unstimulated salivary flow rate, pH and buffer capacity of saliva in healthy volunteers. Resvista Española de Enfermedades Digestivas, 96(11), 773–783. https://pdfs.semanticscholar.org/6313/5f811d748f67a5ad01604c19de67d1eb3443.pdfspa
dc.relation.referencesFiorentin, T. R., D’Avila, F. B., Comiran, E., Zamboni, A., Scherer, J. N., Pechansky, F., Borges, P. E. M., Fröehlich, P. E., & Limberger, R. P. (2017). Simultaneous determination of cocaine/crack and its metabolites in oral fluid, urine and plasma by liquid chromatography-mass spectrometry and its application in drug users. Journal of Pharmacological and Toxicological Methods, 86(April), 60–66. https://doi.org/10.1016/j.vascn.2017.04.003spa
dc.relation.referencesFranco, A., Navarro, M., Campos, M., Blumenberg, C., Alves, A., & Paranhos, L. (2020). Assessment of dental age estimation methods applied to Brazilian children a systematic review and metaanalysis DMFR. https://doi.org/10.1259/dmfr.20200128spa
dc.relation.referencesGainza, I., Nogué, S., Martínez Velasco, C., Hoffman, R. S., Burillo-Putze, G., Dueñas, A., Gómez, J., & Pinillos, M. A. (2003). Intoxicación por drogas. Anales Del Sistema Sanitario de Navarra, 26. https://doi.org/10.4321/s1137-66272003000200006spa
dc.relation.referencesGaohua, L., Miao, X., & Dou, L. (2021). Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. In Expert Opinion on Drug Metabolism and Toxicology (Vol. 17, Issue 9, pp. 1103–1124). Taylor and Francis Ltd. https://doi.org/10.1080/17425255.2021.1951223spa
dc.relation.referencesGarg, U., & Cooley, C. (2019). Testing of Drugs of Abuse in Oral Fluid, Sweat, Hair, and Nail: Analytical, Interpretative, and Specimen Adulteration Issues. In Critical Issues in Alcohol and Drugs of Abuse Testing (Second Edi). Elsevier Inc. https://doi.org/10.1016/b978-0-12-815607-0.00028-9spa
dc.relation.referencesGjerde, H., Langel, K., Favretto, D., & Verstraete, A. G. (2014). Detection of 4 benzodiazepines in oral fluid as biomarker for presence in blood. Therapeutic Drug Monitoring, 36(2), 252–256. https://doi.org/10.1097/FTD.0b013e3182a3ab42spa
dc.relation.referencesGobierno de Buenos Aires. (2010). Programa de control de drogas. https://www.buenosaires.gob.ar/areas/seguridad_justicia/seguridad_urbana/seguridad_vial/programa_control_drogas.php?menu_id=34134spa
dc.relation.referencesGonzález-Luque, J. C., & Quintela-Jorge, O. (2011). La determinación de drogas en fluido oral en conductores de vehículos: ¿se abre el camino a la intervención preventiva? Rev Esp Drogodep, 36(3), 341–350.spa
dc.relation.referencesGriswold, M. K., Chai, P. R., Krotulski, A. J., Friscia, M., Chapman, B. P., Varma, N., Boyer, E. W., Logan, B. K., & Babu, K. M. (2017). A Novel Oral Fluid Assay (LC-QTOF-MS) for the Detection of Fentanyl and Clandestine Opioids in Oral Fluid After Reported Heroin Overdose. Journal of Medical Toxicology, 13(4), 287–292. https://doi.org/10.1007/s13181-017-0632-6spa
dc.relation.referencesHartman, R. L., Brown, T. L., Milavetz, G., Spurgin, A., Gorelick, D. A., Gaffney, G., & Huestis, M. A. (2016). Controlled vaporized cannabis, with and without alcohol: subjective effects and oral fluid-blood cannabinoid relationships. Drug Testing and Analysis, 8(7), 690–701. https://doi.org/10.1002/dta.1839spa
dc.relation.referencesHeltsley, R., DePriest, A., Black, D. L., Crouch, D. J., Robert, T., Marshall, L., Meadors, V. M., Caplan, Y. H., & Cone, E. J. (2012). Oral fluid drug testing of chronic pain patients. II. Comparison of paired oral fluid and urine specimens. Journal of Analytical Toxicology, 36(2), 75–80. https://doi.org/10.1093/jat/bkr019spa
dc.relation.referencesHofman, L. F. (2001). Human Saliva as a Diagnostic Specimen. The Journal of Nutrition, 131(5), 1621S-1625S. https://doi.org/10.1093/jn/131.5.1621Sspa
dc.relation.referencesIDEAM. (2021). Instructivo de confirmación o validación de métodos analíticos. 2013–2015. http://sgi.ideam.gov.co/documents/412030/35488871/M-S-LC-I038+INSTRUCTIVO+DE+CONFIRMACIÓN+O+VALIDACIÓN+DE+MÉTODOS+ANALÍTICOS+v3.pdf/cd82e785-16f2-4ffa-b965-4614a9808f38?version=1.0spa
dc.relation.referencesInstituto Nacional de Medicina Legal y Ciencias Forenses. (2015). Guía para la determinación clínica forense del estado de embriaguez aguda. 91. http://www.medicinalegal.gov.co/documents/20143/40473/Guía+para+la+determinación+clínica+forense+delestado+de+embriaguez+aguda.pdf/8de54a98-38db-f7c1-e04c-9b2505b585e9spa
dc.relation.referencesJ.M, A., Diaz, J., Castello, J., Fabregat, A., & Lopez, P. (2002). Drogas de abuso: evaluación de las unidades de conductas adictivas en un Área Sanitaria. Revista de Diagnóstico Biológico, 51(2). https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0034-79732002000200005spa
dc.relation.referencesKaufman, E., & Lamster, I. B. (2002). The diagnostic applications of Saliva A Review. Critical Reviews in Oral Biology & Medicine, 13(2), 197–212. https://doi.org/10.1177/154411130201300209spa
dc.relation.referencesKrotulski, A. J., Mohr, A. L. A., Friscia, M., & Logan, B. K. (2018). Field Detection of Drugs of Abuse in Oral Fluid Using the Alere DDS2 Mobile Test System with Confirmatios by Liquids Chromatography Tandem Mass Spectrometry (LC-MS/MS). Jorunal of Analytical Toxicology, 170–175.spa
dc.relation.referencesK.Wolff, M. Farrell, J.Marsden, M. G. Monteiro, R. Ali, S. W. y J. S. (2001). Revisión de los indicadores biológicos de uso ilegal de drogas, consideraciones prácticas y utilidad clínica. Revista de Toxicomanías, 28. http://www.cat-barcelona.com/app/webroot/uploads/rets/RET28_1.pdfspa
dc.relation.referencesLangel, K., Gjerde, H., Favretto, D., Lillsunde, P., Øiestad, E. L., Ferrara, S. D., & Verstraete, A. G. (2014). Comparison of drug concentrations between whole blood and oral fluid. Drug Testing and Analysis, 6(5), 461–471. https://doi.org/10.1002/dta.1532spa
dc.relation.referencesLangel, K., Gunnar, T., Ariniemi, K., Rajamäki, O., & Lillsunde, P. (2011). A validated method for the detection and quantitation of 50 drugs of abuse and medicinal drugs in oral fluid by gas chromatography-mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879(13–14), 859–870. https://doi.org/10.1016/j.jchromb.2011.02.027spa
dc.relation.referencesLee, D., Milman, G., Barnes, A. J., Goodwin, R. S., Hirvonen, J., & Huestis, M. A. (2011). Oral fluid cannabinoids in chronic, daily cannabis smokers during sustained, monitored abstinence. Clinical Chemistry, 57(8), 1127–1136. https://doi.org/10.1373/clinchem.2011.164822spa
dc.relation.referencesLee, D., Milman, G., Schwope, D. M., Barnes, A. J., Gorelick, D. A., & Huestis, M. A. (2012). Cannabinoid Stability in Authentic Oral Fluid after Controlled Cannabis Smoking. Clinical Chemistry, 23(1), 1–7. https://doi.org/10.1373/clinchem.2012.184929.Cannabinoidspa
dc.relation.referencesLee, D., Schwope, D. M., Milman, G., Barnes, A. J., Gorelick, D. A., & Huestis, M. A. (2012). Cannabinoid Disposition in Oral Fluid after Controlled Smoked Cannabis. Clinical Chemistry, 23(1), 1–7. https://doi.org/10.1373/clinchem.2011.177881.Cannabinoidspa
dc.relation.referencesLee, D., Vandrey, R., Milman, G., Bergamaschi, M., Mendu, D. R., Murray, J. A., Barnes, A. J., & Huestis, M. A. (2013). Oral fluid/plasma cannabinoid ratios following controlled oral THC and smoked cannabis administration. Anal Bioanal Chem, 405(23), 7269–7279. https://doi.org/10.1007/s00216-013-7159-8.Oralspa
dc.relation.referencesLey 769 de 2002. (2002). http://www.secretariasenado.gov.co/senado/basedoc/ley_0769_2002.htmlspa
dc.relation.referencesLogan, B. K., D’Orazio, A. L., Mohr, A. L. A., Limoges, J. F., Miles, A. K., Scarneo, C. E., Kerrigan, S., Liddicoat, L. J., Scott, K. S., & Huestis, M. A. (2018). Recommendations for toxicological investigation of drug-impaired driving and motor vehicle fatalities-2017 update. Journal of Analytical Toxicology, 42(2), 63–68. https://doi.org/10.1093/jat/bkx082spa
dc.relation.referencesLogan, B. K., Mohr, A. L. A., & Talpins, S. K. (2014). Detection and prevalence of drug use in arrested drivers using the dräger drug test 5000 and affiniton DrugWipe oral fluid drug screening devices. Journal of Analytical Toxicology, 38(7), 444–450. https://doi.org/10.1093/jat/bku050spa
dc.relation.referencesLópez V, A., Aroche A., A., & Romero, B. R. (2010). Uso y abuso de las benzodiacepinas. MEDISAN, 14(4), 555–566.spa
dc.relation.referencesLund, H. M. E., Øiestad, E. L., Gjerde, H., & Christophersen, A. S. (2011). Drugs of abuse in oral fluid collected by two different sample kits - Stability testing and validation using ultra performance tandem mass spectrometry analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879(30), 3367–3377. https://doi.org/10.1016/j.jchromb.2011.09.002spa
dc.relation.referencesMacCall, C. A., Ritchie, G., & Sood, M. (2013). Oral fluid testing as an alternative to urine testing for drugs of abuse in inpatient forensic settings: Giving patients choice. Scottish Medical Journal, 58(2), 99–103. https://doi.org/10.1177/0036933013482640spa
dc.relation.referencesMateu-Gelabert, P., Friedman, S., & Sandoval, M. (2007). Éxtasis (3,4-metilendioximetanfetamina, MDMA): aspectos farmacológicos, clínicos y criminológicos. Trastornos Adictivos, 9(4), 260–268. http://www.ncbi.nlm.nih.gov/pubmed/21915175spa
dc.relation.referencesMiller, B., Kim, J., & Concheiro, M. (2017). Stability of synthetic cathinones in oral fluid samples. Forensic Science International, 274, 13–21. https://doi.org/10.1016/j.forsciint.2016.11.034spa
dc.relation.referencesMilman, G., Schwope, D. M., Schwilke, E. W., Darwin, W. D., Deanna, L., Goodwin, R. S., Gorelick, D. A., & Huestis, M. A. (2013). Oral Fluid and Plasma Cannabinoid Ratios after Around-the- Clock Controlled Oral Δ9-Tetrahydrocannabinol Administration. Clinical Chemistry, 57(11). https://doi.org/10.1373/clinchem.2011.169490.Oralspa
dc.relation.referencesMoore, C. (2011). Oral fluid and hair in workplace drug testing programs: New technology for immunoassays. Drug Testing and Analysis, 3(3), 166–168. https://doi.org/10.1002/dta.140spa
dc.relation.referencesMoore, C., Coulter, C., Uges, D., Tuyay, J., van der Linde, S., van Leeuwen, A., Garnier, M., & Orbita, J. (2011). Cannabinoids in oral fluid following passive exposure to marijuana smoke. Forensic Science International, 212(1–3), 227–230. https://doi.org/10.1016/j.forsciint.2011.06.019spa
dc.relation.referencesMusshoff, F., Hokamp, E. G., Bott, U., & Madea, B. (2014). Performance evaluation of on-site oral fluid drug screening devices in normal police procedure in Germany. Forensic Science International, 238, 120–124. https://doi.org/10.1016/j.forsciint.2014.02.005spa
dc.relation.referencesNational Conference Of State Legislatures. (2021). States Explore Oral Fluid Testing to Combat Impaired Driving. https://www.ncsl.org/research/transportation/states-explore-oral-fluid-testing-to-combat-impaired-driving.aspxspa
dc.relation.referencesNCI thesaurus. (2022). Cocaine. https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=NCI_Thesaurus&code=C80153spa
dc.relation.referencesNewmeyer, M., Concheiro, M., Costa, J. L., Flegel, R., Gorelick, D. A., & Huestis, M. A. (2016). Oral Fluid with Three Modes of Collection and Plasma Methamphetamine and Amphetamine Enantiomer Concentrations After Controlled Intranasal l-Methamphetamine Administration Matthew. Drug Testing and Analysis, 176(3), 139–148. https://doi.org/10.1002/dta.1784.spa
dc.relation.referencesNewmeyer, M., Desrosiers, N., Dayong, L., Mendu, D., BBarnes, A., Gorelick, D. A., & Hue. (2014). Cannabinoid Disposition in Oral Fluid after Controlled Cannabis Smoking in Frequent and Occasional Smokers. Drug and Alcohol Review, 23(1), 1–7. https://doi.org/10.1002/dta.1632.spa
dc.relation.referencesNichterwitz, J., Fiorentin, T., Viera, T., Pereira, R., & Pechansky, F. (2017). Oral fluid testing for cocaine: Analytical evaluation of two point-of-collection drug screening Devices. Journal of Analytical Toxicology, 41(5), 392–398. https://doi.org/10.1093/jat/bkx018spa
dc.relation.referencesNordal, K., Øiestad, E. L., Enger, A., Christophersen, A. S., & Vindenes, V. (2015). Detection Times of Diazepam, Clonazepam, and Alprazolam in Oral Fluid Collected from Patients Admitted to Detoxification, after High and Repeated Drug Intake. Therapeutic Drug Monitoring, 37(4), 451–460. https://doi.org/10.1097/FTD.0000000000000174spa
dc.relation.referencesNZ Drug Foundation. (2022). New drug-driving law ignores science, targets poor . https://www.drugfoundation.org.nz/matters-of-substance/new-drug-driving-law-ignores-science-targets-poor/spa
dc.relation.referencesObservatorio de drogas de Colombia. (2017). Reporte de Drogas en Colombia. http://www.odc.gov.co/Portals/1/publicaciones/pdf/odc-libro-blanco/reporte_drogas_colombia_2017.pdfspa
dc.relation.referencesObservatorio Nacional de Seguridad Vial. (2017). La embriaguez al conducir, descripcion de una problematica vigente en Colombia. https://ansv.gov.co/observatorio/public/documentos/embriaguez 2017 - bavaria (jun_2018_final).pdfspa
dc.relation.referencesOECD (2010). Drugs and Driving Detection and Deterrence. https://www.itf-oecd.org/sites/default/files/docs/10drugs.pdfspa
dc.relation.referencesOrganización Panamericana de la Salud. (2022). Abuso de sustancias. https://www.paho.org/es/temas/abuso-sustanciasspa
dc.relation.referencesOspina, L. (1994). El método de análisis para los estudios de estabilidad y de biodisponibilidad de medicamentos. Parte I. Revista Colombiana de Ciencias Quimico-Farmaceuticas, 22.spa
dc.relation.referencesPalmela Pereira, C. (2014). A importância médico-legal e criminalística da saliva: Sistematização da sua aplicação nas ciências forenses. Revista Portuguesa de Estomatologia, Medicina Dentaria e Cirurgia Maxilofacial, 55(1), 3–6. https://doi.org/10.1016/j.rpemd.2014.01.002spa
dc.relation.referencesPapaseit, E., Olesti, E., Pérez-Mañá, C., Torrens, M., Fonseca, F., Grifell, M., Ventura, M., de la Torre, R., & Farré, M. (2021). Acute pharmacological effects of oral and intranasal mephedrone: An observational study in humans. Pharmaceuticals, 14(2), 1–13. https://doi.org/10.3390/ph14020100spa
dc.relation.referencesPehrsson, A., Blencowe, T., Vimpari, K., Langel, K., Engblom, C., & Lillsunde, P. (2011). An evaluation of on-site oral fluid drug screening devices drugwipe® 5+ and rapid STAT® using oral fluid for confirmation analysis. Journal of Analytical Toxicology, 35(4), 211–218. https://doi.org/10.1093/anatox/35.4.211spa
dc.relation.referencesPetrides, A. K., Melanson, S. E. F., Kantartjis, M., Le, R. D., Demetriou, C. A., & Flood, J. G. (2018). Monitoring opioid and benzodiazepine use and abuse: Is oral fluid or urine the preferred specimen type? Clinica Chimica Acta, 481(December 2017), 75–82. https://doi.org/10.1016/j.cca.2018.02.034spa
dc.relation.referencesPichini, S., Altieri, I., Zuccaro, P., & Pacifici, R. (1996). Drug monitoring in nonconventional biological fluids and matrices. Clinical Pharmacokinetics, 30(3), 211–228. https://doi.org/10.2165/00003088-199630030-00003spa
dc.relation.referencesPinzon, A. (2015). Aspectos técnicos y científicos de las pruebas de campo para la detección de sustancias psicoactivas aplicadas a conductores de vehículos autmotores. Instituto Nacional de medicina legal y ciencias forenses. https://www.medicinalegal.gov.co/documents/20143/49508/Art%C3%ADculos%C2%B7Complementarios.pdfspa
dc.relation.referencesPoyatos, L., Papaseit, E., Olesti, E., Pérez-Mañá, C., Ventura, M., Carbón, X., Grifell, M., Fonseca, F., Torrens, M., de la Torre, R., & Farré, M. (2021). A comparison of acute pharmacological effects of methylone and mdma administration in humans and oral fluid concentrations as biomarkers of exposure. In Biology (Vol. 10, Issue 8). https://doi.org/10.3390/biology10080788spa
dc.relation.referencesPubChem. (2015a). Alprazolam. National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/2118#section=Metabolism-Metabolitesspa
dc.relation.referencesPubchem. (2015). Cocaine. National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/446220spa
dc.relation.referencesPubChem. (2015b). Dronabidol. National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/16078spa
dc.relation.referencesPuy, C. L. (2006). La saliva en el mantenimiento de la salud oral y como ayuda en el diagnóstico de algunas patologías. Medicina Oral, Patología Oral y Cirugía Bucal (Internet), 11(5), 449–455.spa
dc.relation.referencesRamos Maya, A. (2017). Proyecto de Ley 167 del 2017 (Issue 3). http://leyes.senado.gov.co/proyectos/index.php/textos-radicados-senado/p-ley-2017-2018/1059-proyecto-de-ley-167-de-2017spa
dc.relation.referencesRocchi, R., Simeoni, M. C., Montesano, C., Vannutelli, G., Curini, R., Sergi, M., & Compagnone, D. (2018). Analysis of new psychoactive substances in oral fluids by means of microextraction by packed sorbent followed by ultra-high-performance liquid chromatography–tandem mass spectrometry. Drug Testing and Analysis, 10(5), 865–873. https://doi.org/10.1002/dta.2330spa
dc.relation.referencesROSITA. (2018a). Retriever September 26, 2019, from http://www.rosita.org/success-program-random-roadside-testing/spa
dc.relation.referencesROSITA. (2018b). Retriever September 26, 2019, from http://www.rosita.org/better-reliable-roadside-drug-test/spa
dc.relation.referencesSaar-Reismaa, P., Erme, E., Vaher, M., Kulp, M., Kaljurand, M., & Mazina-Šinkar, J. (2018). In Situ Determination of Illegal Drugs in Oral Fluid by Portable Capillary Electrophoresis with Deep UV Excited Fluorescence Detection. Analytical Chemistry, 90(10), 6253–6258. https://doi.org/10.1021/acs.analchem.8b00911spa
dc.relation.referencesSanchez Martinez, P. (2013). La saliva como fluido diagnóstico. Enfermedades Hepáticas Autoinmunes, 7(Unidad de Inmunología, Facultad de Medicina, Universidad de Granada, Granada), 44–52.spa
dc.relation.referencesScherer, J. N., Fiorentin, T. R., Borille, B. T., Pasa, G., Sousa, T. R. V., von Diemen, L., Limberger, R. P., & Pechansky, F. (2017). Reliability of point-of-collection testing devices for drugs of abuse in oral fluid: A systematic review and meta-analysis. Journal of Pharmaceutical and Biomedical Analysis, 143, 77–85. https://doi.org/10.1016/j.jpba.2017.05.021spa
dc.relation.referencesSchulze, H., Schumacher, M., Urmeew, R., Alvarez, J., Bernhoft, I. M., de Gier, H. G., Hagenzieker, M., Houwing, S., Knoche, A., & Pilgerstorfer, M. (2012). Driving Under the Influence of Drugs, Alcohol and Medicines in Europe—findings from the DRUID project. 1–58.spa
dc.relation.referencesShafi, A., Berry, A. J., Sumnall, H., Wood, D. M., & Tracy, D. K. (2020). New psychoactive substances: a review and updates. Therapeutic Advances in Psychopharmacology, 10, 204512532096719. https://doi.org/10.1177/2045125320967197spa
dc.relation.referencesSobczak, L., & Gorynski, K. (2021). Evaluation of swabs form 15 commercially available oral fluid sample collection devices for the analysis of commonly aused substances: doping agents and drugs of abuse. The Royal Society of Chemistry, 145, 7279–7288.spa
dc.relation.referencesSpindle, T. R., Cone, E. J., Herrmann, E. S., Mitchell, J. M., Flegel, R., LoDico, C., Bigelow, G. E., & Vandrey, R. (2020). Pharmacokinetics of cannabis brownies: A controlled examination of Δ9-tetrahydrocanna-binol and metabolites in blood and oral fluid of healthy adult males and females. Journal of Analytical Toxicology, 44(7), 661–671. https://doi.org/10.1093/jat/bkaa067spa
dc.relation.referencesSpindle, T. R., Cone, E. J., Schlienz, N. J., Mitchell, J. M., Bigelow, G. E., Flegel, R., Hayes, E., & Vandrey, R. (2019). Acute pharmacokinetic profile of smoked and vaporized cannabis in human blood and oral fluid. Journal of Analytical Toxicology, 43(4), 233–258. https://doi.org/10.1093/jat/bky104spa
dc.relation.referencesSwortwood, M., Newmeyer, M., Andersson, M., Abulseud, O., Scheidweiler, K. B., & Huestis, M. A. (2017). Cannabinoid disposition in oral fluid after controlled smoked, vaporized, and oral cannabis administration. Drug Testing and Analysis, 176(3), 139–148. https://doi.org/10.1002/dta.2092spa
dc.relation.referencesTang, M. H. Y., Ching, C. K., Poon, S., Chan, S. S. S., Ng, W. Y., Lam, M., Wong, C. K., Pao, R., Lau, A., & Mak, T. W. L. (2018). Evaluation of three rapid oral fluid test devices on the screening of multiple drugs of abuse including ketamine. Forensic Science International, 286, 113–120. https://doi.org/10.1016/j.forsciint.2018.03.004spa
dc.relation.referencesTéllez, J. (2013). Marihuana cannabis: aspectos toxicológicos, clínicos, sociales y potenciales usos terapéuticos. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesToennes, S. W., Geraths, A., Pogoda, W., Paulke, A., Wunder, C., Theunissen, E. L., & Ramaekers, J. G. (2018). Pharmacokinetic properties of the synthetic cannabinoid JWH-018 in oral fluid after inhalation. Drug Testing and Analysis, 10(4), 644–650. https://doi.org/10.1002/dta.2310spa
dc.relation.referencesToennes, S. W., Schneider, D., Pogoda, W., Paulke, A., Wunder, C., Theunissen, E. L., Kuypers, K. P. C., de Sousa Fernandes Perna, E., & Ramaekers, J. G. (2019). Pharmacokinetic properties of 4-fluoroamphetamine in serum and oral fluid after oral ingestion. Drug Testing and Analysis, 11(7), 1028–1034. https://doi.org/10.1002/dta.2595spa
dc.relation.referencesTrana, A. di, Mannocchi, G., Pirani, F., Maida, N. la, Via, S., Cooperazione, D., & Addiction, C. (2020). A Comprehensive HPLC – MS-MS Screening Method for 77 New Psychoactive Substances , 24 Classic Drugs and 18 Related Metabolites in Blood , Urine and Oral Fluid. Department of Excellence of Biomedical Sciences and Public Health.spa
dc.relation.referencesTruver, M. T., Palmquist, K. B., & Swortwood, M. J. (2019). Oral fluid and drug impairment: Pairing toxicology with drug recognition expert observations. Journal of Analytical Toxicology, 43(8), 637–643. https://doi.org/10.1093/jat/bkz075spa
dc.relation.referencesUnited Nations. (2021). Informe Mundial de Drogas. In World Drug Report 2021. https://www.unodc.org/res/wdr2021/field/WDR21_Booklet_2.pdfspa
dc.relation.referencesUNODC. (2017). Resumen informe mundial sobre las drogas 2017. https://www.unodc.org/wdr2017/field/WDR_Booklet1_Exsum_Spanish.pdfspa
dc.relation.referencesUNODC. (2021). What are NPS? https://www.unodc.org/LSS/Page/NPSspa
dc.relation.referencesUribe Granja, C., Saavedra, M. Á., Almarales Navarro, J. R., Cabezas Pulido, L. E., & Soto Bohórquez, P. V. (2012). Accidentalidad vial por consumo de drogas y alcohol: estado actual. Revista Repertorio de Medicina y Cirugía, 21(2), 79–86. https://doi.org/10.31260/repertmedcir.v21.n2.2012.800spa
dc.relation.referencesValen, A., Leere Øiestad, Å. M., Strand, D. H., Skari, R., & Berg, T. (2017). Determination of 21 drugs in oral fluid using fully automated supported liquid extraction and UHPLC-MS/MS. Drug Testing and Analysis, 9(5), 808–823. https://doi.org/10.1002/dta.2045spa
dc.relation.referencesVandrey, R., Herrmann, E. S., Mitchell, J. M., Bigelow, G. E., Flegel, R., LoDico, C., & Cone, E. J. (2017). Pharmacokinetic profile of oral cannabis in humans: Blood and oral fluid disposition and relation to pharmacodynamic outcomes. Journal of Analytical Toxicology, 41(2), 83–99. https://doi.org/10.1093/jat/bkx012spa
dc.relation.referencesVanstechelman, S., Isalberti, C., van der Linden, T., Pil, K., Legrand, S. A., & Verstraete, A. G. (2012). Analytical evaluation of four on-site oral fluid drug testing devices. Journal of Analytical Toxicology, 36(2), 136–140. https://doi.org/10.1093/jat/bkr016spa
dc.relation.referencesVerstraete, A., & Ghent University. (2010). Roadside Testing Assessment. The Cambridge Companion to Bunyan, 1–10. https://doi.org/10.1017/CCOL9780521515269.001spa
dc.relation.referencesVIM. (2012). Vocabulario Internacional de Metrologia Conceptos fundamentales y generales, y terminos asociados. Journal of the American Chemical Society, 54(2), 580–583. https://doi.org/10.1021/ja01341a021spa
dc.relation.referencesVindenes, V., Lund, H. M. E., Andresen, W., Gjerde, H., Ikdahl, S. E., Christophersen, A. S., & Øiestad, E. L. (2012). Detection of drugs of abuse in simultaneously collected oral fluid, urine and blood from Norwegian drug drivers. Forensic Science International, 219(1–3), 165–171. https://doi.org/10.1016/j.forsciint.2012.01.001spa
dc.relation.referencesVindenes, V., Strand, D. H., Koksæter, P., & Gjerde, H. (2016). Detection of nitrobenzodiazepines and their 7-amino metabolites in oral fluid. Journal of Analytical Toxicology, 40(4), 310–312. https://doi.org/10.1093/jat/bkw020spa
dc.relation.referencesVindenes, V., Yttredal, B., Oiestad, E., Waal, H., & Bernard, J. (2011). Oral fluid is aviable alternative for monitoring drug abuse: Detection of drugs in oral fluid by liquid chromatography-tandem mass spectrometry and comparison to the results from urine samples from patients treated with methadone or buprenorphine. Journal of Analytical Toxicology, 35(1), 32–39.spa
dc.relation.referencesVizcaino, G. (2017). Importancia del calculo de la sensibilidad, especificidad y otros parámetros estadísticos en el uso de las pruebas de diagnostico clínico y laboratorio. Medicina y Laboratorio, 23(7–8), 365–386. http://docs.bvsalud.org/biblioref/2018/05/883697/importancia-calculo-sensibilidad-y-especifidad.pdfspa
dc.relation.referencesZaragoza Meneses, Ma. T. de J. (2018). La saliva. Auxiliar de diagnóstico. In La saliva. Auxiliar de diagnóstico. https://doi.org/10.22201/fesz.9786070299780e.2018spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::614 - Medicina Forense; incidencia de lesiones, heridas, enfermedades; medicina preventiva públicaspa
dc.subject.otherPruebas de Toxicidadspa
dc.subject.otherToxicity Testseng
dc.subject.proposalSalivaspa
dc.subject.proposalDrogas ilicitasspa
dc.subject.proposalDiagnosticospa
dc.subject.proposalAnálisisspa
dc.subject.proposalDetección de abuso de sustanciasspa
dc.subject.proposalSalivaeng
dc.subject.proposalIllicit drugseng
dc.subject.proposalDiagnosiseng
dc.subject.proposalAnalysiseng
dc.subject.proposalSubstance abuse detectioneng
dc.titleLa saliva como alternativa para la detección de drogas de abuso: una revisión sistemática de la literaturaspa
dc.title.translatedSaliva as an alternative for the detection of drugs of abuse: a systematic review of the literatureeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026581820.2022.pdf
Tamaño:
1.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Toxicología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: