Optimización multiobjetivo aplicado en diseño molecular asistido por computadora para la selección de solventes de extracción.

dc.contributor.advisorSerrato Bermúdez, Juan Carlos
dc.contributor.authorRoa Gómez, Victor Alfonso
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000041601spa
dc.contributor.orcidRoa Gómez, Victor Alfonso [0000-0003-3325-2805]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Victor-Roaspa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=1018458793spa
dc.date.accessioned2024-02-13T13:48:46Z
dc.date.available2024-02-13T13:48:46Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl objetivo general de esta tesis es proponer una metodología de selección de solventes de extracción empleando como herramienta el diseño molecular asistido por computadora (CAMD) y la optimización multiobjetivo como criterio de decisión secuencial. El diseño metodológico de la metodología CAMD cuenta con la formulación del problema de optimización a resolver (Prediseño), la implementación del algoritmo (Diseño) y la validación experimental del modelo (Post-diseño) para el caso de estudio de la extracción de los sistemas ácido láctico-agua y ácido acético-agua. La metodología CAMD propuesta formula y resuelve un problema de optimización multiobjetivo de tres objetivos (ambiental, fisicoquímico y económico), para un espacio de búsqueda conformado por compuestos alifáticos, aromáticos y heterocíclicos, e integrando aspectos como la disponibilidad de las moléculas en el mercado como restricciones del problema de optimización. La solución de dicho problema de optimización se realizó empleando el algoritmo genético MOHAEA, el cual permite contar con flexibilidad para la representación de individuos, empleando la optimización de Pareto y la distancia de aglomeración como pautas guía del algoritmo. La metodología propuesta es una extensión de trabajos previos, de autores como Serrato [1] y Rodríguez [2], [3].(Texto tomado de la fuente)spa
dc.description.abstractThe general objective of this thesis was to propose a methodology for the choice of extraction solvents using computer-aided molecular design (CAMD) as a tool and multi-objective optimization as a sequential decision criterion. The methodological design of the CAMD methodology includes the formulation of the optimization problem to be solved (Pre-design), the implementation of the algorithm (Design) and the experimental validation of the model for the case study of the extraction of the lactic acid-water systems and acetic acid-water. The proposed CAMD methodology formulates and solves a multi-objective optimization problem with three objectives (environmental, physicochemical, and economic), for a search space made up of aliphatic, aromatic, and heterocyclic compounds, and integrating aspects such as the availability of molecules in the market as optimization problem constraints. The solution of this optimization problem was conducted using the genetic algorithm MOHAEA, which allows flexibility for the representation of individuals, using Pareto optimization and the agglomeration distance as guidelines for the algorithm. The proposed methodology is an extension of earlier works, by authors such as Serrato [1] and Rodríguez [2], [3].eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaOptimización de procesos en Ingeniería Químicaspa
dc.format.extentxxxiv, 250 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85692
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesJ. C. Serrato, “Diseño computacional de agentes de extracción para la separación de compuestos orgánicos en corrientes acuosas. Aplicación al ácido láctico.”, Universidad Nacional de Colombia - Sede Bogotá, 2009. doi: 10.7202/1016404ar.spa
dc.relation.referencesK. A. Rodríguez, “Inclusion of toxicity and market availability in a Computer-Aided Molecular Design methodology”, 2019.spa
dc.relation.referencesK. Rodríguez, “Computer Aided Molecular Design : State-of-the-art and environmen- tally friendly product design”, p. 9, 2019.spa
dc.relation.referencesE. Stefanies, L. Constantinou, y C. Panayiotou, “A group-contribution method for predicting pure component properties of biochemical and safety interest”, Ind Eng Chem Res, vol. 43, núm. 19, pp. 6253–6261, 2004, doi: 10.1021/ie0497184.spa
dc.relation.referencesM. R. Eden, S. B. Jørgensen, R. Gani, y M. M. El-Halwagi, “A novel framework for simultaneous separation process and product design”, Chemical Engineering and Processing: Process Intensification, vol. 43, núm. 5, pp. 595–608, 2004, doi: 10.1016/j.cep.2003.03.002.spa
dc.relation.referencesJ. Marrero y R. Gani, “Group-contribution based estimation of pure component properties”, Fluid Phase Equilib, vol. 183–184, pp. 183–208, 2001, doi: 10.1016/S0378-3812(01)00431-9.spa
dc.relation.referencesJ. Rydberg, M. Cox, C. Musikas, y G. R. Choppin, Solvent Extraction Principles and Practice, vol. 2004.spa
dc.relation.referencesA. Tejada, R. M. Montesinos, y R. Guzmán, Bioseparaciones. 2014.spa
dc.relation.referencesM. L. van Delden, N. J. M. Kuipers, y A. B. de Haan, “Selection and evaluation of alternative solvents for caprolactam extraction”, Sep Purif Technol, vol. 51, núm. 2, pp. 219–231, 2006, doi: 10.1016/j.seppur.2006.02.003.spa
dc.relation.referencesG. W. Meindersma, A. Podt, y A. B. De Haan, “Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures”, Fuel Processing Technology, vol. 87, núm. 1, pp. 59–70, 2005, doi: 10.1016/j.fuproc.2005.06.002.spa
dc.relation.referencesK. C. Sole, “Solvent extraction in the hydrometallurgical processing and purification of metals : process design and selected applications”, en Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials, 2018, pp. 141–200.spa
dc.relation.referencesN. Tik, E. Bayraktar, y U. Mehmetoglu, “In situ reactive extraction of lactic acid from fermentation media”, Journal of Chemical Technology and Biotechnology, vol. 76, núm. 7, pp. 764–768, 2001, doi: 10.1002/jctb.449.spa
dc.relation.referencesA. B. de Haan, “Affinity solvents for intensified organics extraction: Development challenges and prospects”, Tsinghua Sci Technol, vol. 11, núm. 2, pp. 171–180, 2006, doi: 10.1016/S1007-0214(06)70172-9.spa
dc.relation.referencesW. L. McCabe, J. C. Smith, y P. Harriott, Operaciones unitarias en Ingeniería Química. 1991.spa
dc.relation.referencesJ. Gmehling, M. Kleiber, B. Kolbe, y J. Rarey, Chemical Thermodynamics for Process Simulation. 2019. doi: 10.1002/9783527809479.spa
dc.relation.referencesJ. M. Smith, H. C. van Ness, y M. M. Abott, Introducción a la Termodinámica en Ingeniería Química. 2007. [En línea]. Disponible en: http://librosysolucionarios.net/spa
dc.relation.referencesR. E. Treybal, “Azeotropes”, A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering, 2008, doi: 10.1615/atoz.a.azeotropes.spa
dc.relation.referencesM. C. M. Cockrem, E. N. Lightfoot, y J. H. Flatt, “Solvent Selection for Extraction from Dilute Solution”, Sep Sci Technol, vol. 24, núm. 11, pp. 769–807, 1989, doi: 10.1080/01496398908049876.spa
dc.relation.referencesJ. Medina-Mora, “Optimización Multiobjetivo para la selección de solventes, aplicable a la Extracción Líquido-Líquido”, 2010.spa
dc.relation.referencesE. Brignole y S. Pereda, Phase equilibrium engineering principles, vol. 3. 2013. doi: 10.1016/B978-0-444-56364-4.00006-6.spa
dc.relation.referencesL. E. K. Achenie, R. Gani, y V. Venkatasubramanian, Computer Aided Molecular Design: Theory and Practice. 2003.spa
dc.relation.referencesN. G. Martín, Mariano Eden, Mario R. Chemmangattuvalappil, Tools for Chemical Product Design. 2017.spa
dc.relation.referencesH. Fruehbeis, R. Klein, y H. Wallmeier, “Computer-Assisted Molecular Design (CAMD) - An Overview”, ChemInform, vol. 18, núm. 35, pp. 403–418, 1987, doi: 10.1002/chin.198735397.spa
dc.relation.referencesL. A. Cisternas y E. D. Gálvez, “Principles for chemical products design”, Computer Aided Chemical Engineering, vol. 21, núm. C, pp. 1107–1112, 2006, doi: 10.1016/S1570-7946(06)80194-X.spa
dc.relation.referencesG. D. Moggridge y E. L. Cussler, “An introduction to chemical product design”, Chemical Engineering Research and Design, vol. 78, núm. 1, pp. 5–11, 2000, doi: 10.1205/026387600527022.spa
dc.relation.referencesA. K. Tula, D. K. Babi, J. Bottlaender, M. R. Eden, y R. Gani, “A computer-aided software-tool for sustainable process synthesis-intensification”, Comput Chem Eng, vol. 105, pp. 74–95, 2017, doi: 10.1016/j.compchemeng.2017.01.001.spa
dc.relation.referencesM. R. Eden, S. B. Jørgensen, R. Gani, y M. M. El-Halwagi, “A novel framework for simultaneous separation process and product design”, Chemical Engineering and Processing: Process Intensification, vol. 43, núm. 5, pp. 595–608, 2004, doi: 10.1016/j.cep.2003.03.002.spa
dc.relation.referencesL. Y. Ng, N. G. Chemmangattuvalappil, V. A. Dev, y M. R. Eden, Mathematical Principles of Chemical Product Design and Strategies, vol. 39. 2016. doi: 10.1016/B978-0-444-63683-6.00001-0.spa
dc.relation.referencesR. Gani, “Chemical product design: Challenges and opportunities”, Comput Chem Eng, vol. 28, núm. 12, pp. 2441–2457, 2004, doi: 10.1016/j.compchemeng.2004.08.010.spa
dc.relation.referencesL. Y. Ng, F. K. Chong, y N. G. Chemmangattuvalappil, “Challenges and opportunities in computer-aided molecular design”, Comput Chem Eng, vol. 81, pp. 115–129, 2015, doi: 10.1016/j.compchemeng.2015.03.009.spa
dc.relation.referencesS. S. Y. Wong, W. Luo, y K. C. C. Chan, “EvoMD: An algorithm for evolutionary molecular design”, IEEE/ACM Trans Comput Biol Bioinform, vol. 8, núm. 4, pp. 987–1003, 2011, doi: 10.1109/TCBB.2010.100.spa
dc.relation.referencesJ. Scheffczyk, L. Fleitmann, A. Schwarz, M. Lampe, A. Bardow, y K. Leonhard, “COSMO-CAMD: A framework for optimization-based computer-aided molecular design using COSMO-RS”, Chem Eng Sci, vol. 159, pp. 84–92, 2017, doi: 10.1016/j.ces.2016.05.038.spa
dc.relation.referencesC. C. Solvason, “Integrated Multiscale Chemical Product Design using Property Clustering and Decomposition Techniques in a Reverse Problem Formulation”, 2011.spa
dc.relation.referencesR. Gani, L. E. K. Achenie, y V. Venkatasubramanian, “Chapter 1: Introduction to CAMD”, en Computer Aided Molecular Design: Theory and Practice, 2003, pp. 3–21.spa
dc.relation.referencesN. D. Austin, N. V. Sahinidis, y D. W. Trahan, “Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques”, Chemical Engineering Research and Design, vol. 116, núm., pp. 2–26, 2016, doi: 10.1016/j.cherd.2016.10.014.spa
dc.relation.referencesM. Harini, J. Adhikari, y K. Y. Rani, “A review on property estimation methods and computational schemes for rational solvent design: A focus on pharmaceuticals”, Ind Eng Chem Res, vol. 52, núm. 21, pp. 6869–6893, 2013, doi: 10.1021/ie301329y.spa
dc.relation.referencesP. M. Harper, R. Gani, P. Kolar, y T. Ishikawa, “Computer-aided molecular design with combined molecular modeling and group contribution”, Fluid Phase Equilib, vol. 158–160, pp. 337–347, 1999, doi: 10.1016/s0378-3812(99)00089-8.spa
dc.relation.referencesN. D. Austin, N. v. Sahinidis, y D. W. Trahan, “Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques”, Chemical Engineering Research and Design, vol. 116, núm., pp. 2–26, 2016, doi: 10.1016/j.cherd.2016.10.014.spa
dc.relation.referencesT. Martin, User’s guide for T.E.S.T. (version 4.2) (Toxicity Estimation Software Tool) A program to estimate toxicity from molecular structure. 2016, p. 63.spa
dc.relation.referencesJ. Song y H. H. Song, “Computer-aided molecular design of environmentally friendly solvents for separation processes”, Chem Eng Technol, vol. 31, núm. 2, pp. 177–187, 2008, doi: 10.1002/ceat.200700233.spa
dc.relation.referencesJ. Y. Ten, M. H. Hassim, D. K. S. Ng, y N. G. Chemmangattuvalappil, “The Incorporation of Safety and Health Aspects as Design Criteria in a Novel Chemical Product Design Framework”, Computer Aided Chemical Engineering, vol. 39, pp. 197–220, 2016, doi: 10.1016/B978-0-444-63683-6.00007-1.spa
dc.relation.referencesR. Gani, B. Nielsen, y A. Fredenslund, “A group contribution approach to computer‐aided molecular design”, AIChE Journal, vol. 37, núm. 9, pp. 1318–1332, 1991, doi: 10.1002/aic.690370905.spa
dc.relation.referencesO. Odele y S. Macchietto, “Computer Aided Molecular Design: A Novel Method for Optimal Solvent Selection”, Fluid Phase Equilib, vol. 00226020, núm. 3, pp. 47–54, 1993.spa
dc.relation.referencesP. M. Harper y R. Gani, “A multi-step and multi-level approach for computer aided molecular design”, Comput Chem Eng, vol. 24, núm. 2–7, pp. 677–683, 2000, doi: 10.1016/S0098-1354(00)00410-5.spa
dc.relation.referencesB. C. Roughton, “Development of Computer-Aided Molecular Design Methods for Bioengineering Applications”, 2013.spa
dc.relation.referencesS. Cignitti, I. Rodriguez-Donis, J. Abildskov, X. You, N. Shcherbakova, y V. Gerbaud, “CAMD for entrainer screening of extractive distillation process based on new thermodynamic criteria”, Chemical Engineering Research and Design, vol. 147, pp. 721–733, 2019, doi: 10.1016/j.cherd.2019.04.038.spa
dc.relation.referencesB. van Dyk y I. Nieuwoudt, “Design of solvents for extractive distillation”, Ind Eng Chem Res, vol. 39, núm. 5, pp. 1423–1429, 2000, doi: 10.1021/ie9904753.spa
dc.relation.referencesN. Medina-Herrera, I. E. Grossmann, M. S. Mannan, y A. Jiménez-Gutiérrez, “An approach for solvent selection in extractive distillation systems including safety considerations”, Ind Eng Chem Res, vol. 53, núm. 30, pp. 12023–12031, 2014, doi: 10.1021/ie501205j.spa
dc.relation.referencesS. Kossack, K. Kraemer, R. Gani, y W. Marquardt, “A systematic synthesis framework for extractive distillation processes”, Chemical Engineering Research and Design, vol. 86, núm. 7, pp. 781–792, 2008, doi: 10.1016/j.cherd.2008.01.008.spa
dc.relation.referencesT. Zhou, Z. Song, X. Zhang, R. Gani, y K. Sundmacher, “Optimal Solvent Design for Extractive Distillation Processes: A Multiobjective Optimization-Based Hierarchical Framework”, Ind Eng Chem Res, vol. 58, núm. 15, pp. 5777–5786, 2019, doi: 10.1021/acs.iecr.8b04245.spa
dc.relation.referencesJ. Sun, H. Zhang, A. Zhou, Q. Zhang, y K. Zhang, “A new learning-based adaptive multi-objective evolutionary algorithm”, Swarm Evol Comput, vol. 44, núm. December 2017, pp. 304–319, 2019, doi: 10.1016/j.swevo.2018.04.009.spa
dc.relation.referencesA. T. Karunanithi, C. Acquah, L. E. K. Achenie, S. Sithambaram, y S. L. Suib, “Solvent design for crystallization of carboxylic acids”, Comput Chem Eng, vol. 33, núm. 5, pp. 1014–1021, 2009, doi: 10.1016/j.compchemeng.2008.11.003.spa
dc.relation.referencesV. Venkatasubramanian, K. Chan, y J. M. Caruthers, “Evolutionary Design of Molecules with Desired Properties Using the Genetic Algorithm”, J Chem Inf Comput Sci, vol. 35, núm. 2, pp. 188–195, 1995, doi: 10.1021/ci00024a003.spa
dc.relation.referencesM. Mattei, M. Hill, G. M. Kontogeorgis, y R. Gani, “Design of an emulsion-based personal detergent through a model-based chemical product design methodology”, Computer Aided Chemical Engineering, vol. 32, pp. 817–822, 2013, doi: 10.1016/B978-0-444-63234-0.50137-8.spa
dc.relation.referencesR. Gani, “Chapter 14 Case studies in chemical product design - use of CAMD techniques”, Computer Aided Chemical Engineering, vol. 23, núm. 1991, pp. 435–458, 2007, doi: 10.1016/S1570-7946(07)80017-4.spa
dc.relation.referencesK. Zhou Teng; Wang, Jiayuan; Mcbride, Kevin; Sundmacher, “Optimal Design of Solvents for Extractive Reaction Process”, AICHE Journal, vol. 61, núm. 3, pp. 857–866, 2015, doi: 10.1002/aic.spa
dc.relation.referencesM. Skiborowski, “Process synthesis and design methods for process intensification”, Curr Opin Chem Eng, vol. 22, pp. 216–225, 2018, doi: 10.1016/j.coche.2018.11.004.spa
dc.relation.referencesS. J. Patel, “Integrating Safety Issues in Optimizing Solven Selection and Porcess Design”, 2010.spa
dc.relation.referencesJ. Ooi, D. K. S. Ng, y N. G. Chemmangattuvalappil, “A Systematic Molecular Design Framework with the Consideration of Competing Solvent Recovery Processes”, Ind Eng Chem Res, vol. 58, núm. 29, pp. 13210–13226, 2019, doi: 10.1021/acs.iecr.9b01894.spa
dc.relation.referencesJ. E. Ourique y A. Silva Telles, “Computer-aided molecular design with simulated annealing and molecular graphs”, Comput Chem Eng, vol. 22, núm. SUPPL.1, pp. 0–3, 1998, doi: 10.1016/s0098-1354(98)00108-2.spa
dc.relation.referencesJ. Heintz, J. P. Belaud, N. Pandya, M. Teles Dos Santos, y V. Gerbaud, “Computer aided product design tool for sustainable product development”, Comput Chem Eng, vol. 71, pp. 362–376, 2014, doi: 10.1016/j.compchemeng.2014.09.009.spa
dc.relation.referencesJ. Heintz, “Systemic approach and decision process for sustainability in chemical engineering: Applcation to computer aided product design. PhD Thesis”, p. 256, 2012.spa
dc.relation.referencesJ. Y. Ten, M. H. Hassim, D. K. S. Ng, y N. G. Chemmangattuvalappil, “A molecular design methodology by the simultaneous optimisation of performance, safety and health aspects”, Chem Eng Sci, vol. 159, pp. 140–153, 2017, doi: 10.1016/j.ces.2016.03.026.spa
dc.relation.referencesJ. Devillers, Genetic Algorithms in Molecular Modeling, vol., núm. June. 2016. doi: 10.1016/b978-0-12-213810-2.x5000-2.spa
dc.relation.referencesB. Lin, S. Chavali, K. Camarda, y D. C. Miller, “Computer-aided molecular design using Tabu search”, Comput Chem Eng, vol. 29, núm. 2, pp. 337–347, 2005, doi: 10.1016/j.compchemeng.2004.10.008.spa
dc.relation.referencesA. S. Hukkerikar, B. Sarup, A. Ten Kate, J. Abildskov, G. Sin, y R. Gani, “Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis”, Fluid Phase Equilib, vol. 321, pp. 25–43, 2012, doi: 10.1016/j.fluid.2012.02.010.spa
dc.relation.referencesA. S. Hukkerikar, S. Kalakul, B. Sarup, D. M. Young, G. Sin, y R. Gani, “Estimation of environment-related properties of chemicals for design of sustainable processes: Development of group-contribution+ (GC +) property models and uncertainty analysis”, J Chem Inf Model, vol. 52, núm. 11, pp. 2823–2839, 2012, doi: 10.1021/ci300350r.spa
dc.relation.referencesA. S. Hukkerikar, G. Sin, J. Abildskov, B. Sarup, y R. Gani, Development of pure component property models for chemical product-process design and analysis, núm. September. 2013.spa
dc.relation.referencesR. L. Haupt y S. E. Haupt, Pratical Genetic Algotithms, vol. 2004.spa
dc.relation.referencesR. Kumar, Optimization: Algorithms and Applications, vol. CRC Press, 2015.spa
dc.relation.referencesZ. Dostál, Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities, vol. 23. 2009. doi: 10.1007/b138610.spa
dc.relation.referencesJ. A. Snyman y D. N. Wilke, Practical Mathematical Optimization, vol. 133. Cham, Switzerland, 2005. doi: 10.1007/b105200.spa
dc.relation.referencesK.-H. Chang, “Chapter 3 - Design Optimization”, en Design Theory and Methods Using CAD/CAE, 2015, pp. 103–210. doi: 10.1080/03772063.2020.1842159.spa
dc.relation.referencesJ. A. Caballero y I. E. Grossmann, “A review of the state of the art in optimization”, RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, vol. 4, núm. 1, pp. 5–23, 2007, doi: 10.1016/s1697-7912(07)70188-7.spa
dc.relation.referencesX.-S. Yang, Nature-Inspired Optimization Algorithms. 2020.spa
dc.relation.referencesC. A. C. Coello, “Introduccion a la Computacion Evolutiva”, núm. 16, p. 310, 2004.spa
dc.relation.referencesM. A. Iglesias-Solano y A. B. Iglesias-Carbonell, “La Computación Evolutiva y sus Paradigmas Paradigms of Evolutionary Computing”, Investigación y Desarrollo en TIC, vol. 2, pp. 29–38, 2011.spa
dc.relation.referencesN. Yusup, A. M. Zain, y S. Z. M. Hashim, “Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007-2011)”, Expert Syst Appl, vol. 39, núm. 10, pp. 9909–9927, 2012, doi: 10.1016/j.eswa.2012.02.109.spa
dc.relation.referencesA. Menon, Frontiers of Evolutionary Computation, vol., núm. 2004.spa
dc.relation.referencesC. J. Correa-Villalón, “Diseño de un Algoritmo Evolutivo para atacar Problemas NP-Duros basado en la Técnica Transgénicas”, Universidad Autónoma de Aguascalientes (México), 2010. doi: -.spa
dc.relation.referencesD. E. Goldberg, “Genetic Algorithms in Search Optimization & Machine Learning”. p. 432, 1989.spa
dc.relation.referencesJ. H. Holland, “Genetic Algorithms - Computer programs that ‘evolve’ in ways that resemble natural selection can solve complex problems even their creators do not fully understand”, Scientific American. pp. 66–72, 1992.spa
dc.relation.referencesJ. H. Holland, C. Langton, y S. W. Wilson, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. 1992.spa
dc.relation.referencesM. Pelikan, Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms, vol. 53, núm. 9. 2013. doi: 10.1017/CBO9781107415324.004.spa
dc.relation.referencesT. Bäck, “Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming, genetic algorithms”. p. 315, 1996.spa
dc.relation.referencesZ. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, vol. 1, núm. 1996.spa
dc.relation.referencesD. A. Coley, “An Introduction to Genetic Algorithms for Scientists and Engineers”. p. 185, 1999.spa
dc.relation.referencesS. Kumar y P. J. Bentley, “Biologically Inspired Evolutionary Development”, ICES, vol., núm., pp. 57–68, 2003, doi: 10.1007/3-540-36553-2_6.spa
dc.relation.referencesD. Vasiljević, Classical and Evolutionary Algorithms in the Optimization of Optical Systems, vol., núm. 2006.spa
dc.relation.referencesM. Melanie, An introduction to genetic algorithms, vol. 1999. doi: 10.1016/S0898-1221(96)90227-8.spa
dc.relation.referencesS. N. Sivanandam y S. N. Deepa, Introduction to Genetic Algorithms, vol. 2008.spa
dc.relation.referencesD. Simon, Evolutionary Optimization Aglorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence, vol., núm. John Wiley & Sons, Inc., 2013.spa
dc.relation.referencesW.-H. Steeb, The nonlinear workbook: Chaos, Fractals, Celular Automata, Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java, SymbolicC++ and Reduce Programs, vol. 1999.spa
dc.relation.referencesJ. Branke, Evolutionary optimization in dynamic environment, vol. 2002. doi: 10.1109/ICCP.2009.5284794.spa
dc.relation.referencesC. B. Lucasius y G. Kateman, “Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization”, Chemometrics and Intelligent Laboratory Systems, vol. 25, pp. 99–145, 1994.spa
dc.relation.referencesF. Rothlauf, Representations for Genetic and Evolutionary Algorithms, vol. 2006.spa
dc.relation.referencesF. Corno, M. Sonza Reorda, y G. Squillero, “VEGA: a verification tool based on genetic algorithms”, Proceedings - IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp. 321–326, 1998, doi: 10.1109/iccd.1998.727069.spa
dc.relation.referencesN. Srinivas y K. Deb, “Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms”, núm. 0, 1386.spa
dc.relation.referencesK. Deb, S. Agrawal, A. Pratap, y T. Meyarivan, “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1917, pp. 849–858, 2000, doi: 10.1007/3-540-45356-3_83.spa
dc.relation.referencesT. Murata y H. Ishibuchi, “MOGA: multi-objective genetic algorithms”, Proceedings of the IEEE Conference on Evolutionary Computation, vol. 1, pp. 289–294, 1995, doi: 10.1109/icec.1995.489161.spa
dc.relation.referencesE. Zitzler y L. Thiele, “Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach”, vol. 3, núm. 4, pp. 257–271, 1999.spa
dc.relation.referencesE. Zitzler, M. Laumanns, y L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm”, TIK-Report 103 May, pp. 1–21, 2001, doi: 10.1007/978-3-319-11119-3_4.spa
dc.relation.referencesJ. Gomez, “Self adaptation of operator rates in evolutionary algorithms”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3102, pp. 1162–1173, 2004, doi: 10.1007/978-3-540-24854-5_113.spa
dc.relation.referencesJ. Gómez, “Hybrid Adaptive Evolutionary Algorithm Hyper Heuristic”, pp. 1–5, 2014.spa
dc.relation.referencesC. R. Reeves y J. E. Rowe, Genetic algorithms: Principles and Perspectives - A Guide to GA Theory. 2002.spa
dc.relation.referencesS. Bandyopadhyay y S. K. Pal, Classification and Learning Using Genetic Algorithms: Applications in Bioinformatics and Web Intelligence, vol. 2007.spa
dc.relation.referencesL. Chambers, Practical Handbook of Genetic Algorithms - New Frontiers Volume II. 1995.spa
dc.relation.referencesD. B. Hibbert, “Genetic algorithms in Chemistry”, Chemometrics and Intelligent Laboratory Systems, vol. 19, núm. 8 SPEC., pp. 277–293, 1993, doi: 10.1016/S0010-4485(03)00002-2.spa
dc.relation.referencesL. Elliott, D. B. Ingham, A. G. Kyne, N. S. Mera, M. Pourkashanian, y C. W. Wilson, “Genetic algorithms for optimisation of chemical kinetics reaction mechanisms”, Progress in Enery and Combustion Science, vol. 30, pp. 297–328, 2004, doi: 10.1016/j.pecs.2004.02.002.spa
dc.relation.referencesC. B. Lucasius y G. Kateman, “Understanding and using genetic algorithms Part 1. Concepts, properties and context”, Chemometrics and Intelligent Laboratory Systems, vol. 19, núm. 1, pp. 1–33, 1993, doi: 10.1016/0169-7439(93)80079-W.spa
dc.relation.referencesL. Gosselin, M. Tye-Gingras, y F. Mathieu-Potvin, “Review of utilization of genetic algorithms in heat transfer problems”, Int J Heat Mass Transf, vol. 52, núm. 9–10, pp. 2169–2188, 2009, doi: 10.1016/j.ijheatmasstransfer.2008.11.015.spa
dc.relation.referencesJ. G. Andreasen, U. Larsen, T. Knudsen, L. Pierobon, y F. Haglind, “Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic rankine cycles”, Energy, vol. 73. pp. 204–213, 2014. doi: 10.1016/j.energy.2014.06.012.spa
dc.relation.referencesZ. Kravanja y M. Bogataj, “26 European Symposium on Computer Aided Process Engineering-Elsevier”, Computer Aided Chemical Engineering, vol. 38, p. 588, 2016.spa
dc.relation.referencesM. Fan, J. Hu, R. Cao, W. Ruan, y X. Wei, “A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence”, Chemosphere, vol. 200, pp. 330–343, 2018, doi: 10.1016/j.chemosphere.2018.02.111.spa
dc.relation.referencesA. Maiocchi, “Genetic algorithms in molecular modelling: a review”, en Data Handling in Science and Technology, 2003, pp. 109–139. doi: 10.1016/S0922-3487(03)23004-5.spa
dc.relation.referencesT. Lisboa, “Multi-Objective Optimization”, Técnico Lisboa. pp. 148–173.spa
dc.relation.referencesA. Ramos, “Optimización Multicriterio”, Universidad Pontificia Comillas, núm. p. 16.spa
dc.relation.referencesC. A. C. Coello, “Aplicaciones de los Algoritmos Evolutivos Multiobjetivo”, núm. 2508, 2012.spa
dc.relation.referencesH. Massam, “Multi-criteria (MCDM) Decision Making Techniques in Planning”, Prog Plann, vol. 30, núm. Mcdm, pp. 1–84, 1988.spa
dc.relation.referencesP. L. Yu, “Multiple criteria decision making: Five basic concepts”, Handbooks in Operations Research and Management Science, vol. 1, núm. C, pp. 663–699, 1989, doi: 10.1016/S0927-0507(89)01011-X.spa
dc.relation.referencesC. A. C. Coello, G. B. Lamont, y D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 2007. doi: 10.1080/00949659608811725.spa
dc.relation.referencesS. Chand y M. Wagner, “Evolutionary many-objective optimization: A quick-start guide”, Surveys in Operations Research and Management Science, vol. 20, núm. 2, pp. 35–42, 2015, doi: 10.1016/j.sorms.2015.08.001.spa
dc.relation.referencesR. T. Marler y J. S. Arora, “Survey of multi-objective optimization methods for engineering”, Structural and Multidisciplinary Optimization, vol. 26, núm. 6, pp. 369–395, 2004, doi: 10.1007/s00158-003-0368-6.spa
dc.relation.referencesC. Zopounidis y P. M. Pardalos, Handbook of Multicriteria Analysis. 2010.spa
dc.relation.referencesD. R. Insua, “Sobre soluciones optimas en problemas de optimizacion multiobjetivo”, Trabajos de Investigacion Operativa, vol. 2, núm. 1, pp. 49–67, 1987, doi: 10.1007/BF02888810.spa
dc.relation.referencesC. M. Subía, “Desarrollo de una Guía Metodologíca sobre Computación Evolutiva y Algoritmos Genéticos, para la Optimiziación Evolutiva Multiobjetivo”, 2014. doi: 10.4324/9781315853178.spa
dc.relation.referencesS. Hernández, “Del diseño convencional al diseño óptimo. Posibilidades y variantes”, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 9, pp. 259–270, 1993.spa
dc.relation.referencesH. Mukai, “Algorithms for Multicriterion Optimization”, IEEE Trans Automat Contr, vol. 25, núm. 2, pp. 177–186, 1980, doi: 10.1109/TAC.1980.1102298.spa
dc.relation.referencesG. Giorgi, B. Jiménez, y V. Novo, “Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization”, J Optim Theory Appl, vol. 171, núm. 1, pp. 70–89, 2016, doi: 10.1007/s10957-016-0986-y.spa
dc.relation.referencesE. Mezura-Montes y C. A. Coello Coello, “Conceptos de Optimización Multiobjetivo para el Manejo de Restricciones en Algoritmos Evolutivos: Un Estudio Comparativo”, Proceedings of the 1st Mexican Conference on Evolutionary Computation (COMCEV 2003), pp. 1–12, 2003.spa
dc.relation.referencesN. Riquelme, C. von Lücken, y B. Barán, “Performace metrics in multi-objective optimization”, en 2015 XLI Latin American Computing Conference (CLEI) Performance, 2015.spa
dc.relation.referencesB. A. Cuartas Torres, “Metodología para la optimización de múltiples objetivos basada en ag y uso de preferencias”, Universidad Nacional de Colombia - Sede Medellín, 2009. [En línea]. Disponible en: http://www.bdigital.unal.edu.co/2237/%5Cnhttp://www.bdigital.unal.edu.co/2237/1/43908352.2009.pdfspa
dc.relation.referencesN. Riquelme, C. Von Lücken, y B. Barán, “Performance metrics in multi-objective optimization”, Proceedings - 2015 41st Latin American Computing Conference, CLEI 2015, vol. 1, p. 11, 2015, doi: 10.1109/CLEI.2015.7360024.spa
dc.relation.referencesJ. A. Párraga, “Clustering difuso multi-objetivo de genes basado en información biológica externa y datos de expresión génica”, Universidad de Santiago de Chile, 2017. doi: 10.1088/1742-6596/134/1/012001.spa
dc.relation.referencesJ. C. Castro, “Modelo de optimización multiobjetivo para el algoritmo evolutivo HAEA (Hybrid Adaptative Evolutionary Algoritm)”, Universidad Nacional de Colombia, 2020.spa
dc.relation.referencesK. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, vol. John Wiley & Sons, 2001.spa
dc.relation.referencesR. T. Marler y J. S. Arora, “The weighted sum method for multi-objective optimization: New insights”, Structural and Multidisciplinary Optimization, vol. 41, núm. 6, pp. 853–862, 2010, doi: 10.1007/s00158-009-0460-7.spa
dc.relation.referencesA. Singh y S. Kumar, “Multiple Objectives Mathematical Programming Using Payoff Techniques”, vol. 9, núm. 1, pp. 39–46, 2012.spa
dc.relation.referencesS. Obayashi, D. Sasaki, y A. Oyama, “Finding tradeoffs by using multiobjective optimization algorithms”, Trans Jpn Soc Aeronaut Space Sci, vol. 47, núm. 155, pp. 51–58, 2004, doi: 10.2322/tjsass.47.51.spa
dc.relation.referencesM. Sakawa, Genetic algorithms and fuzzy multiobjective optimization, vol. 1, núm. 2002.spa
dc.relation.referencesR. Wang, R. C. Purshouse, y P. J. Fleming, “Preference-inspired co-evolutionary algorithms using weight vectors”, Eur J Oper Res, vol. 243, núm. 2, pp. 423–441, 2015, doi: 10.1016/j.ejor.2014.05.019.spa
dc.relation.referencesW. Wang, S. Ying, L. Li, Z. Wang, y W. Li, “An improved decomposition-based multiobjective evolutionary algorithm with a better balance of convergence and diversity”, Applied Soft Computing Journal, vol. 57, pp. 627–641, 2017, doi: 10.1016/j.asoc.2017.03.041.spa
dc.relation.referencesQ. Zhang, W. Zhu, B. Liao, X. Chen, y L. Cai, “A modified PBI approach for multi-objective optimization with complex Pareto fronts”, Swarm Evol Comput, vol. 40, núm. February, pp. 216–237, 2018, doi: 10.1016/j.swevo.2018.02.001.spa
dc.relation.referencesC. A. C. Coello, “Introducción a la Optimización Evolutiva Multiobjetivo”, Apuntes de clase: Introducción a la optimización multiobjetivo., vol., núm. 4. pp. 1–144, 2012.spa
dc.relation.referencesJ. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms”, The 1st international Conference on Genetic Algorithms, núm. JANUARY 1985, pp. 93–100, 1985.spa
dc.relation.referencesK. Deb, A. Pratap, S. Agarwal, y T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, vol. 6, núm. 2, pp. 182–197, 2002, doi: 10.1109/4235.996017.spa
dc.relation.referencesC. A. Correa Flórez, R. Andrés Bolaños, y A. Molina Cabrera, “Algoritmo multiobjetivo NSGA-II aplicado al problema de la mochila.”, Scientia Et Technica, vol. 2, núm. 39, pp. 206–211, 2008.spa
dc.relation.referencesL. Lopez, R. A. Hincapié, y R. A. Gallego, “Planeamiento multi-objetivo de sistemas de distribución usando un algoritmo evolutivo NSGA-II”, Revista Escuela de Ingeniería de Antioquía, vol. 15, núm. 15, pp. 141–151, 2011.spa
dc.relation.referencesN. Dahmani, F. Clautiaux, S. Krichen, y E. G. Talbi, “Self-adaptive metaheuristics for solving a multi-objective 2-dimensional vector packing problem”, Applied Soft Computing Journal, vol. 16, pp. 124–136, 2014, doi: 10.1016/j.asoc.2013.12.006.spa
dc.relation.referencesL. Wang, A. H. C. Ng, y K. Deb, “Multi-objective Evolutionary Optimisation for Product Design and Manufacturing”, Assembly Automation, vol. 32, núm. 4, pp. 142–147, 2012, doi: 10.1108/aa.2012.03332daa.009.spa
dc.relation.referencesJ. Gomez, “Self adaptation of operator rates for multimodal optimization”, Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004, vol. 2, pp. 1720–1726, 2004, doi: 10.1109/cec.2004.1331103.spa
dc.relation.referencesGECCO ’19, “MOHAEA: A Multi-objective Hybrid Adaptive Evolutionary Algorithm”, en GECCO ’19, July 13–17, 2019, 2019, pp. 1–3.spa
dc.relation.referencesJ. Horn, N. Nafpliotis, y D. E. Goldberg, “A niched Pareto genetic algorithm for multiobjective optimization”, en First IEEE Conference on Evolutionary Computation, 2002, pp. 82–87. doi: 10.1109/icec.1994.350037.spa
dc.relation.referencesC.-L. Hwang, Y.-J. Lai, y T.-Y. Liu, “A New Approach for Multiple Objective Decision Making”, Comput Oper Res, vol. 20, núm. 8, pp. 889–899, 1993.spa
dc.relation.referencesJ. G. Vlachogiannis y K. Y. Lee, “Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems”, Expert Syst Appl, vol. 36, núm. 8, pp. 10802–10808, 2009, doi: 10.1016/j.eswa.2009.02.079.spa
dc.relation.referencesL. C. Cagnina, “Optimización Mono y Multiobjetivo a través de una Heurística de Inteligencia Colectiva”, pp. 54–72, 2010.spa
dc.relation.referencesA. Lara López, “Un estudio de las Estrategias Evolutivas para problemas Multiobjetivo.”, pp. 23–25, 2003.spa
dc.relation.referencesN. A. Ramírez, “Una nueva propuesta para optimización multiobjetivo basada en búsqueda dispersa (Scatter Search)”, 2006.spa
dc.relation.referencesM. Gul, E. Celik, N. Aydin, A. Taskin Gumus, y A. F. Guneri, “A state of the art literature review of VIKOR and its fuzzy extensions on applications”, Applied Soft Computing Journal, vol. 46, pp. 60–89, 2016, doi: 10.1016/j.asoc.2016.04.040.spa
dc.relation.referencesY.-Z. Lu, Y.-W. Chen, M.-R. Chen, P. Chen, y G.-Q. Zeng, Extremal Optimization: Fundamentals, Algorithms, and Applications, vol. 2016.spa
dc.relation.referencesS. S. Santander-Jiménez, M. A. Vega-Rodríguez, J. A. Gómez-Pulido, y J. M. Sánchez-Pérez, “Una adaptación multiobjetivo y paralela del algoritmo Artificial Bee Colony aplicada a la inferencia filogenética”, 1996.spa
dc.relation.referencesC.-K. Goh y K. C. Tan, Evolutionary Multi-objective Optimization in Uncertain Environments: Issues and Algorithms, vol. 186. 2009. doi: 10.1007/978-3-540-95976-2.spa
dc.relation.referencesM. Macías Infantes, “Estudio Comparativo de Técnicas de Optimización para la Actualización de Modelos de Elementos Finitos”, 2016.spa
dc.relation.referencesL. C. Jain y N. M. Martin, Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms: Industrial Applications, vol. 1. 1998.spa
dc.relation.referencesG. Toscano, “Optimización Multiobjetivo usando un Micro Algoritmo Genético”, Universidad Veracurzana - LANIA, 2001.spa
dc.relation.referencesC. Almeida, N. Amarilla, y B. Barán, “Optimización Multiobjetivo en la Planificación de Centrales Telefónicas”, 2003.spa
dc.relation.referencesC. Castillo, “Aplicación de la Programacion Multiobjetivo en la Optimización del Tráfico Generado por un IDS/IPS”, Rev. Tecnol. - Journal of Technology, vol. 11, núm. 1, pp. 41–55, 2012.spa
dc.relation.referencesS. Ruiz, O. D. Castrillón, y W. A. Sarache, “Una metodología multiobjetivo para optimizar un ambiente job shop”, Informacion Tecnologica, vol. 23, núm. 1, pp. 35–46, 2012, doi: 10.4067/S0718-07642012000100005.spa
dc.relation.referencesM. Guzek, J. E. Pecero, B. Dorronsoro, y P. Bouvry, “Multi-objective evolutionary algorithms for energy-aware scheduling on distributed computing systems”, Applied Soft Computing Journal, vol. 24, pp. 432–446, 2014, doi: 10.1016/j.asoc.2014.07.010.spa
dc.relation.referencesC. Carnevale, G. Finzi, E. Pisoni, y M. Volta, “Multi-objective analysis to control ozone exposure”, en Developments in Environmental Science, 2007, pp. 96–108. doi: 10.1016/S1474-8177(07)06023-8.spa
dc.relation.referencesP. S. Moura y A. T. de Almeida, “Multi-objective optimization of a mixed renewable system with demand-side management”, Renewable and Sustainable Energy Reviews, vol. 14, núm. 5, pp. 1461–1468, 2010, doi: 10.1016/j.rser.2010.01.004.spa
dc.relation.referencesM. J. Bastidas, R. F. Bermúdez, G. P. Jaramillo, y F. Chejne, “Optimización termoeconómica y ambiental usando algoritmos genéticos multiobjetivo”, Informacion Tecnologica, vol. 21, núm. 4, pp. 35–44, 2010, doi: 10.1612/inf.tecnol.4384it.09.spa
dc.relation.referencesP. J. Copado-Méndez, C. Pozo, G. Guillén-Gosálbez, y L. Jiménez, “Enhancing the ε-constraint method through the use of objective reduction and random sequences: Application to environmental problems”, Comput Chem Eng, vol. 87, pp. 36–48, 2016, doi: 10.1016/j.compchemeng.2015.12.016.spa
dc.relation.referencesM. N. Naz, M. I. Mushtaq, M. Naeem, M. Iqbal, M. W. Altaf, y M. Haneef, “Multicriteria decision making for resource management in renewable energy assisted microgrids”, Renewable and Sustainable Energy Reviews, vol. 71, núm. December 2016, pp. 323–341, 2017, doi: 10.1016/j.rser.2016.12.059.spa
dc.relation.referencesR. T. F. Ah. King, K. Deb, y H. C. S. Rughooputh, “Comparison of NSGA-II and SPEA2 on the Multiobjective Environmental/Economic Dispatch Problem”, University of Mauritius Research Journal, vol. 16, núm. 1, pp. 485–511, 2010.spa
dc.relation.referencesL. Atmaniou et al., “A multiobjective genetic algorithm optimization framework for batch plant design”, Computer Aided Chemical Engineering, vol. 15, núm. C, pp. 400–405, 2003, doi: 10.1016/S1570-7946(03)80577-1.spa
dc.relation.referencesC. Gutérrez-Antonio, A. Briones-Ramírez, y A. Jiménez-Gutiérrez, “Optimization of Petlyuk sequences using a multi objective genetic algorithm with constraints”, Comput Chem Eng, vol. 35, núm. 2, pp. 236–244, 2011, doi: 10.1016/j.compchemeng.2010.10.007.spa
dc.relation.referencesA. I. Papadopoulos y P. Linke, “Multiobjective molecular design for integrated process-solvent systems synthesis”, AIChE Journal, vol. 52, núm. 3, pp. 1057–1070, 2006, doi: 10.1002/aic.10715.spa
dc.relation.referencesS. Ekins, J. D. Honeycutt, y J. T. Metz, “Evolving molecules using multi-objective optimization: Applying to ADME/Tox”, Drug Discov Today, vol. 15, núm. 11–12, pp. 451–460, 2010, doi: 10.1016/j.drudis.2010.04.003.spa
dc.relation.referencesL. Y. Ng, N. G. Chemmangattuvalappil, y D. K. S. Ng, “A multiobjective optimization-based approach for optimal chemical product design”, Ind Eng Chem Res, vol. 53, núm. 44, pp. 17429–17444, 2014, doi: 10.1021/ie502906a.spa
dc.relation.referencesP. Bigus, J. Namieśnik, y M. Tobiszewski, “Application of multicriteria decision analysis in solvent type optimization for chlorophenols determination with a dispersive liquid-liquid microextraction”, J Chromatogr A, vol. 1446, pp. 21–26, 2016, doi: 10.1016/j.chroma.2016.03.065.spa
dc.relation.referencesC. M. Fonseca y P. J. Fleming, “Genetic Algorithms for Multi-Objective Optimization: Formulation, discussion and generalization”, en Proceedings of the 5th International Conference on Genetic Algorithms, 1993, pp. 416–423. doi: 10.3156/jfuzzy.9.4_471_1.spa
dc.relation.referencesM. Garza-Fabre, G. T. Pulido, y C. A. C. Coello, “Ranking methods for many-objective optimization”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5845 LNAI, pp. 633–645, 2009, doi: 10.1007/978-3-642-05258-3_56.spa
dc.relation.referencesK. Deb y H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints”, IEEE Transactions on Evolutionary Computation, vol. 18, núm. 4, pp. 577–601, 2014, doi: 10.1109/TEVC.2013.2281535.spa
dc.relation.referencesH. Ishibuchi, N. Tsukamoto, y Y. Nojima, “Evolutionary many-objective optimization: A short review”, 2008 IEEE Congress on Evolutionary Computation, CEC 2008, pp. 2419–2426, 2008, doi: 10.1109/CEC.2008.4631121.spa
dc.relation.referencesH. Sato, “Pareto Partial Dominance MOEA in Many-Objective Optimization”, Search (Syd), núm. January, pp. 1–10, 2009.spa
dc.relation.referencesH. Aguirre y K. Tanaka, “Many-objective optimization by space partitioning and adaptive ∈-ranking on MNK-landscapes”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5467 LNCS, pp. 407–422, 2010, doi: 10.1007/978-3-642-01020-0_33.spa
dc.relation.referencesC. H. Papadimitriou y M. Yannakakis, “On the approximability of trade-offs and optimal access of web sources”, Annual Symposium on Foundations of Computer Science - Proceedings, pp. 86–92, 2000, doi: 10.1109/sfcs.2000.892068.spa
dc.relation.referencesT. Erlebach, H. Kellerer, y U. Pferschy, “Approximating Multi-objective Knapsack Problems”, pp. 210–211, 2001.spa
dc.relation.referencesJ. Bader y E. Zitzler, “HypE : An algorithm for fast optimization”, Evol Comput, vol. 19, núm. 1, pp. 45–76, 2011.spa
dc.relation.referencesL. While, P. Hingston, L. Barone, y S. Huband, “A faster algorithm for calculating hypervolume”, IEEE Transactions on Evolutionary Computation, vol. 10, núm. 1, pp. 29–38, 2006, doi: 10.1109/TEVC.2005.851275.spa
dc.relation.referencesK. Bringmann y T. Friedrich, “Approximating the volume of unions and intersections of high-dimensional geometric objects”, Comput Geom, vol. 43, núm. 6–7, pp. 601–610, 2010, doi: 10.1016/j.comgeo.2010.03.004.spa
dc.relation.referencesX. Cai, H. Sun, y Z. Fan, “A diversity indicator based on reference vectors for many-objective optimization”, Inf Sci (N Y), vol. 430–431, pp. 467–486, 2018, doi: 10.1016/j.ins.2017.11.051.spa
dc.relation.referencesG. Dai, C. Zhou, M. Wang, y X. Li, “Indicator and reference points co-guided evolutionary algorithm for many-objective optimization problems”, Knowl Based Syst, vol. 140, pp. 50–63, 2018, doi: 10.1016/j.knosys.2017.10.025.spa
dc.relation.referencesM. Zhang y H. Li, “A reference direction and entropy based evolutionary algorithm for many-objective optimization”, Applied Soft Computing Journal, vol. 70, pp. 108–130, 2018, doi: 10.1016/j.asoc.2018.05.011.spa
dc.relation.referencesJ. Zou, C. Ji, S. Yang, Y. Zhang, J. Zheng, y K. Li, “A knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimization”, Swarm Evol Comput, vol. 47, núm. January, pp. 33–43, 2019, doi: 10.1016/j.swevo.2019.02.001.spa
dc.relation.referencesY. Liu, N. Zhu, K. K. Li, M. Li, J. Zheng, y K. Li, “An angle dominance criterion for evolutionary many-objective optimization”, Inf Sci (N Y), núm. xxxx, 2019, doi: 10.1016/j.ins.2018.12.078.spa
dc.relation.referencesL. Cai, S. Qu, y G. Cheng, “Two-archive method for aggregation-based many-objective optimization”, Inf Sci (N Y), vol. 422, pp. 305–317, 2018, doi: 10.1016/j.ins.2017.08.078.spa
dc.relation.referencesP. J. Fleming, R. C. Purshouse, y R. J. Lygoe, “Many-objective optimization: An engineering design perspective”, Lecture Notes in Computer Science, vol. 3410, pp. 14–32, 2005, doi: 10.1007/978-3-540-31880-4_2.spa
dc.relation.referencesA. Inselberg y B. Dimsdale, “Parallel coordinates: A tool for visualizing multi-dimensional geometry”, pp. 361–378, 1990, doi: 10.1007/978-4-431-68057-4_3.spa
dc.relation.referencesA. Pryke, S. Mostaghim, y A. Nazemi, “Heatmap visualization of population based multi objective algorithms”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4403 LNCS, pp. 361–375, 2007, doi: 10.1007/978-3-540-70928-2_29.spa
dc.relation.referencesD. J. Walker, R. M. Everson, y J. E. Fieldsend, “Visualizing mutually nondominating solution sets in many-objective optimization”, IEEE Transactions on Evolutionary Computation, vol. 17, núm. 2, pp. 165–184, 2013, doi: 10.1109/TEVC.2012.2225064.spa
dc.relation.referencesP. Hoffman y G. Grinstein, “Visualizations for High Dimensional Data Mining-Table Visualizations”, núm. August 2001, 1997.spa
dc.relation.referencesJ. B. Tenenbaum, V. De Silva, y J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction”, Science (1979), vol. 290, núm. 5500, pp. 2319–2323, 2000, doi: 10.1126/science.290.5500.2319.spa
dc.relation.referencesJ. Zou, L. Fu, J. Zheng, S. Yang, G. Yu, y Y. Hu, “A many-objective evolutionary algorithm based on rotated grid”, Applied Soft Computing Journal, vol. 67, pp. 596–609, 2018, doi: 10.1016/j.asoc.2018.02.031.spa
dc.relation.referencesB. Khan, S. Hanoun, M. Johnstone, C. P. Lim, D. Creighton, y S. Nahavandi, “A scalarization-based dominance evolutionary algorithm for many-objective optimization”, Inf Sci (N Y), vol. 474, pp. 236–252, 2019, doi: 10.1016/j.ins.2018.09.031.spa
dc.relation.referencesJ. Zou, Y. Zhang, S. Yang, Y. Liu, y J. Zheng, “Adaptive neighborhood selection for many-objective optimization problems”, Applied Soft Computing Journal, vol. 64, pp. 186–198, 2018, doi: 10.1016/j.asoc.2017.11.041.spa
dc.relation.referencesM. Wagner y F. Neumann, “A Fast Approximation-Guided Evolutionary Multi-Objective Algorithm”, pp. 687–694.spa
dc.relation.referencesQ. Zhang, S. Member, y H. Li, “MOEA / D : A Multiobjective Evolutionary Algorithm Based on Decomposition”, vol. 11, núm. 6, pp. 712–731, 2007.spa
dc.relation.referencesI. Giagkiozis, R. C. Purshouse, y P. J. Fleming, “Generalized Decomposition and Cross Entropy Methods for Many-Objective Optimization”, Inf Sci (N Y), p. 2014, 2014, doi: 10.1016/j.ins.2014.05.045.spa
dc.relation.referencesH. Seada y K. Deb, “U-NSGA-III : A Unified Evolutionary Algorithm for Single , Multiple , and Many-Objective Optimization”, pp. 1–30.spa
dc.relation.referencesD. Weininger, “SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules”, J Chem Inf Comput Sci, vol. 28, núm. 1, pp. 31–36, 1988, doi: 10.1021/ci00057a005.spa
dc.relation.referencesL. Hornos, “Introducción a SMILES: Dibujando moléculas en el bloc de notas”, El problema de describir una estructura molecular con caracteres comunes, 2020.spa
dc.relation.referencesDaylight Chemical Information Systems Inc., “SMILES - A Simplified Chemical Language”, -, 2019.spa
dc.relation.referencesN. M. O. Boyle, “Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI”, pp. 1–14, 2012.spa
dc.relation.referencesIUPAC, “Definición de compuestos anti aromáticos”. https://goldbook.iupac.org/terms/view/A00382spa
dc.relation.referencesA. T. M. G. Mostafa, J. M. Eakman, M. M. Montoya, y S. L. Yarbro, “Prediction of Heat Capacities of Solid Inorganic Salts from Group Contributions”, pp. 343–348, 1996.spa
dc.relation.referencesD. W. Van Krevelen, Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions. 2009.spa
dc.relation.referencesD. Saracino, Abstract Algebra A First Course. 2008.spa
dc.relation.referencesJoseph A. Gallian, Contemporary Abstract Algebra. 2013.spa
dc.relation.referencesD. B. Fraleigh, A first course in abstract algebra. 2002.spa
dc.relation.referencesW. L. Kocay y D. L. Kreher, Graphs, Algorithms, and Optimization, vol. 1. Boca Raton, FL, USA: CRC Press, 2017.spa
dc.relation.referencesP. Fernández-Gallardo y J. L. Fernández-Pérez, “La Teoría de Pólya”, en El discreto encanto de la matemática, 2002, pp. 1133–1145.spa
dc.relation.referencesA. R. Matamala, “PÓLYA’S COMBINATORIAL METHOD AND THE ISOMER ENUMERATION PROBLEM”, Bol. Soc. Chil. Quím., 2002. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0366-16442002000200006#17spa
dc.relation.referencesS. Pevac y G. Crundwell, “Pólya’s Isomer Enumeration Method: A Unique Exercise in Group Theory and Combinatorial Analysis for Undergraduates”, J Chem Educ, vol. 77, núm. 10, pp. 1358–1360, 2000, doi: 10.1021/ed077p1358.spa
dc.relation.referencesR. L. Apodaca, “A Comprehensive Treatment of Aromaticity in the SMILES Language”, 2021. https://depth-first.com/articles/2020/02/10/a-comprehensive-treatment-of-aromaticity-in-the-smiles-language/spa
dc.relation.referencesDaylight Chemical Information Systems Inc., “SMILES Tutorial: Conventions”. https://www.daylight.com/meetings/summerschool98/course/dave/smiles-convent.htmspa
dc.relation.referencesJ. Marrero y R. Gani, “Group-contribution based estimation of pure component properties”, Fluid Phase Equilib, vol. 183–184, pp. 183–208, 2001, doi: 10.1016/S0378-3812(01)00431-9.spa
dc.relation.referencesE. C. Ihmels y J. Gmehling, “Extension and revision of the group contribution method GCVOL for the prediction of pure compound liquid densities”, Ind Eng Chem Res, vol. 42, núm. 2, pp. 408–412, 2003, doi: 10.1021/ie020492j.spa
dc.relation.referencesT. J. Sheldon, C. S. Adjiman, y J. L. Cordiner, “Pure component properties from group contribution: Hydrogen-bond basicity, hydrogen-bond acidity, Hildebrand solubility parameter, macroscopic surface tension, dipole moment, refractive index and dielectric constant”, Fluid Phase Equilib, vol. 231, núm. 1, pp. 27–37, 2005, doi: 10.1016/j.fluid.2004.12.017.spa
dc.relation.referencesJ. Gmehling, J. Lohmann, A. Jakob, J. Li, y R. Joh, “A modified UNIFAC (Dortmund) model. 4. Revision and extension”, Ind Eng Chem Res, vol. 37, núm. 12, pp. 4876–4882, 1998, doi: 10.1021/ie980347z.spa
dc.relation.referencesD. Constantinescu y J. Gmehling, “Further development of modified UNIFAC (Dortmund): Revision and extension 6”, J Chem Eng Data, vol. 61, núm. 8, pp. 2738–2748, 2016, doi: 10.1021/acs.jced.6b00136.spa
dc.relation.referencesA. Fredeslund, Russell L. Jones, y J. M. Prausnitz, “Group-Contri bution Estimation of Activity Coefficients in Nonideal Liquid Mixtures”, vol. 21, núm. 6, 1975.spa
dc.relation.referencesDortmund-Databank, “Published ParametersUnifac”. http://www.ddbst.com/published-parameters-unifac.htmlspa
dc.relation.referencesJ. J. Irwin y B. K. Shoichet, “ZINC - A free database of commercially available compounds for virtual screening”, J Chem Inf Model, vol. 45, núm. 1, pp. 177–182, 2005, doi: 10.1021/ci049714+.spa
dc.relation.referencesT. Sterling y J. J. Irwin, “ZINC 15 - Ligand Discovery for Everyone”, J Chem Inf Model, vol. 55, núm. 11, pp. 2324–2337, 2015, doi: 10.1021/acs.jcim.5b00559.spa
dc.relation.referencesEPA, “Distributed Structure-Searchable Toxicity (DSSTox) Database”, 2022. https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database.spa
dc.relation.referencesTexas A&M University Libraries, “Chemical Pricing Database - Beta Version”, 2022. https://tamu.libguides.com/c.php?g=587308&p=5694124&url=L2V2LTI5ODk3NjIvZGIvNTUzNTQvdmlldy5hc3B4spa
dc.relation.referencesS&P Global, “Chemical Week by S&P Global”, 2022. https://chemweek.com/homespa
dc.relation.referencesRelx Inc., “ICIS Chemical Bussiness”, 2022. https://www.icis.com/subscriber/specialpublications/#_=_spa
dc.relation.referencesT. Group, G. All, I. N. D. Farm, P. F. F. Farm, y G. Smith, “Table 9 . Producer price indexes for commodity and service groupings and individual items , not seasonally adjusted [April 2022, Index base 1982=100, unless otherwise indicated]”, núm. April, pp. 1–58, 2022.spa
dc.relation.referencesS. Müller, “GitHub - Simon Müller - Fragmentation Algorithm Paper”, https://github.com/simonmb/fragmentation_algorithm_paper, 2023. https://github.com/simonmb/fragmentation_algorithm_paper (consultado el 8 de abril de 2023).spa
dc.relation.referencesS. Müller, “Flexible heuristic algorithm for automatic molecule fragmentation: Application to the UNIFAC group contribution model”, J Cheminform, vol. 11, núm. 1, 2019, doi: 10.1186/s13321-019-0382-3.spa
dc.relation.referencesK. Rodríguez, “Computer Aided Molecular Design : State-of-the-art and environmen- tally friendly product design”, p. 9, 2019.spa
dc.relation.referencesK. A. Rodríguez, “Inclusion of toxicity and market availability in a Computer-Aided Molecular Design methodology”, 2019.spa
dc.relation.referencesJ. Prieto y J. Gomez, “Hybrid Adaptive Evolutionary Algorithm for Multi-objective Optimization”, 2020, [En línea]. Disponible en: http://arxiv.org/abs/2004.13925spa
dc.relation.referencesK. Deb, A. Pratap, S. Agarwal, y T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, vol. 6, núm. 2, pp. 182–197, 2002, doi: 10.1109/4235.996017.spa
dc.relation.referencesD. Constantinescu y J. Gmehling, “Further development of modified UNIFAC (Dortmund): Revision and extension 6”, J Chem Eng Data, vol. 61, núm. 8, pp. 2738–2748, 2016, doi: 10.1021/acs.jced.6b00136.spa
dc.relation.referencesDDBST GmbH, “Parameters of the Modified UNIFAC (Dortmund) Model”, 2022. http://unifac.ddbst.de/PublishedParametersUNIFACDO.htmlspa
dc.relation.referencesOEIS.org, “The On-Line Encyclopedia of Integer Sequences® (OEIS®)”, https://oeis.org/, 2023. https://oeis.org/ (consultado el 25 de julio de 2023).spa
dc.relation.referencesN. C. for B. I. NIH - National Library of Medicine, “PubChem: Explore Chemistry - Quickly find chemical information from authoritative sources”, 2023.spa
dc.relation.referencesJ. Gómez, “Hybrid Adaptive Evolutionary Algorithm Hyper Heuristic”, pp. 1–5.spa
dc.relation.referencesJ. Gomez, “Self adaptation of operator rates in evolutionary algorithms”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3102, pp. 1162–1173, 2004, doi: 10.1007/978-3-540-24854-5_113.spa
dc.relation.referencesD. Weininger, “SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules”, J Chem Inf Comput Sci, vol. 28, núm. 1, pp. 31–36, 1988, doi: 10.1021/ci00057a005.spa
dc.relation.referencesL. Hornos, “Introducción a SMILES: Dibujando moléculas en el bloc de notas”, El problema de describir una estructura molecular con caracteres comunes, 2020.spa
dc.relation.referencesDaylight Chemical Information Systems Inc., “SMILES - A Simplified Chemical Language”, -, 2019.spa
dc.relation.referencesInc. Daylight Chemical Information System, “SMARTS - A Language for Describing Molecular Patterns”, https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html, 2019. https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html (consultado el 8 de abril de 2023).spa
dc.relation.referencesU. H. ZBH - Center for Bioinformatics, “SMARTS PLUS”, https://smarts.plus/, 2023. https://smarts.plus/ (consultado el 8 de abril de 2023).spa
dc.relation.referencesU. Weidlich y J. Gmehling, “A Modified UNIFAC Model. 1. Prediction of VLE, hE, and 3∞”, Ind Eng Chem Res, vol. 26, núm. 7, pp. 1372–1381, 1987, doi: 10.1021/ie00067a018.spa
dc.relation.referencesA. Ag, Ε. Fredenslund, J. Gmehling, y P. Rasmussen, Vapor-liquid equilib using UNIFAC a group-contribution method Library ol Congress Cataloging in Publication Data. 1977.spa
dc.relation.referencesACD Labs, “ACD Labs ChemSketch”, https://www.acdlabs.com/resources/free-chemistry-software-apps/chemsketch-freeware/, 2023. https://www.acdlabs.com/resources/free-chemistry-software-apps/chemsketch-freeware/ (consultado el 13 de julio de 2022).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industrialesspa
dc.subject.ddc510 - Matemáticas::518 - Análisis numéricospa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.lembDisolventesspa
dc.subject.lembSolventseng
dc.subject.lembComputadores electronicos digitales-diseño y construccion-procesamiento de datosspa
dc.subject.lembElectronic digital computers - Design and construction - Data processingeng
dc.subject.proposalOptimización multiobjetivospa
dc.subject.proposalExtracción líquido-líquidospa
dc.subject.proposalDiseño asistido por computadoraspa
dc.subject.proposalDiseño de productospa
dc.subject.proposalMulti-objective optimizationeng
dc.subject.proposalLiquid-liquid extractioneng
dc.subject.proposalComputer-aided molecular designeng
dc.subject.proposalProduct designeng
dc.titleOptimización multiobjetivo aplicado en diseño molecular asistido por computadora para la selección de solventes de extracción.spa
dc.title.translatedMulti-objective optimization applied in computer-aided molecular design for the selection of extraction solvents.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018458793.2023.pdf
Tamaño:
6.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: