Influencia de la configuración geomorfológica costera y el entorno sedimentario en el almacenamiento de carbono en manglares del Caribe colombiano

dc.contributor.advisorPerdomo Trujillo, Laura Victoria
dc.contributor.advisorMancera Pineda, José Ernesto
dc.contributor.authorEstrada Galindo, Ingrid Julieth
dc.contributor.orcidEstrada Galindo, Ingrid Julieth [0000-0002-9017-4746]spa
dc.contributor.researchgroupModelación de ecosistemas costerosspa
dc.date.accessioned2025-06-04T14:43:55Z
dc.date.available2025-06-04T14:43:55Z
dc.date.issued2024
dc.descriptiondiagramas, graficas, mapas, tablasspa
dc.description.abstractLos manglares proveen servicios ecosistémicos como la protección costera, la provisión de refugio para múltiples especies, y entre otros, el funcionamiento como depósito de carbono. A nivel mundial se han reportado diferentes valores de almacenamiento de carbono en manglares, mostrando gran variabilidad en este servicio dependiendo de las condiciones ambientales, edad y tipo geomorfológico de los bosques. Este estudio tiene como objetivo comprender la relación entre la variación del almacenamiento de carbono en ecosistemas de manglar con diferente configuración geomorfológica, en la Isla de San Andrés (SAI), un ambiente de costa abierta de origen kárstico sin influencia de ríos, y en la Ciénaga Grande de Santa Marta (CGSM), un ambiente deltaico con abundante aporte de sedimentos terrígenos provenientes del río Magdalena y de ríos que se originan en las estribaciones de la Sierra Nevada de Santa Marta. Debido al gran aporte de materia orgánica de los ríos, se podría suponer que los manglares en configuraciones geomorfológicas deltaicos influyen en el porcentaje de materia orgánica (MO) y por tanto en la reserva de carbono orgánico (CO). En cada sitio de estudio se establecieron parcelas para determinar el CO almacenado en la biomasa aérea, la biomasa subterránea, la madera caída y el suelo hasta la máxima profundidad, y se evaluó la MO, el CO, el pH, la temperatura, la salinidad y los nutrientes (nitrógeno y fósforo) en el suelo. Se encontró que el carbono se almacena diferencialmente entre los compartimientos, siendo el suelo el mayor reservorio. Los entornos carbonatados de costa abierta presentaron mayor contenido de carbono total promedio, pero sin diferencias significativas entre las reservas de carbono total de los dos entornos y configuraciones geomorfológicas evaluadas. A pesar de ello, los bosques del entorno carbonatado presentaron significativamente mayor contenido de CO en la biomasa aérea y subterránea y mayor porcentaje de MO en el suelo. La profundidad, la salinidad, la densidad aparente (DA) y el nitrógeno presentaron una fuerte correlación con el contenido de carbono total y del suelo. Por lo tanto, aunque los entornos carbonatados presentan mayor porcentaje de MO, la profundidad del suelo influencia en gran medida la cantidad de carbono total almacenada. Esta investigación refleja la influencia de la geomorfología costera en el almacenamiento de carbono orgánico en los manglares, se espera que este tipo de estudios sea un insumo importante en las acciones de mitigación del cambio climático, para contribuir con la conservación, manejo adecuado y restauración de los bosques de manglar (Texto tomado de la fuente).spa
dc.description.abstractMangroves provide ecosystem services such as coastal protection, shelter for multiple species, and, among others, functioning as a carbon store. Globally, different values of carbon storage in mangroves have been reported, showing great variability in this service depending on environmental conditions, age, and geomorphological type of forests. This study aims to understand the relationship between carbon storage variation in mangrove ecosystems with different geomorphological configurations, in San Andres Island (SAI), an open coastal environment of karstic origin without river influence, and the Ciénaga Grande de Santa Marta (CGSM), a deltaic environment with abundant input of terrigenous sediments from the Magdalena River and rivers originating in the foothills of the Sierra Nevada de Santa Marta. Due to the large input of organic matter from the rivers, it could be assumed that mangroves in river-influenced geomorphological configurations contain more organic matter (OM) and therefore more organic carbon (OC). At each study site, plots were established to determine the OC stored in aboveground biomass, belowground biomass, dead wood, and soil to maximum depth, and soil OM, OC, pH, temperature, salinity, and nutrients (nitrogen and phosphorus) were assessed. Carbon is stored differentially between compartments, where the soil component is the largest reservoir. Carbonated open water environments had higher average total carbon content, but no significant differences between the total carbon stocks of the two environments and the geomorphological configurations assessed. However, forests in the carbonated environment had significantly higher OC content in the above-ground and below-ground biomass and higher soil OM. Depth, salinity, bulk density (BD), and nitrogen were strongly correlated with total carbon content. Therefore, although carbonate environments have a higher percentage of OM, soil depth strongly influences the amount of carbon stored. This research reflects the influence of coastal geomorphology on organic carbon storage in mangroves, and it is hoped that this type of study will be an important input in climate change mitigation actions to contribute to the conservation, proper management, and restoration of mangrove forests.eng
dc.description.curricularareaOtra. Sede Caribespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias – Biologíaspa
dc.description.researchareaBiología Marinaspa
dc.format.extentXV, 87 paginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88199
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Caribespa
dc.publisher.departmentCentro de estudios en Ciencias del mar-CECIMARspa
dc.publisher.facultyFacultad Caribespa
dc.publisher.placeSan Andrés Islasspa
dc.publisher.programCaribe - Caribe - Maestría en Ciencias - Biologíaspa
dc.relation.referencesAdame, M. F., Kauffman, B., Medina, I., Gamboa, J., Torres, O., Caamal, J., Reza, M., & Herrera-Silveira, J. (2013). Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE, 8(2), 56569. https://doi.org/10.1371/journal.pone.0056569spa
dc.relation.referencesAdame, M. F., Neil, D., Wright, S. F., & Lovelock, C. E. (2010). Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuarine, Coastal and Shelf Science, 86, 21–30. https://doi.org/10.1016/j.ecss.2009.10.013spa
dc.relation.referencesAdame, M. F., Wright, S. F., Grinham, A., Lobb, K., Reymond, C. E., & Lovelock, C. E. (2012). Terrestrial–marine connectivity: Patterns of terrestrial soil carbon deposition in coastal sediments determined by analysis of glomalin related soil protein. Limnology and Oceanography, 57(5), 1492–1502. https://doi.org/10.4319/LO.2012.57.5.1492spa
dc.relation.referencesAgraz-Hernández, C. M., Noriega-Trejo, R., López-Portillo, J., Flores-Verdugo, F. J., & Jiménez-Zacarías, J. J. (2006). Guía de campo. Identificación de los manglares en México. In 2006. Universidad Autónoma de Campeche.spa
dc.relation.referencesÅhlén, I. (2016). Connecting Hydrological Processes to the Hypersaline Conditions of the Wetland Complex of Ciénaga Grande de Santa Marta, Colombia [Stockholm University]. https://www.diva-portal.org/smash/get/diva2:1055624/FULLTEXT01.pdfspa
dc.relation.referencesAhmed, S., Sarker, S. K., Kamruzzaman, M., Ema, J. A., Saagulo Naabeh, C. S., Cudjoe, E., Chowdhury, F. I., & Pretzsch, H. (2023). How biotic, abiotic, and functional variables drive belowground soil carbon stocks along stress gradient in the Sundarbans Mangrove Forest? Journal of Environmental Management, 337, 117772. https://doi.org/10.1016/J.JENVMAN.2023.117772spa
dc.relation.referencesAllais, L., Thibodeau, B., Khan, N. S., Crowe, S. A., Cannicci, S., & Not, C. (2024). Salinity, mineralogy, porosity, and hydrodynamics as drivers of carbon burial in urban mangroves from a megacity. Science of The Total Environment, 912, 168955. https://doi.org/10.1016/J.SCITOTENV.2023.168955spa
dc.relation.referencesAlongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219. https://doi.org/10.1146/ANNUREV-MARINE-010213-135020spa
dc.relation.referencesAlongi, D. M. (2020a). Carbon balance in salt marsh and mangrove ecosystems: A global synthesis. Journal of Marine Science and Engineering, 8(10), 1–21. https://doi.org/10.3390/JMSE8100767spa
dc.relation.referencesAlongi, D. M. (2020b). Global Significance of Mangrove Blue Carbon in Climate Change Mitigation (Version 1). Sci, 2(3), 57. https://doi.org/10.3390/SCI2030057spa
dc.relation.referencesAmon, R. M. W., & Benner, R. (1996). Bacterial utilization of different size classes of dissolved organic matter. Limnology and Oceanography, 41(1), 41–51. https://doi.org/10.4319/LO.1996.41.1.0041spa
dc.relation.referencesBernal, G. (1996). Caracterización geomorfológica de la llanura deltaica del río Magdalena con énfasis en el sistema lagunar de la Ciénaga Grande de Santa Marta, Colombia. Boletín de Investigaciones Marinas y Costeras, 25, 19–48. https://doi.org/10.25268/BIMC.INVEMAR.1996.25.0.369spa
dc.relation.referencesBetancur, S. P. (2001). Aplicación de los métodos de oxidación química y gravimétrico en la determinación del detrito y el seston de la Ciénaga Grande de Santa Marta. https://expeditiorepositorio.utadeo.edu.co/handle/20.500.12010/1190spa
dc.relation.referencesBhomia, R. K., Kauffman, J. B., & McFadden, T. N. (2016). Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 24(2), 187–201. https://doi.org/10.1007/S11273-016-9483-1spa
dc.relation.referencesBlanco, J. A., Viloria, E. A., & Narváez B., J. C. (2006). ENSO and salinity changes in the Ciénaga Grande de Santa Marta coastal lagoon system, Colombian Caribbean. Estuarine, Coastal and Shelf Science, 66(1–2), 157–167. https://doi.org/10.1016/J.ECSS.2005.08.001spa
dc.relation.referencesBouillon, S., Dahdouh-Guebas, F., Rao, A. V. V. S., Koedam, N., & Dehairs, F. (2003). Sources of organic carbon in mangrove sediments: Variability and possible ecological implications. Hydrobiologia, 495(1), 33–39. https://doi.org/10.1023/A:1025411506526/METRICSspa
dc.relation.referencesBreithaupt, J. L., Smoak, J. M., Rivera-Monroy, V. H., Castañeda-Moya, E., Moyer, R. P., Simard, M., & Sanders, C. J. (2017). Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils. https://doi.org/10.1016/j.margeo.2017.07.002spa
dc.relation.referencesCCO. (2016). Gestión del territorio marino costero. https://cco.gov.co/gestion-del-territorio-marino-costero/spa
dc.relation.referencesDatta, R., & Swaroop, R. (2021). Soil Carbon Stabilization to Mitigate Climate Change. In Soil Carbon Stabilization to Mitigate Climate Change. Springer. https://doi.org/10.1007/978-981-33-6765-4spa
dc.relation.referencesDonato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 2011 4:5, 4(5), 293–297. https://doi.org/10.1038/ngeo1123spa
dc.relation.referencesErftemeijer, P. LA., & Koch, E. W. (2001). Sediment geology methods for seagrass habitat. Global Seagrass Research Methods, 345–367. https://doi.org/10.1016/B978-044450891-1/50019-0spa
dc.relation.referencesEwel, K. C., Twilley, R. R., & Ong, J. E. (1998). Different kinds of mangrove forests provide different goods and services. Global Ecology and Biogeography Letters, 7(1), 83–94. https://doi.org/10.2307/2997700spa
dc.relation.referencesFriess, D. A., Rogers, K., Lovelock, C. E., Krauss, K. W., Hamilton, S. E., Lee, S. Y., Lucas, R., Primavera, J., Rajkaran, A., & Shi, S. (2019). The State of the World’s Mangrove Forests: Past, Present, and Future. Annual Review of Environment and Resources, 44(Volume 44, 2019), 89–115. https://doi.org/10.1146/ANNUREV-ENVIRON-101718-033302/CITE/REFWORKSspa
dc.relation.referencesFromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L., & Cadamuro, L. (1998). Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia, 115, 39–53.spa
dc.relation.referencesGattuso, J.-P., Frankignoulle, M., & Wollast, R. (1998). Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst, 29, 405–439. www.annualreviews.orgspa
dc.relation.referencesHerrera, J. A., & Teutli, C. (2017). Carbono azul, manglares y políticas públicas. Elementos Para Políticas Públicas, 1(1), 43–52.spa
dc.relation.referencesHoward, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2014). Carbono Azul. Métodos para evaluar las existencias y los factores de emisión de carbono en manglares, marismas y pastos marinos. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. www.iucn.org/esspa
dc.relation.referencesIndoria, A. K., Sharma, K. L., & Reddy, K. S. (2020). Hydraulic properties of soil under warming climate. In Climate Change and Soil Interactions (pp. 473–508). Elsevier. https://doi.org/10.1016/B978-0-12-818032-7.00018-7spa
dc.relation.referencesInoue, T. (2019). Carbon Sequestration in Mangroves. In Blue Carbon in Shallow Coastal Ecosystems (pp. 73–99). Springer, Singapore. https://doi.org/10.1007/978-981-13-1295-3_3spa
dc.relation.referencesIUCN. (2024). Red List of Mangrove Ecosystems. https://www.iucn.org/resources/conservation-tool/iucn-red-list-ecosystems/red-list-mangrove-ecosystemsspa
dc.relation.referencesKathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove Ecosystems. In Advances in Marine Biology (Vol. 40, pp. 81–251). Academic Press. https://doi.org/10.1016/S0065-2881(01)40003-4spa
dc.relation.referencesKauffman, J. B., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Jesus Garcia, M. del C., MacKenzie, R. A., Megonigal, J. P., Murdiyarso, D., Simpson, L., & Hernández Trejo, H. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2). https://doi.org/10.1002/ECM.1405spa
dc.relation.referencesKauffman, J. B., Donato María, D. C., & Adame, F. (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares (117).spa
dc.relation.referencesKida, M., & Fujitake, N. (2020). Organic Carbon Stabilization Mechanisms in Mangrove Soils: A Review. Forests, 11(981).spa
dc.relation.referencesKomiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4), 471–477. https://doi.org/10.1017/S0266467405002476spa
dc.relation.referencesKrauss, K. W., Lovelock, C. E., McKee, K. L., López-Hoffman, L., Ewe, S. M. L., & Sousa, W. P. (2008). Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany, 89(2), 105–127. https://doi.org/10.1016/J.AQUABOT.2007.12.014spa
dc.relation.referencesKristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89(2), 201–219. https://doi.org/10.1016/J.AQUABOT.2007.12.005spa
dc.relation.referencesLovelock, C. E., & Duarte, C. M. (2019). Dimensions of blue carbon and emerging perspectives. Biology Letters, 15(3), 23955–26900. https://doi.org/10.1098/RSBL.2018.0781spa
dc.relation.referencesLugo, A. E., & Snedaker, S. C. (1974). The Ecology of Mangroves. Https://Doi.Org/10.1146/Annurev.Es.05.110174.000351, 5(1), 39–64. https://doi.org/10.1146/ANNUREV.ES.05.110174.000351spa
dc.relation.referencesMancera-Pineda, J. E. (2022). Bosques de manglar. In M. Rodríguez & M. F. Valdés (Eds.), Colombia país de bosques. Alphaeditorial. https://www.alpha-editorial.com/Papel/9789587787368/Colombia+Pa%C3%ADs+De+Bosquesspa
dc.relation.referencesMedina-Calderón, J. H. (2016). Estructura, biomasa y producción primaria neta de bosques de manglar en ambientes kársticos de islas oceánicas. Universidad Nacional de Colombia.spa
dc.relation.referencesMedina-Calderón, J. H., Mancera-Pineda, J. E., Castañeda-Moya, E., & Rivera-Monroy, V. H. (2021). Hydroperiod and Salinity Interactions Control Mangrove Root Dynamics in a Karstic Oceanic Island in the Caribbean Sea (San Andres, Colombia). Frontiers in Marine Science, 7, 1194. https://doi.org/10.3389/FMARS.2020.598132/BIBTEXspa
dc.relation.referencesMeng, Y., Bai, J., Gou, R., Cui, X., Feng, J., Dai, Z., Diao, X., Zhu, X., & Lin, G. (2021). Relationships between above- and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon. Carbon Balance and Management, 16(1), 1–14. https://doi.org/10.1186/S13021-021-00172-9/FIGURES/7spa
dc.relation.referencesMobilian, C., & Craft, C. B. (2022). Wetland Soils: Physical and Chemical Properties and Biogeochemical Processes. Encyclopedia of Inland Waters, Second Edition, 3, 157–168. https://doi.org/10.1016/B978-0-12-819166-8.00049-9spa
dc.relation.referencesNehren, U., & Wicaksono, P. (2018). Mapping soil carbon stocks in an oceanic mangrove ecosystem in Karimunjawa Islands, Indonesia. Estuarine, Coastal and Shelf Science, 214, 185–193. https://doi.org/10.1016/J.ECSS.2018.09.022spa
dc.relation.referencesNellemann, C., Corcoran, E., Duarte, C., Valdés, L., De Young, C., Fonseca, L., & Grimsditch, G. (2009). Blue Carbon: A rapid response assesment. In Blue Carbon. A Rapid Response Assessment. United Nations Environment Programme. www.grida.nospa
dc.relation.referencesOla, A., & Lovelock, C. E. (2021). Decomposition of mangrove roots depends on the bulk density they grew in. Plant and Soil, 460(1–2), 177–187. https://doi.org/10.1007/S11104-020-04791-Y/METRICSspa
dc.relation.referencesOuyang, X., Guo, F., & Lee, S. Y. (2024). Multiple drivers for carbon stocks and fluxes in different types of mangroves. Science of the Total Environment, 906. https://doi.org/10.1016/j.scitotenv.2023.167511spa
dc.relation.referencesPerdomo-Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderón, J. H., Sánchez-Núñez, D. A., & Schnetter, M. L. (2021). Effect of Restoration Actions on Organic Carbon Pools in the Lagoon—Delta Ciénaga Grande de Santa Marta, Colombian Caribbean. Water 2021, Vol. 13, Page 1297, 13(9), 1297. https://doi.org/10.3390/W13091297spa
dc.relation.referencesRagavan, P., Sivakumar, K., Jayaraj, R., Mohan, P., & Rana, T. (2019). Carbon storage potential of mangroves – are we missing the boat? Current Science, 116(6), 889–891.spa
dc.relation.referencesRastogi, R., Phulwaria, M., & Gupta, D. (2021). Mangroves: Ecology, Biodiversity and Management.spa
dc.relation.referencesRaw, J. L., Van der Stocken, T., Carroll, D., Harris, L. R., Rajkaran, A., Van Niekerk, L., & Adams, J. B. (2023). Dispersal and coastal geomorphology limit potential for mangrove range expansion under climate change. Journal of Ecology, 111(1), 139–155. https://doi.org/10.1111/1365-2745.14020spa
dc.relation.referencesRodríguez-Rodríguez, J. A., Mancera Pineda, J. E., Melgarejo, L. M., & Medina Calderón, J. H. (2018). Functional traits of leaves and forest structure of neotropical mangroves under different salinity and nitrogen regimes. Flora, 239, 52–61. https://doi.org/10.1016/J.FLORA.2017.11.004spa
dc.relation.referencesRodríguez-Rodríguez, J. A., Mancera-Pineda, J. E., & Tavera, H. (2021). Mangrove restoration in Colombia: Trends and lessons learned. Forest Ecology and Management, 496, 119414. https://doi.org/10.1016/J.FORECO.2021.119414spa
dc.relation.referencesRovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P. A., Simonassi, J. C., Fonseca, A. L., & Pagliosa, P. R. (2018). Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6), 534–538. https://doi.org/10.1038/S41558-018-0162-5spa
dc.relation.referencesSaintilan, N., Rogers, K., Mazumder, D., & Woodroffe, C. (2013). Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science, 128, 84–92. https://doi.org/10.1016/j.ecss.2013.05.010spa
dc.relation.referencesSelvaraj, J. J., & Gallego Pérez, B. E. (2023). An enhanced approach to mangrove forest analysis in the Colombian Pacific coast using optical and SAR data in Google Earth Engine. Remote Sensing Applications: Society and Environment, 30, 100938. https://doi.org/10.1016/J.RSASE.2023.100938spa
dc.relation.referencesStringer, C. E., Trettin, C. C., & Zarnoch, S. J. (2016). Soil properties of mangroves in contrasting geomorphic settings within the Zambezi River Delta, Mozambique. Wetlands Ecology and Management, 24(2), 139–152. https://doi.org/10.1007/S11273-015-9478-3/METRICSspa
dc.relation.referencesTeutli-Hernández, C., Herrera-Silveira, J., Cisneros-de la Cruz, D., & Roman-Cuesta, R. (2020). Guía para la restauración ecológica de manglares: lecciones aprendidas.spa
dc.relation.referencesTrumper, K., Bertzky, M., Dickson, B., van der Heijden, G., Jenkins, M., & Manning, P. (2009). The Natural Fix? The Role of Ecosystems in Climate Mitigation: A UNEP Rapid Response Assessment. In United Nations Environment Programme. UNEP World Conservation Monitoring Centre. United Nations Environment Programme. https://wedocs.unep.org/xmlui/handle/20.500.11822/7852spa
dc.relation.referencesTwilley, R. R., Lugo, A. E., & Patterson-Zucca, C. (1986). Litter production and turnover in basin mangrove forests in southwest Florida. Ecology, 67(3), 670–683. https://doi.org/10.2307/1937691spa
dc.relation.referencesTwilley, R. R., Rovai, A. S., & Riul, P. (2018). Coastal morphology explains global blue carbon distributions. Frontiers in Ecology and the Environment, 16(9), 503–508. https://doi.org/10.1002/FEE.1937spa
dc.relation.referencesUrrego, L. E., Polanía, J., Buitrago, M. F., Cuartas, L. F., & Lema, A. (2009). Distribution of mangroves along environmental gradients on San Andres Island (Colombian Caribbean). Bulletin of Marine Science, 85(1), 27–43.spa
dc.relation.referencesVides, M., Alonso, D., Castro, E., & Bolaños, N. (2016). Biodiversidad del mar de los siete colores (M. Vides, D. Alonso, E. Castro, & N. Bolaños, Eds.). Serie de Publicaciones Generales del INVEMAR No. 84spa
dc.relation.referencesWong, C. J., James, D., Besar, N. A., Kamlun, K. U., Tangah, J., Tsuyuki, S., & Phua, M. H. (2020). Estimating Mangrove above-ground biomass loss due to deforestation in Malaysian Northern Borneo between 2000 and 2015 using SRTM and landsat images. Forests, 11(9). https://doi.org/10.3390/F11091018spa
dc.relation.referencesWorthington, T. A., Zu Ermgassen, P. S. E., Friess, D. A., Krauss, K. W., Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N. J., Sutherland, W. J., & Spalding, M. (2020). A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports, 10. https://doi.org/10.1038/s41598-020-71194-5spa
dc.relation.referencesYepes, A., Zapata, M., Bolivar, J., Monsalve, A., Espinosa, S. M., Sierra-Correa, P. C., & Sierra, A. (2016). Ecuaciones alométricas de biomasa aérea para la estimación de los contenidos de carbono en manglares del Caribe Colombiano. Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN, 64(2), 913–926.spa
dc.relation.referencesZaman, M. R., Rahman, M. S., Ahmed, S., & Zuidema, P. A. (2023). What drives carbon stocks in a mangrove forest? The role of stand structure, species diversity and functional traits. Estuarine, Coastal and Shelf Science, 295, 108556. https://doi.org/10.1016/J.ECSS.2023.108556spa
dc.relation.referencesZanne, A. E., Lopez-Gonzalez, G., Coomes, D., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. https://doi.org/10.1111/J.1461-0248.2009.01285.Xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc570 - Biología::575 - Partes específicas de y sistemas fisiológicos en plantasspa
dc.subject.ddc580 - Plantas::582 - Plantas destacadas por características vegetativas y floresspa
dc.subject.proposalReservas de carbonospa
dc.subject.proposalCarbono azulspa
dc.subject.proposalConfiguración geomorfológicaspa
dc.subject.proposalManglares neotropicalesspa
dc.subject.proposalCarbon stockseng
dc.subject.proposalBlue carboneng
dc.subject.proposalGeomorphological settingeng
dc.subject.proposalNeotropical mangroveseng
dc.titleInfluencia de la configuración geomorfológica costera y el entorno sedimentario en el almacenamiento de carbono en manglares del Caribe colombianospa
dc.title.translatedInfluence of geomorphological setting and sedimentary environment on organic carbon content in the Colombian Caribbean mangroveseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018468614.2024.pdf
Tamaño:
1.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de maestría en Ciencias Biología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: