A modeling framework for hyporheic flow within hydrodynamics scale

dc.contributor.advisorDonado, Leonardo David
dc.contributor.advisorEscobar Vargas, Jorge
dc.contributor.authorPreziosi Ribero, Antonio
dc.contributor.researchgroupHYDS Hydrodynamics of the Natural Media Research Groupspa
dc.date.accessioned2021-08-12T22:42:14Z
dc.date.available2021-08-12T22:42:14Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractIn tropical countries, like Colombia and in other parts of the world, free surface streams play a key role either as freshwater supply for human settlements, or as wastewater receivers from households and industrial compounds. Population growth, internal migration of people towards cities and the effects of climate change make that pressure on aquatic ecosystems become a topic of interest for science and public administration. Therefore, understanding different water bodies, their interaction and their integral modelling process are a research topic of great interest in earth sciences and engineering. In fact, in the last 30 years, academia has studied the interaction between free surface streams and aquifers beneath them, focusing on the effects of these type of flows. This milestone marked the beginning of the studies of Hyporheic Flow (HF) and Hyporheic Zone (HZ). Hyporheic Zone (HZ) is defined as "a subsurface flowpath along which water 'recently' from the stream will mix with subsurface water to 'soon' return to the stream''. This place has a great relevance in ecologic, biologic and chemical processes such as contaminant attenuation, nutrient, sediment and heat transport for biota growth, nitrification processes in water bodies and river restoration. These phenomena are closely related with chemical water quality and are modeled usually with conservative and reactive transport equations. Nevertheless, species transport in HZ depends on water flow and the patterns it follows. The flow within the HZ is known as Hyporheic Flow (HF) and its main feature is the wide range of scales in which it acts. Hence, within HZ there is flow from the pore scale and it is controlled by pressure gradients, to the scale of flows controlled by the stream morphology. This wide variety of scales, along with media heterogeneity make the study of processes within the HZ a challenge for the scientific community. Moreover, in countries like Colombia, streams play a key role in society since they are the main freshwater supply and also receive the water disposal. The main goal of this research project is to formulate a methodological frame for HZ modelling from the continuous media perspective. To that end, this work presents the study of HF, starting from different numerical models, proposing simplifications that can portray HF. In the same way, the use of numerical models allows the decomposition of the physical phenomena to characterize their individual contribution to the HF. The models' results are compared with experimental results to validate their practical usefulness and propose their use in different case studies related with biological, chemical and ecological processes. To accomplish the main goal, this document presents three different approaches to HF driven by hydrodynamics, using different numerical tools. These approaches are based in continuum media mechanics, despite using different numerical schemes; each one of the presents pros and cons, but above all, each one of them gives key information about Hyporheic Flow that, in the near future, can be upscaled and used for decision making regarding hydraulic resources. The first numerical model proposed uses Burgers' Equation (BE) to represent HF in a bed with cubical packed spheres. The main goal is to study turbulent velocity decay within uniform media to characterize HF through a simple expression as the BE taking into account the interaction between non linear effects and energy dissipation, characteristic within multiscale flows. For the computational model a Spectral Multidomain Penalty method (SMPM) to avoid numerical errors associated with traditional numerical schemes as finite differences, elements or volumes. The BE model is presented as a first approach of HF in a lab scale. In second place, the use of the Navier-Stokes Equations (NSE) to represent the combination of free surface flow and a sand bed. Again, the main goal is to determine a mean velocity profile representing the transition between free surface flow in a flume and a regular bed. To achieve this goal the Finite Volume Method was used along with an open source code that was modified to include different viscosity values and source/sink terms that are able to capture the velocity decay. The results of flow are compared with different numerical and experimental models. This analysis includes also a conservative transport model that was also compared with experimental results. For the final approach, a numerical particle-tracking model is proposed to assess their influence of HF in fine sediment deposition in river beds. The main goal of this part is to evaluate the process of deposition taking into account different flow scenarios within the HZ. Besides flow in porous media, this model includes particle filtration within the bed to retain particles and show places where deposition is more prone to occur. The results, once again, are compared with flume experiments of kaolinite deposition in a recirculating flume. To wrap up, the three models presented in this work offer a novel vision on Hyporheic Flow within scales driven by hydrodynamical effects. Mainly, the free flow conditions driving flow in porous media and high Reynolds number flows presence within porous media determine hydrodynamics and processes associated with it, such as fine sediment deposition.eng
dc.description.abstractEn paises tropicales como Colombia y en gran parte del mundo, las corrientes superficiales juegan un rol importante como fuente de agua potable para grandes asentamientos humanos, a la vez que receptores de vertimientos domésticos e industriales. El crecimiento de la población, la migración interna a las ciudades y los efectos del cambio climático, hacen que la presión sobre los ecosistemas acuáticos se vuelva un tema de interés para la ciencia y la administración pública. En consecuencia, el entendimiento de los diferentes cuerpos de agua, las relaciones entre ellos y su modelación integral son un tema de investigación con gran acogida en las geociencias y la ingeniería. De hecho, desde hace cerca de 30 añnos, la academia se ha fijado en las realciones entre las corrientes de agua y los acuíferos debajo de las mismas para estudiar diferentes fenómenos ocasionados por este tipo de flujos. De esta forma nace el estudio del Flujo Hiporreico (HF) y la Zona Hiporreica (HZ). La Zona Hiporreica (HZ) se define como "la trayectoria de flujo de agua que ha abandonado un cuerpo de agua superficial hace "poco'' tiempo, para mezclarse con agua subterránea y "pronto'' volver al mismo cuerpo de agua''. Este lugar tiene gran importancia en procesos ecológicos, biológicos y químicos como la atenuación de contaminantes, el transporte de nutrientes, sedimentos y calor para el crecimiento de biota, los procesos de nitrificación de los cuerpos de agua y la restauración de cuerpos de agua. Estos fenómenos están ligados estrechamente con el concepto de calidad y química del agua, y son modelados con ecuaciones de transporte conservativo o reactivo. No obstante, el transporte de sustancias en este medio depende del flujo de agua y los patrones que este sigue. Al flujo de agua en la HZ se le denomina Flujo Hiporreico (HF), y su principal característica es el amplio rango de escalas en el que está presente. De esta forma, dentro de la HZ se pueden observar flujo desde la escala de poros, controlado por gradientes de presión, hasta la escala de flujos controlados por la morfología de las corrientes de agua. Esta amplia variedad de escalas, sumada a la heterogeneidad de los medios naturales, hacen que el estudio de procesos en la HZ se transforme en un reto para la comunidad científica. El objetivo del presente trabajo de investigación es el de formular un marco metodológico para la modelación de la HZ desde la perspectiva de la mecánica del medio continuo. Para tal fin, este trabajo presenta un estudio del HF, a partir de diferentes modelos numéricos, proponiendo simplificaciones que puedan representar el HF. Asimismo, el uso de modelos numéricos permite descomponer los fenómenos físicos para caracterizar la contribución de cada uno al HF. Los resultados de los modelos son comparados con resultados experimentales para verificar su utilidad práctica y proponer su uso en diferentes casos de estudio relacionados con procesos biológicos, químicos y ecológicos. Para el cumplimiento del objetivo general se presentan tres aproximaciones de modelación de Flujo Hiporreico dominado por factores hidrodinámicos, por medio de diferentes herramientas numéricas. Estas aproximaciones se basan en la mecánica del medio continuo, a pesar de utilizar diferentes esquemas numéricos; presentan diferentes fortalezas y debilidades y, sobre todo, brindan información sobre el Flujo Hiporreico que, en un futuro, puede ser escalada para contribuir con la toma de decisiones en lo referente al recurso hídrico. El primer modelo numérico propuesto utiliza la ecuación de Burgers (BE) para representar el HF en un lecho de esferas dispuestas en forma cúbica. El objetivo principal es estudiar el decaimiento de las velocidades turbulentas dentro de un medio uniforme para caracterizar el HF mediante una expresión simple como la BE teniendo en cuenta la interacción de efectos no lineales y disipación de energía, propios de los flujos multiescala. Para el modelo computacional se utilizó un método de multidominio espectral (SMPM) para evitar errores numéricos asociados a los métodos tradicionales como las diferencias, elementos o volúmenes finitos. Este modelo se presenta como una primera aproximación hacia el HF a escala de laboratorio. En segundo lugar, se propone un modelo basado en las ecuaciones de Navier-Stokes (NSE) modificada para representar la combinación de un flujo libre y el lecho de un canal. De nuevo, el objetivo es determinar un perfil de velocidades promedio que represente la transición entre el flujo de un canal y un lecho de forma regular. Para este fin se utilizó el método de los volúmenes finitos y un paquete de software de código abierto que fue modificado para incluir viscosidades diferentes y términos de fuente/sumidero que representen el decaimiento de velocidades. Los resultados de flujo son comparados con diferentes modelos numéricos y experimentales. De igual manera, este análisis incluye además una implementación de transporte conservativo de especies que fue también comparado con resultados experimentales. Como última aproximación, se propone un modelo de rastreo numérico de partículas para evaluar la influencia del HF en la depositación de sedimentos finos en lechos de ríos. El objetivo principal de este aparte es analizar el proceso de depositación de sedimentos, teniendo en cuenta diferentes escenarios de flujo en la HZ. Además del flujo en el medio poroso, el modelo implementado utiliza la filtración de materiales dentro del lecho para retener partículas finas y mostrar los lugares donde se espera que haya mayor depositación de estas. Los resultados, una vez más, son validados de forma cualitativa con experimentos de laboratorio realizados con kaolinita en canales recirculantes experimentales. En síntesis, los tres modelos presentados en este trabajo ofrecen una visión novedosa sobre el Flujo Hiporreico en escalas dominadas por efectos hidrodinámicos. Principalmente, el dominio de las condiciones de flujo libre presentes sobre el flujo en el medio poroso y la presencia de flujos con altos números de Reynolds dentro del medio poroso dominan la hidrodinámica y los procesos asociados a la misma, como la despositación de sedimentos finos.spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingeniería - Ingeniería Civilspa
dc.description.researchareaAgua y medio ambientespa
dc.description.sponsorshipConvocatoria 647/2014 de Colciencias - Doctorados nacionales Cohorte 2016 - Beca estudiante doctoral colombiano - Comisión Fulbright Colombiaspa
dc.format.extent110 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79941
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Civilspa
dc.relation.referencesBarr, D. W. (2001). Turbulent Flow Through Porous Media. Ground Water, 39(5):646–650.spa
dc.relation.referencesBarthel, R. and Banzhaf, S. (2015). Groundwater and Surface Water Interaction at the Regional-scale - A Review with Focus on Regional Integrated Models. Water Resources Management, 30(1):1–32.spa
dc.relation.referencesBear, J. (1975). Dynamics of Fluids in Porous Media. Dover.spa
dc.relation.referencesBencala, K. (2000). Hyporheic zone hydrological processes. Hydrological Processes, 14(15):2797–2798.spa
dc.relation.referencesBernal, J. G. (2014). Evaluacion de la Dinamica del Agua Subterranea en la Ecohidrologia del Humedal Laguna de Sonso, Valle Del Cauca-Colombia. PhD thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesBoano, F., Harvey, J., Marion, A., Packman, A., Revelli, R., Ridolfi, L., and Wörman, A. (2014). Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4).spa
dc.relation.referencesBoano, F., Packman, A., Cortis, A., Revelli, R., and Ridolfi, L. (2007). A continuous time random walk approach to the stream transport of solutes. Water Resources Research, 43(10).spa
dc.relation.referencesBonkile, M. P., Awasthi, A., Lakshmi, C., Mukundan, V., and Aswin, V. S. (2018). A systematic literature review of Burgers’ equation with recent advances. Pramana - Journal of Physics, 90(6):1–21.spa
dc.relation.referencesBotella, O. and Peyret, R. (1998). Benchmark Spectral Results on the Lid Driven Cavity Flow. Computers and Fluids, 27(4):421–433.spa
dc.relation.referencesBoudreau, B. (1997). A one-dimensional model for bed-boundary layer particle exchange. Journal of Marine Systems, 11(3-4):279–303.spa
dc.relation.referencesBreugem, W. P., Boersma, B. J., and Uittenbogaard, R. E. (2006). The influence of wall permeability on turbulent channel flow. Journal of Fluid Mechanics, 562:35.spa
dc.relation.referencesBrunke, M. (1999). Colmation and depth filtration within streambeds: Retention of particles in hyporheic interstices. International Review of Hydrobiology, 84(2).spa
dc.relation.referencesBuendia, C., Gibbins, C. N., Vericat, D., and Batalla, R. J. (2014). Effects of flow and fine sediment dynamics on the turnover of stream invertebrate assemblages. Ecohydrology, 7(4).spa
dc.relation.referencesBuss, S., Cai, Z., Cardenas, M., Fleckenstein, J., Hannah, D., Hepell, K., Hulme, P., Ibrahim, T., Kaeser, D., Krause, S., Lawler, D., Lerner, N., Mant, J., Malcolm, I., Old, G., Parkin, G., Pickup, G., Pinay, G., Porter, J., Rhodes, G., Ritchie, A., Riley, J., Robertson, A., Sear, D., Shileds, B., Smith, J., Tellam, J., and Wood, P. (2009). The Hyporheic Handbook. Environment Agency, Bristol, 1 edition.spa
dc.relation.referencesCanuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A. (2009). Spectral methods. Springer.spa
dc.relation.referencesCardenas, M. (2015). Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resources Research, 51(5):3601–3616.spa
dc.relation.referencesCardenas, M. and Wilson, J. (2006). The influence of ambient groundwater discharge on exchange zones induced by current–bedform interactions. Journal of Hydrology, 331(1-2).spa
dc.relation.referencesCardenas, M. and Wilson, J. (2007a). Hydrodynamics of coupled flow above and below a sediment–water interface with triangular bedforms. Advances in Water Resources, 30(3).spa
dc.relation.referencesCardenas, M. and Wilson, J. (2007b). Thermal regime of dune-covered sediments under gaining and losing water bodies. Journal of Geophysical Research: Biogeosciences, 112(4).spa
dc.relation.referencesCardenas, M., Wilson, J., and Haggerty, R. (2008). Residence time of bedform-driven hyporheic exchange. Advances in Water Resources, 31(10).spa
dc.relation.referencesCardenas, M., Wilson, J., and Zlotnik, V. (2004). Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resources Research, 40(8)spa
dc.relation.referencesCardenas, M. B. and Wilson, J. L. (2007c). Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resources Research, 43(8).spa
dc.relation.referencesCengel, Y. A. and Cimbala, J. M. (2006). Mecánica de fluidos : fundamentos y aplicaciones. México, D.F. : McGraw-Hill Interamericana, 2006.spa
dc.relation.referencesChen, C., Packman, A. I., and Gaillard, J.-F. (2008). Pore-scale analysis of permeability reduction resulting from colloid deposition. Geophysical Research Letters, 35(7).spa
dc.relation.referencesChen, X., Dong, W., Ou, G., Wang, Z., and Liu, C. (2013). Gaining and losing stream reaches have opposite hydraulic conductivity distribution patterns. Hydrology and Earth System Sciences, 17(7):2569–2579.spa
dc.relation.referencesClark, M. M. (2009). Transport modeling for environmental engineers and scientists. Environmental science and technology. New Jersey : Wiley, 2009.spa
dc.relation.referencesCrenshaw, C. L., Valett, H. M., and Webster, J. R. (2002). Effects of augmentation of coarse particulate organic matter on metabolism and nutrient retention in hyporheic sediments. Freshwater Biology, 47(10).spa
dc.relation.referencesCushing, C. E., Minshall, G. W., and Newbold, J. D. (1993). Transport dynamics of fine particulate organic matter in two Idaho streams. Limnology and Oceanography, 38(6):1101–1115.spa
dc.relation.referencesdel Jesus, M., Lara, J. L., and Losada, I. J. (2012). Three-dimensional interaction of waves and porous coastal structures. Coastal Engineering, 64.spa
dc.relation.referencesDelay, F., Ackerer, P., and Danquigny, C. (2005). Simulating Solute Transport in Porous or Fractured Formations Using Random Walk Particle Tracking. Vadose Zone Journal, 4(2).spa
dc.relation.referencesDiscacciati, M., Miglio, E., and Quarteroni, A. (2002). Mathematical and numerical models for coupling surface and groundwater flows. Applied Numerical Mathematics, 43(1-2).spa
dc.relation.referencesDomenico, P. A. and Schwartz, F. W. (1998). Physical and chemical hydrogeology. Second edition. Wiley.spa
dc.relation.referencesDong, W., Chen, X., Wang, Z., Ou, G., and Liu, C. (2012). Comparison of vertical hydraulic conductivity in a streambed-point bar system of a gaining stream. Journal of Hydrology, 450-451:9–16.spa
dc.relation.referencesDrummond, J., Davies-Colley, R., Stott, R., Sukias, J., Nagels, J., and Sharp, A. (2015). Microbial Transport, Retention, and Inactivation in Streams: A Combined Experimental and Stochastic Modeling Approach. Environmental Science and Technology, 49(13).spa
dc.relation.referencesDrummond, J., Davies-Colley, R., Stott, R., Sukias, J., Nagels, J., Sharp, A., and Packman, A. (2014). Retention and remobilization dynamics of fine particles and microorganisms in pastoral streams. Water Research, 66.spa
dc.relation.referencesDrummond, J., Larsen, L., González-Pinzón, R., Packman, A., and Harvey, J. (2017). Fine particle retention within stream storage areas at base flow and in response to a storm event. Water Resources Research, 53(7).spa
dc.relation.referencesDrummond, J., Larsen, L., González-Pinzón, R., Packman, A., and Harvey, J. (2018). Less Fine Particle Retention in a Restored Versus Unrestored Urban Stream: Balance Between Hyporheic Exchange, Resuspension, and Immobilization. Journal of Geophysical Research: Biogeosciences, 123(4).spa
dc.relation.referencesElliott, A. H. and Brooks, N. H. (1997a). Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments. Water Resources Research, 33(1).spa
dc.relation.referencesElliott, A. H. and Brooks, N. H. (1997b). Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resources Research, 33(1).spa
dc.relation.referencesErturk, E., Corke, T. C., and Gökçöl, C. (2005). Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. International Journal for Numerical Methods in Fluids, 48(7).spa
dc.relation.referencesFox, A., Boano, F., and Arnon, S. (2014). Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. Water Resources Research, 50(3).spa
dc.relation.referencesFox, A., Packman, A., Boano, F., Phillips, C., and Arnon, S. (2018). Interactions Between Suspended Kaolinite Deposition and Hyporheic Exchange Flux Under Losing and Gaining Flow Conditions. Geophysical Research Letters, 45(9).spa
dc.relation.referencesFreeze, R. A. and Cherry, J. A. (1979). Groundwater. Prentice Hall, Englewood Cliffs, NJ.spa
dc.relation.referencesGartner, J. D., Renshaw, C. E., Dade, W. B., and Magilligan, F. J. (2012). Time and depth scales of fine sediment delivery into gravel stream beds: Constraints from fallout radionuclides on fine sediment residence time and delivery. Geomorphology, 151-152.spa
dc.relation.referencesGeuzaine, C. and Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331.spa
dc.relation.referencesGhisalberti, M. (2009). Obstructed shear flows: similarities across systems and scales. Journal of Fluid Mechanics, 641:51.spa
dc.relation.referencesGonzález-Pinzón, R., Ward, A., Hatch, C., Wlostowski, A., Singha, K., Gooseff, M., Haggerty, R., Harvey, J., Cirpka, O., and Brock, J. (2015). A field comparison of multiple techniques to quantify groundwater-surface-water interactions. Freshwater Science, 34(1):139–160.spa
dc.relation.referencesGooseff, M. (2010). Defining Hyporheic Zones - Advancing Our Conceptual and Operational Definitions of Where Stream Water and Groundwater Meet. Geography Compass, 4(8).spa
dc.relation.referencesGooseff, M., Anderson, J., Wondzell, S., LaNier, J., and Haggerty, R. (2006). A modelling study of hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in mountain stream networks, Oregon, USA. Hydrological Processes, 20(11).spa
dc.relation.referencesGottselig, N., Bol, R., Nischwitz, V., Vereecken, H., Amelung, W., and Klumpp, E. (2014). Distribution of Phosphorus-Containing Fine Colloids and Nanoparticles in Stream Water of a Forest Catchment. Vadose Zone Journal, 13(7).spa
dc.relation.referencesHarvey, J., Drummond, J., Martin, R., McPhillips, L., Packman, A., Jerolmack, D., Stonedahl, S., Aubeneau, A., Sawyer, A., Larsen, L., and Tobias, C. (2012). Hydrogeomorphology of the hyporheic zone: Stream solute and fine particle interactions with a dynamic streambed. Journal of Geophysical Research, 117(4).spa
dc.relation.referencesHester, E., Young, K., and Widdowson, M. (2013). Mixing of surface and groundwater induced by riverbed dunes: Implications for hyporheic zone definitions and pollutant reactions.Water Resources Research, 49(9).spa
dc.relation.referencesHesthaven, J. and Warburton, T. (2008). Nodal Discontinuous Galerkin Methods, volume 54 of Texts in Applied Mathematics. Springer New York.spa
dc.relation.referencesHesthaven, J. S. (1998). A stable penalty method for the compressible navier-stokes equations: III. Multidimensional domain decomposition schemes. SIAM Journal of Scientific Computing, 20(1):62–93.spa
dc.relation.referencesHigashino, M. and Stefan, H. (2008). Velocity Pulse Model for Turbulent Diffusion from Flowing Water into a Sediment Bed. Journal of Environmental Engineering, 134(7):550–560.spa
dc.relation.referencesHope, D., Billett, M. F., and Cresser, M. S. (1994). A review of the export of carbon in river water: Fluxes and processes. Environmental Pollution, 84(3):301–324.spa
dc.relation.referencesHsu, T.-J., Sakakiyama, T., and Liu, P. L.-F. (2002). A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coastal Engineering, 46(1):25–50.spa
dc.relation.referencesHuang, C. J., Chang, H. H., and Hwung, H. H. (2003). Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal Engineering, 49(1-2):1–24.spa
dc.relation.referencesHuang, C. J., Shen, M. L., and Chang, H. H. (2008). Propagation of a solitary wave over rigid porous beds. Ocean Engineering, 35(11-12):1194–1202.spa
dc.relation.referencesHuettel, M., Ziebis, W., and Forster, S. (1996). Flow-induced uptake of particulate matter in permeable sediments. Limnology and Oceanography, 41(2):309–322.spa
dc.relation.referencesHünken, A. and Mutz, M. (2007). Field studies on factors affecting very fine and ultra fine particulate organic matter deposition in low-gradient sand-bed streams. Hydrological Processes, 21(4).spa
dc.relation.referencesJin, G., Zhang, Z., Tang, H., Xiaoquan, Y., Li, L., and Barry, D. A. (2019). Colloid transport and distribution in the hyporheic zone. Hydrological Processes, 33(6):932–944.spa
dc.relation.referencesKalbus, E., Reinstorf, F., Schirmer, M., and others (2006). Measuring methods for groundwater, surface water and their interactions: a review. Hydrology and Earth System Sciences, 3(4):873–887.spa
dc.relation.referencesKarniadakis, G. E., Israeli, M., and Orszag, S. A. (1991). High-order splitting methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 97(2):414–443.spa
dc.relation.referencesKarwan, D. L. and Saiers, J. E. (2009). Influences of seasonal flow regime on the fate and transport of fine particles and a dissolved solute in a New England stream. Water Resources Research, 45(11)spa
dc.relation.referencesKarwan, D. L. and Saiers, J. E. (2012). Hyporheic exchange and streambed filtration of suspended particles. Water Resources Research, 48(1):1–13.spa
dc.relation.referencesKuzmin, D. and Hamalainen, J. (2015). Finite Element Methods for Computational Fluid Dynamics A Practical Guide. SIAM, Philadelphia, 1 edition.spa
dc.relation.referencesLi, A., Aubeneau, A. F., Bolster, D., Tank, J. L., and Packman, A. I. (2017). Covariation in patterns of turbulence-driven hyporheic flow and denitrification enhances reach-scale nitrogen removal. Water Resources Research, 53(8).spa
dc.relation.referencesLian, Y., Dallmann, J., Sonin, B., Roche, K., Liu, W., Packman, A., and Wagner, G. (2019). Large eddy simulation of turbulent flow over and through a rough permeable bed. Computers and Fluids, 180:128–138.spa
dc.relation.referencesManes, C., Poggi, D., and Ridolfi, L. (2011). Turbulent boundary layers over permeable walls: scaling and near-wall structure. Journal of Fluid Mechanics, 687:141–170.spa
dc.relation.referencesManes, C., Pokrajac, D., McEwan, I., and Nikora, V. (2009). Turbulence structure of open channel flows over permeable and impermeable beds: A comparative study. Physics of Fluids, 21(12):1–12.spa
dc.relation.referencesManes, C., Ridolfi, L., and Katul, G. (2012). A phenomenological model to describe turbulent friction in permeable-wall flows. Geophysical Research Letters, 39(14).spa
dc.relation.referencesMarion, A., Bellinello, M., Guymer, I., and Packman, A. (2002). Effect of bed form geometry on the penetration of nonreactive solutes into a streambed. Water Resources Research, 38(10).spa
dc.relation.referencesMarzadri, A., Tonina, D., Bellin, A., and Valli, A. (2016). Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow. Advances in Water Resources, 88spa
dc.relation.referencesMatott, L. S. (2017). OSTRICH: an Optimization Software Tool, Documentation and User’s Guide. Version 17.12.19. University at Buffalo Center for Computational Research.spa
dc.relation.referencesMendoza-Lera, C., Frossard, A., Knie, M., Federlein, L. L., Gessner, M. O., and Mutz, M. (2017). Importance of advective mass transfer and sediment surface area for streambed microbial communities. Freshwater Biology, 62(1).spa
dc.relation.referencesMontgomery, D. R. (1999). Process domains and the River Continuum. Journal of the American Water Resources Association, 35(2):397–410.spa
dc.relation.referencesMutz, M. (2000). Influences of woody debris on flow patterns and channel morphology in a low energy, sand-bed stream reach. International Review of Hydrobiology, 85(1).spa
dc.relation.referencesMutz, M. and Rohde, A. (2003). Processes of Surface-Subsurface Water Exchange in a Low Energy Sand-Bed Stream. International Review of Hydrobiology, 88(34):290–303.spa
dc.relation.referencesNavel, S., Mermillod-Blondin, F., Montuelle, B., Chauvet, E., Simon, L., and Marmonier, P. (2011). Water-Sediment Exchanges Control Microbial Processes Associated with Leaf Litter Degradation in the Hyporheic Zone: A Microcosm Study. Microbial Ecology, 61(4).spa
dc.relation.referencesNewbold, J. D., Thomas, S. A., Minshall, G. W., Cushing, C. E., and Georgian, T. (2005). Deposition, benthic residence, and resuspension of fine organic particles in a mountain stream. Limnology and Oceanography, 50(5):1571–1580.spa
dc.relation.referencesOrghidan, T. (2010). A new habitat of subsurface waters: the hyporheic biotope. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 176(4):291–302.spa
dc.relation.referencesPackman, A. (1997). Exchange of Colloidal Kaolinite between Stream and Sand Bed in a Laboratory Flume. PhD thesis, California Institute of Technology.spa
dc.relation.referencesPackman, A. and Bencala, K. (2000). Modeling Surface–Subsurface Hydrological Interactions. In Streams and Ground Waters, pages 45–80. Elsevier.spa
dc.relation.referencesPackman, A., Brooks, N., and Morgan, J. (2000a). Kaolinite exchange between a stream and streambed: Laboratory experiments and validation of a colloid transport model. Water Resources Research, 36(8).spa
dc.relation.referencesPackman, A. and MacKay, J. (2003). Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution. Water Resources Research, 39(4).spa
dc.relation.referencesPackman, A. I., Brooks, N. H., and Morgan, J. J. (2000b). A physicochemical model for colloid exchange between a stream and a sand streambed with bed forms. Water Resources Research, 36(8).spa
dc.relation.referencesPackman, A. I., Salehin, M., and Zaramella, M. (2004). Hyporheic Exchange with Gravel Beds: Basic Hydrodynamic Interactions and Bedform-Induced Advective Flows. Journal of Hydraulic Engineering, 130(7):647–656.spa
dc.relation.referencesPaiva, R. C., Collischonn, W., and Tucci, C. E. (2011). Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. Journal of Hydrology, 406(3-4):170–181.spa
dc.relation.referencesPartington, D., Therrien, R., Simmons, C. T., and Brunner, P. (2017). Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds. Reviews of Geophysics, 55(2).spa
dc.relation.referencesPeñaloza-Giraldo, J., Escobar-Vargas, J., and Donado, L. (2015). A Spectral Multidomain Penalty Method Solver for the Simulation of the Velocity Attenuation in Hyporheic Flows. Procedia Environmental Sciences, 25:206–213.spa
dc.relation.referencesPokrajac, D. and Manes, C. (2009). Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transport in Porous Media, 78(3 SPEC. ISS.):367–383.spa
dc.relation.referencesPokrajac, D., Manes, C., and McEwan, I. (2007). Peculiar mean velocity profiles within a porous bed of an open channel. Physics of Fluids, 19(9):098109.spa
dc.relation.referencesPreziosi-Ribero, A., Escobar-Vargas, J., Penaloza-Giraldo, J., and Donado, L. (2016). A High Order Element Based Method for the Simulation of Velocity Damping in the Hyporheic Zone of a High Mountain River. Goephysical Research Abstracts, 18(EGU2016-10673).spa
dc.relation.referencesPreziosi-Ribero, A., Packman, A. I., Escobar-Vargas, J. A., Phillips, C. B., Donado, L. D., and Arnon, S. (2020). Fine Sediment Deposition and Filtration Under Losing and Gaining Flow Conditions: A Particle Tracking Model Approach. Water Resources Research, 56(2).spa
dc.relation.referencesPrickett, T. a., Naymik, T. G., and Lonnquist, C. G. (1981). A Random-Walk"Solute Transport Model for Selected Groundwater Quality Evaluations. Technical report, Illinois Department of Energy and Natural Resources, Champaign.spa
dc.relation.referencesRen, J. and Packman, A. (2002).Effects of Background Water Composition on Stream–Subsurface Exchange of Submicron Colloids. Journal of Environmental Engineering, 128(7):624–634.spa
dc.relation.referencesRoche, K., Blois, G., Best, J., Christensen, K., Aubeneau, A., and Packman, A. (2018). Turbulence Links Momentum and Solute Exchange in Coarse-Grained Streambeds. Water Resources Research.spa
dc.relation.referencesRoche, K. R., Aubeneau, A. F., Xie, M., Aquino, T., Bolster, D., and Packman, A. I. (2016). An Integrated Experimental and Modeling Approach to Predict Sediment Mixing from Benthic Burrowing Behavior. Environmental Science and Technology, 50(18):10047–10054. Ruban, A. I. and Gajjar, J. S. B. (2014). Fluid Dynamics: Part 1: Classical Fluid Dynamics. Oxford University Press, Oxford.spa
dc.relation.referencesSaavedra-Cifuentes, E. Y. (2017). Numerical Simulation of the Surface Water – Groundwater Interaction in High Mountain Riverbeds. PhD thesis, Universidad Nacional de Colombia.spa
dc.relation.referencesSalehin, M., Packman, A., and Paradis, M. (2004). Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling. Water Resources Research, 40(11).spa
dc.relation.referencesSimpson, S. C. and Meixner, T. (2012). Modeling effects of floods on streambed hydraulic conductivity and groundwater-surface water interactions. Water Resources Research, 48(2):1–14.spa
dc.relation.referencesStonedahl, S., Harvey, J., Wörman, A., Salehin, M., and Packman, A. (2010). A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resources Research, 46(12):n/a–n/a.spa
dc.relation.referencesThomas, S. A., Newbold, J. D., Monaghan, M. T., Minshall, G. W., Georgian, T., and Cushing, C. E. (2001). The influence of particle size on seston deposition in streams. Limnology and Oceanography, 46(6):1415–1424.spa
dc.relation.referencesTolson, B. A. and Shoemaker, C. A. (2007). Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research, 43(1).spa
dc.relation.referencesTonina, D. and Buffington, J. (2009). Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass, 3(3):1063–1086.spa
dc.relation.referencesTonina, D., de Barros, F. P., Marzadri, A., and Bellin, A. (2016). Does streambed heterogeneity matter for hyporheic residence time distribution in sand-bedded streams? Advances in Water Resources, 96:120–126.spa
dc.relation.referencesTrauth, N., Schmidt, C., Maier, U., Vieweg, M., and Fleckenstein, J. (2013). Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resources Research, 49(9). Tropea, C., Yarin, A. L., and Foss, J. F., editors (2007). Springer Handbook of Experimental Fluid Mechanics. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.referencesValdés-Parada, F. J., Aguilar-Madera, C. G., Ochoa-Tapia, J. A., and Goyeau, B. (2013). Velocity and stress jump conditions between a porous medium and a fluid. Advances in Water Resources, 62:327–339.spa
dc.relation.referencesVanoni, V. A. (1974). FACTORS DETERMINING BED FORMS OF ALLUVIAL STREAMS. ASCE J Hydraul Div, 100(HY3).spa
dc.relation.referencesVaux, W. G. (1968). Intragravel flow and interchange of water in a streambed. Fishery Bulletin, 66(3):479–489.spa
dc.relation.referencesVoermans, J. J., Ghisalberti, M., and Ivey, G. N. (2017). The variation of flow and turbulence across the sediment-water interface. Journal of Fluid Mechanics, 824:413–437.spa
dc.relation.referencesVogt, T., Hoehn, E., Schneider, P., Freund, A., Schirmer, M., and Cirpka, O. (2010). Fluctuations of electrical conductivity as a natural tracer for bank filtration in a losing stream. Advances in Water Resources, 33(11):1296–1308.spa
dc.relation.referencesWard, A. S. and Packman, A. I. (2019). Advancing our predictive understanding of river corridor exchange. Wiley Interdisciplinary Reviews: Water, 6(1):e1327.spa
dc.relation.referencesWeller, H. G., Tabor, G., Jasak, H., and Fureby, C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12(6):620. Whitaker, S. (1996). The Forchheimer equation: A theoretical development. Transport in Porous Media, 25(1):27–61.spa
dc.relation.referencesWhite, B. L. and Nepf, H. M. (2007). Shear instability and coherent structures in shallow flow adjacent to a porous layer. Journal of Fluid Mechanics, 593.spa
dc.relation.referencesWinter, T. C., Harvey, J. W., Franke, O. L., and Alley, W. M. (1998). Ground water and surface water: A single resource. USGS Publications.spa
dc.relation.referencesWoessner, W. W. and Woessner, W. W. (2000). Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Groundwater, 38(3).spa
dc.relation.referencesWohl, E. (2015). Legacy effects on sediments in river corridors. Earth-Science Reviews, 147.spa
dc.relation.referencesWörman, A., Packman, A., Marklund, L., Harvey, J., and Stone, S. (2007). Fractal topography and subsurface water flows from fluvial bedforms to the continental shield. Geophysical Research Letters, 34(7).spa
dc.relation.referencesXue, P., Schwab, D. J., Sawtell, R. W., Sayers, M. J., Shuchman, R. A., and Fahnenstiel, G. L. (2017). A particle-tracking technique for spatial and temporal interpolation of satellite images applied to Lake Superior chlorophyll measurements. Journal of Great Lakes Research, 43(3).spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.otherFlujo de aguas subterráneas
dc.subject.otherGroundwater flow
dc.subject.proposalHyporheic floweng
dc.subject.proposalModeleng
dc.subject.proposalGroundwater-Surface water processeseng
dc.subject.proposalFluid Mechanicseng
dc.subject.proposalRiver bedeng
dc.subject.proposalFlujo Hiporreicospa
dc.subject.proposalModelospa
dc.subject.proposalProcesos Agua Superficial - Agua Subterráneaspa
dc.subject.proposalMecánica de Fluidosspa
dc.subject.proposalLechos de ríospa
dc.subject.unescoAgua del suelo
dc.subject.unescoSoil water
dc.subject.unescoRecursos hídricos
dc.subject.unescoWater resources
dc.titleA modeling framework for hyporheic flow within hydrodynamics scaleeng
dc.title.translatedUn marco para la modelación de flujo hiporreico en escala hidrodinámicaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMincienciasspa
oaire.fundernameComisión Fulbright Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
210804_Tesis_Preziosi.pdf
Tamaño:
15.66 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en ingeniería - Ingeniería Civil

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: