Study of the behavior of shallow foundations under dynamic loads in sands through a physical model using artificial vision

dc.contributor.advisorMendoza Bolaños, Cristhian Camilo
dc.contributor.authorGil Osorio, Diego Fernando
dc.date.accessioned2023-06-21T20:27:32Z
dc.date.available2023-06-21T20:27:32Z
dc.date.issued2023
dc.descriptiongraficas, tablas,spa
dc.description.abstractDiversas estructuras construidas sobre arenas alrededor del mundo, con cimentaciones superficiales has experimentado daños y colapsos durante y después de terremotos. En general existen dos fenómenos que provocan el colapso, el fenómeno de licuación y los efectos P-Δ. Sin embargo, el comportamiento del suelo granular durante la licuación y los efectos P-Δ no está completamente entendido, esto se evidencia por el número de investigaciones en modelos físicos, modelos constitutivos y propuestas de ensayos de laboratorio alrededor de este tema. Algunas preguntas surgen en este punto: (a) el momento cuando ocurre la licuación y (b) la relación entre el momento de licuación y el momento en el que el colapso estructural inicia. Para hacer frente a estos problemas, se creó un modelo físico 1-g compuesto por un oscilador de un grado de libertad (SDOFO por sus siglas en inglés), capaz de transmitir cargas cíclicas al suelo bajo un modo de vibración rotacional. La metodología de medición se basó en visión por computador), usando la librería OpenCV de Python, lo cual permitió un “movimiento libre” del SDOFO. Durante este proyecto, el empleo de la visión artificial mostró una manera exitosa de obtener desplazamientos y tiempos sin sensores localizados directamente en modelos a pequeña escala en investigación geotécnica. Además, un criterio alternativo de posible licuación basado en la evolución del desplazamiento durante los ensayos fue presentado. De acuerdo a los resultados fue posible definir que la relación entre la frecuencia, la amplitud y el número de ciclos requeridos para alcanzar la posible licuación, y el colapso estructural fue inversamente proporcional. (Texto tomado de la fuente)spa
dc.description.abstractA lot of structures built on sands around the world, with shallow foundations have experienced damage and overturning during and after earthquakes. Broadly, two phenomena trigger the overturning, the liquefaction phenomenon, and the P-Δ effects. However granular soil behavior during liquefaction and P-Δ effects have not been completely understood; this is shown by the number of investigations in physical models, constitutive models, and laboratory testing proposals about these topics. Some questions appear at this point: (a) the moment when the liquefaction takes place and (b) its relation to the moment when structural overturning begins. To cope with this issue, we created a physical model 1-g composed of a Single Degree of Freedom Oscillator (SDOFO), capable of transmitting cyclic loadings to the soil in a rocking vibration mode. The measurement methodology was based on artificial vision using OpenCV by Python, which allowed “free movement” of the SDOFO. During this project, the artificial vision employed showed a suitable way to obtain displacements and times without sensors located directly in small physical models in geotechnical investigations. Furthermore, an alternative possible liquefaction criterion based on displacement evolution during the tests was presented. According to the results, it was possible to define the relationship between frequency, amplitude, and the number of cycles required to reach the possible liquefaction state, and the structural overturning was inversely proportional.eng
dc.description.curricularareaIngeniería Civil.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.sponsorshipProyecto HERMES 51135 “Modelo Físico de Licuación en Suelos Granulares”. CONVOCATORIA PARA EL FORTALECIMIENTO DE LA INVESTIGACIÓN, CREACIÓN E INNOVACIÓN ARTICULADO CON LA FORMACIÓN EN LA UNIVERSIDAD NACIONAL DE COLOMBIA 2020-2021. Dirección de Investigación y Extensión de sede Vicerrectoría de investigación.spa
dc.format.extent90 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84043
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesAnastasopoulos, I., Gelagoti, F., Kourkoulis, R., Gazatas, G., M.ASCE. (2011). Simplified Constitutive Model for Simulation of Cyclic Response of Shallow Foundations: Validation against Laboratory Tests. Journal of Geotechnical and Geoenvironmental engineering. ASCE. Vol. 37, No. 12, pp. 1154 – 1168.spa
dc.relation.referencesAnastasopoulos, I., Kourkoulis, R., Gelagoti, F., & Papadopoulos Efthymios. (2012). Rocking response of SDOF system on shallow improved sand: An experimental study. Soil Dynamics and Earthquake Engineering. Vol. 40, pp. 15 - 33.spa
dc.relation.referencesAnubhav, Rao, N.S.V. Kameswara. (2001). Liquefaction Studies on Silty Clays Using Cyclic Triaxial Tests. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 36.spa
dc.relation.referencesAl-Wakel, S.F.A; Fattah, M.Y; Karim, H.H; Chan, A.H.C. Experimental and Numerical Modeling of Machine Foundations on a Saturated Soil. Numerical Methods in Geotechnical Engineering – Proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE 2014. The Netherlands.spa
dc.relation.referencesArulmoli, K., K.K.Muraleetharan, M.M.Hosain, and L.S.Fruth, (1992). VELACS Laboratory Testing Program, Soil Data Report. The Earth Technology Corporation, Irvine, California, Report to the National Science Foundation, Washington D.C.spa
dc.relation.referencesAshmawy, A.K., Sukumaran, B., Hoang, V.V. (2003). Evaluating the Influence of Particle Shape on Liquefaction Behavior Using Discrete Elements Meodelling.spa
dc.relation.referencesAvella, F., Osorio, A., Parra, E., Burgos, S., Vilardy, S., Botero, C., … Mojica, D. (2009). Gestión del Litoral en Colombia. Reto de País con Tres Costas. In J. M. Barragán, Manejo Costero Integrado Política Pública en Iberoamérica: Un diagnóstico. Necesidad de Cambio (pp. 175 – 210). Cadiz: Red Ibermar (CYTED).spa
dc.relation.referencesAzeiteiro, R.J.N., Cohelo, P.A.L.F., Taborda, D.M.G. & Grazina, J.C.D. (2016). Energy-based evaluation of liquefaction potential under non-uniform cyclic loading. Soil Dynamics and Earthquake Engineering. Vol 92, pp. 650 – 665.spa
dc.relation.referencesBaltzopoulos, G., Baraschino, R., Iervolino, I., & Vamvatsikos, D. (2018). Dynamic analysis of single-degree-of-freedom systems (DYANAS): A graphical user interface for OpenSees. Engineering Structures, 395 - 408.spa
dc.relation.referencesBao , X., Jin, Z., Cui, H., Chen, X., & Xie, X. (2019). Soil liquefaction mitigation in geotechnical engineering: An overview of recently developed methods. Soil dynamics and earthquake engineering, 273-291.spa
dc.relation.referencesBardet, J. P. & Kapuskar, M. (1993). Liquefaction Sand Boils in San Francisco During 1989 Loma Prieta Earthquake. J. Geotech. Engrg., pp. 119:543 – 562.spa
dc.relation.referencesBradski, G. (2000). The Open CV-Library. Dr. Dobb’s Journal of Software Tools.spa
dc.relation.referencesBray, J.D. & Sancio, R.B. (2006). Assessment of the Liquefaction Susceptibility of Fine-Grained Soils. Journal of Geotechnical and Geoenvironmental Engineering. Vol 132, No 9, pp. 1165 – 1177.spa
dc.relation.referencesBudhu, M. (2015). Soil Mechanics Fundamentals. John Wiley & Sons. United Kingdom.spa
dc.relation.referencesChen, L., Yuan, X., Cao, Z., Hou, L., Sun, R., Dong, L., … Chen, H. (2009). Liquefaction Macrophenomena in the Great Wenchuan Earthquake. Earthq. Eng. Vibration, 219 – 229.spa
dc.relation.referencesCubides, A. (2017). Zonificación a partir del Potencial de Licuación de la Zona Urbana del municipio de Apartadó, Antioquia. Medellín, Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesCunning, J.C., Robertson, P.K., Sego, D.C. (1995). Shear wave velocity to evaluate in situ state of cohesionless soils. Journal of Geotechnical Engineering. (32) 848 – 858.spa
dc.relation.referencesDas, B. M. (2011). Principles of Foundation Engineering, Seventh Edition ed., USA: Cengage Learning.spa
dc.relation.referencesDavis, N. (02/10/2018). Indonsesia Earthquake: Soil Liquefaction Blamed for Buildings Collapses. The Guardian.spa
dc.relation.referencesElGhoraiby M.A., Park H. & Manzari M.T. (2020). Stress-strain behavior and liquefaction strength characteristics of Ottawa F65 sand. Soil Dynamics and Earthquake Engineering 138 106292.spa
dc.relation.referencesElnashai, A.S., Di Sarno, L. (2008). Fundamentals of Earthquake Engineering. John Wiley & Sons. West Sussex. United Kingdom.spa
dc.relation.referencesFaccioli, e., Paolucci, R., Vivero, G. (2001). Investigation of Seismic Soil-Footing Interaction by Large Scale Cyclic Tests and Analytical Models. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, S. Prakash, ed., Missouri University of Science and Technology, Rolla, MO.spa
dc.relation.referencesFeng, D., & Feng M.Q. (2021). Computer Vision for Structural Dynamics and Health Monitoring. John Wiley & Sons Ltd. DOI: 10.1002/9781119566557.spa
dc.relation.referencesGarcía, J. R. (2007). Análisis Comparativo del Fenómeno de Licuación en Arenas. Aplicación a Tumaco (Colombia). Barcelona : Universitat Politècnica de Catalunya.spa
dc.relation.referencesGarnier, J., Gaudin, C., Springman, S. M., Culligan, P. J., Goodings, D., Koning, D., . . . Thorel, L. (2007). Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics, 1-23.spa
dc.relation.referencesGazetas, G. (2015). 4th Ishihara lecture: Soil-foundation-structure systems beyond conventional seismic failure thresholds. Soil Dynamics and Earthquake Engineering, 23 - 39.spa
dc.relation.referencesGuo, L., Chen, J., Wang, J., Cai, Y., & Deng, P. (2015). Influences of stress magnitude and loading frequency on cyclic behavior of k0-consolidated marine clay involving principal stress rotation. Soil Dynamics and Earthquake Engineering 84. 94 – 107.spa
dc.relation.referencesHamman, A.H., Abulied, A.F. (2011). Settlement of shallow foundations on sand overlaying compressible clay, Part-1. 2011 Pan-Am CGS Geotechnical Conference. Cairo, Egypt.spa
dc.relation.referencesHerrera, J.P. (2019). Performance-Based Seismic Design of structural walls using a hysteretic multilinear model. Universidad Nacional de Colombia. Manizales, Colombia.spa
dc.relation.referencesIai, S. (1989). Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field. Soil and Foundations. Vol. 29, No. 1, 105-118.spa
dc.relation.referencesIdris, I. M. & Boulanger, R.W. (2010). SPT – Based Liquefaction Triggering Procedures. Davis, California: Center for Geotechnical modelling, University of California.spa
dc.relation.referencesIshihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351-415.spa
dc.relation.referencesJafarian, Y., Esmaeilpour, P., Shojaeemehr, S., Taghavizade, H., Rouhi, S., McCartney, J.S. (2021). Impacts of Fixed-End and Flexible Boundary Conditions on Seismic Response of Shallow Foundations on Saturated Sand in 1-g Shaking Table Tests. Geotechnical Testing Journal. Vol. 44, No. 3 pp. 637 – 664.spa
dc.relation.referencesJefferies, M., & Been, K. (2006). Soil liquefaction A critical state approach. London and New York: Taylor & Francis.spa
dc.relation.referencesJimenez, O., Lizcano, A. (2015). Liquefaction flow behavior of Guamo sand. Fundamentals to Applications in Geotechnics.spa
dc.relation.referencesKargar, S.H.R., Shahnazari, H., & Salehzadeh, H. (2014). Post-cyclic behavior of carbonate sand with anisotropic consolidation. International Journal of Civil Engineering.spa
dc.relation.referencesKenji, L., Shigeyasu, O., Norio, O. & Anatoliy, I. (1990). Liquefaction-Induced Flow slide in the collapsible Loess Deposit in Soviet Tajik. Soils and Foundations Japanese Society of Soil. Mechanics and Foundation Engeneering Vol 30, N°, 73 – 89.spa
dc.relation.referencesKeshab, S., Lijun, D., & Diwarkar, K. (2019). Reconnaissance of liquefactioncase studies in 2015 Gorkha (Nepal) earthquake assessment of liquefaction suceptibility. International Journal of Geotechnical Engineering, 326-338.spa
dc.relation.referencesLin, S., Wu, C. & Kong, F. (2019). Shaking Table Model Test and Seismic Performance Analysis of High-Rise RC Shear Wall Structure. Hindawi Shock and Vibration.spa
dc.relation.referencesLizcano, A. & Jimenez, O. (2015). Liquefaction flow behavior of Guamo sand. Fundamentals to Applications in Geotechnics, pp 470 – 477.spa
dc.relation.referencesLiu, J., & Chen, G. (2022). The correction factor of Monterey No. 0/30 sample with fines content liquefaction resistance between cyclic triaxial and cyclic hollow cylinder tests.spa
dc.relation.referencesLopez, D.E., Tapia, J., Yanez, C., & Boroscheck, R. (2022). Semantic segmentation model for crack images from concrete bridges for mobile devices. Advanced Deep Learning Methods in Risk and Reability Engineering. Journal of Risk and Reliability.spa
dc.relation.referencesLopez-Caballero, F. (2017). Introduction à la dynamique des sols. Paris: Laboratorie MSS-Mat CentraleSupélec.spa
dc.relation.referencesMacRae, G.A. (1994). P-Δ Effects on Single Degree Of Freedom Structures in Earthquakes. Earthquake Spectra. Vol 10 N° 3, pp 239 – 268.spa
dc.relation.referencesMarcuson, W. F. (1978). Definition of terms related to liquefaction. J. Geotech. Engrg. Div. ASCE, 565-588.spa
dc.relation.referencesMartakis, P., Taeseri, Damoun., Chatzi, Eleni., Laue, Jan. (2017). A centrifuge-based experimental verification of Soil-Structure Interaction effects. Soil Dynamics and Earthquake Engineering, 103, 1 - 14.spa
dc.relation.referencesMaurer, B., Green, R., Cubrinovski, M., Bradley, B.A. (2013). Evaluation of Liquefaction Potential Inddex (LPI) for Assessing Liquefaction Hazard: A Case Study in Christchurch, New Zealand. San Diego, CA, USA: ASCE GeoCongress, 3-6 Mar 2013.spa
dc.relation.referencesMiur, D.W. (2004). Geotechnical Modelling. Taylor & Francis. 2 Park Square, Milton Park, Abingdon, Oxfordshire OX144RN.spa
dc.relation.referencesMolina-Gómez, F., Viana, A. (2021). Key geomechanical properties of the historically liquefiable TP-Lisbon sand. Soil and Foundations.spa
dc.relation.referencesMoncarz, P.D., Krawinkler, H., 1981. Theory and application of experimental model análisis in earthquake engineering (Vol. 50). California: Stanford University.spa
dc.relation.referencesMoradi, S., Zayed, T., Golkhoo, F. (2019). Review on Computer Aided Sewer Pipeline Defect Detection and Condition Assessment. Journal of Infraestructure.spa
dc.relation.referencesNong, Z., Park, S.-S., Jeong, S.-W., & Lee, D.-E. (2020). Effect of Cyclic Loading Frequency on Liquefaction Prediction of Sand. Applied Sciences MDPI, 1-15.spa
dc.relation.referencesOpenCV Lessons., (2010). Object Detection Using Color Separation. https://www.opencv-srf.com/2010/09/object-detection-using-color-seperation.htmlspa
dc.relation.referencesPatiño, J. C. (2006). Parámetros Hipoplásticos de la Arena del Guamo-Colombia. Bogotá: Universidad de los Andes.spa
dc.relation.referencesPinho, R. (2007). Using Pushover Analysis for Assessment of Buildings and Bridges. In: Pecker, A. (eds) Advanced Earthquake Engineering Analysis. CISM International Centre for Mechanical Sciences, vol 494. Springer, Vienna.spa
dc.relation.referencesPowell V., (2022). Image Kernels Explained Visually. Setosa. https://setosa.io/ev/imagekernels/#:~:text=An%20image%20kernel%20is%20a,important%20portions%20of%20an%20image.spa
dc.relation.referencesPython pool., (2021). Know Everything about OpenCV Moments. https://www.pythonpool.com/opencv-moments/spa
dc.relation.referencesRao, N. (2011). Foundation Design Theory and Practice. Singapore: John Wiley & Sons (Asia) Pte Ltd.spa
dc.relation.referencesRauch, A. F. (1997). Chapter 7. Analysis of Soil Borings for Liquefaction Resistance. En A. F. Rauch, An Empirical Method for Predicting Surface Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes (págs. 111 - 130). Virginia, USA: Virginia Polytechnic Institud and State University.spa
dc.relation.referencesRavi K. S., (2018). Convex Hull using OpenCV in Python and C++. https://learnopencv.com/author/krshrimali/spa
dc.relation.referencesRees, S. (2013). Part three: Dynamic triaxial testing. GDS website www.gdsinstrument.com.spa
dc.relation.referencesRothe, J.P. (1969). The seismicity of the earth 1953 – 1965. Unesco.spa
dc.relation.referencesRuelke, T. (2010). Is water more than just H2O?. AASHTO re: source (Journaly AMRL). http://aashtoresource.org/university/newsletters/newsletters/2016/08/02/is-water-more-than-just-h2o.spa
dc.relation.referencesRuíz, J. C. & Bermudez, J. F. (2015). Estudio Experimenta de la Línea de Inestabilidad bajo Condiciones Anisotrópicas de Carga no Drenada Monotónica. Bogotá, Colombia. Pontificia Universidad Javeriana.spa
dc.relation.referencesSánchez, I.A. (2020). Evaluación del Potencial de Licuefacción en la Región del Urabá Antioqueño. Medellín, Colombia. Universidad Cooperativa de Colombia.spa
dc.relation.referencesSadq, Q.O.S. (2019). Response of Soil-Foundation-Structure Interaction of Tall Building (Frame – Wall) Structural System under Seismic Effect. University of Salford. Greater Manchester, United Kingdom.spa
dc.relation.referencesSeed, H.B. & Lee, K.L. (1966). Liquefaction of Saturated Sands during Cyclic Loading. J. Soil Mech Fdn Engng Am. Soc. Civ. Engrs 92, SM6, 105-134.spa
dc.relation.referencesServicio Geológico Colombiano SGC. (27/08/2020). http://sish.sgc.gov/visor/sesionServlet?metodo)=irAInfoDetallada&idSismo=69spa
dc.relation.referencesSpenser Jr, B.F., Hoskere, V., & Narazaki, Y. (2019). Advances in Computer Vision-Based Civil Infraestructure Inspection and Monitoring. Engineering 5 pp. 199-222.spa
dc.relation.referencesSrbulov, M. (2008). Geotechnical Earthquake Engineering Simplified Analyses with Case Studies and Examples. Reino Unido: Springer Science+Business Media B.V.spa
dc.relation.referencesStamatopoulos, C.B., López-Caballero, F., & Modaressi-Farahmand-Razavi. (2012). Laboratory Tests and Numerical Simulations giving the effect of preloading on the Cyclic Liquefaction Strength. 15th World Conference on Earthquake Engineering Lisboa 2012.spa
dc.relation.referencesStokoe, K. H. (2003). Attachment A-7, Results of Resonant Column/Cyclic Torsional Shear Testing. Austin, Texas: United States Nuclear Regulatory Commission Site Safety Analysis Report for Exelon Generation Company, LLC Early Site Permit.spa
dc.relation.referencesTaboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philp, H., Bijwaard H., … Rivera, C. (2000). Geodynamics of the Northern Andes: Subductions and Intracontinental deformation (Colombia). Tectonics 19/5, 787 – 813.spa
dc.relation.referencesTaeseri, D., Laue, J., Martakis, P., Chatzi, E., & Anastasopoulos, I. (2018). Static and dynamic rocking stiffness of shallow footings on sand: centrifuge modeling. International Journal of Physical Modelling in Geotechnics, 18(6), 315 - 339.spa
dc.relation.referencesTaylor, R. N. (1995). Geotechnical centrifuge technology. New York: Taylor & Francis.spa
dc.relation.referencesUnited Nations. (2022). The Sustainable Development Goals. https://www.un.org/sustainabledevelopment/sustainable-development-goals/. (28/10/2022).spa
dc.relation.referencesVasko, A., Ghoraiby, M.E., & Manzari, M.T. (2014). An Investigation into the Behavior of Ottawa-F65 Sand. Characterization Tests. The George Washington University.spa
dc.relation.referencesVerdugo, R. (2015). Liquefaction Observed During the 2010 Chile Earthquake. Geotechnical, Geological and Earthquake 37. Springer International.Switzeland.spa
dc.relation.referencesWu, J., Kammerer, A.M., Riemer, M.F., Seed, R.B., & Pestana J.M. (2004). Laboratory Study of Liquefaction Triggering Criteria. 13th World Conference on Earthquake Engineering. Paper No. 2580 Vancouver, B.C., Canada.spa
dc.relation.referencesYoud, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., … Stokoe II, K.H. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 817 – 833.spa
dc.relation.referencesYoud, T.L. & Perkins, D.M. (1987). Mapping of Liquefaction Severity Index. Journal of Geotechnical Engineering. ASCE, Vol. 113, No 11, pp. 1374 – 1392.spa
dc.relation.referencesZhao, Hong-hua., Liu , Cong., Tang, Xiao-wei., Wei, Huan-wei., Zhu, Feng. (2020). Study of visualization measurement system of spatial deformation based on transparent soil and three-dimensional reconstruction technology. Rock and Soil Mechanics 2020 41(9): 3170 -3179.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.proposalPhysical modeleng
dc.subject.proposalLiquefactioneng
dc.subject.proposalOverturningeng
dc.subject.proposalComputer visioneng
dc.subject.proposalModelo físicospa
dc.subject.proposalLicuaciónspa
dc.subject.proposalVolcamientospa
dc.subject.proposalVisión por computadorspa
dc.subject.unescoIngeniería sísmicaspa
dc.subject.unescoEarthquake engineeringeng
dc.titleStudy of the behavior of shallow foundations under dynamic loads in sands through a physical model using artificial visioneng
dc.title.translatedEstudio del comportamiento de cimentaciones superficiales bajo cargas dinámicas en arenas a través de un modelo físico usando visión artificialspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameProyecto HERMES 51135 - UNAL Manizalesspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1057305577.2023.pdf
Tamaño:
2.64 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: