Study of the behavior of shallow foundations under dynamic loads in sands through a physical model using artificial vision
dc.contributor.advisor | Mendoza Bolaños, Cristhian Camilo | |
dc.contributor.author | Gil Osorio, Diego Fernando | |
dc.date.accessioned | 2023-06-21T20:27:32Z | |
dc.date.available | 2023-06-21T20:27:32Z | |
dc.date.issued | 2023 | |
dc.description | graficas, tablas, | spa |
dc.description.abstract | Diversas estructuras construidas sobre arenas alrededor del mundo, con cimentaciones superficiales has experimentado daños y colapsos durante y después de terremotos. En general existen dos fenómenos que provocan el colapso, el fenómeno de licuación y los efectos P-Δ. Sin embargo, el comportamiento del suelo granular durante la licuación y los efectos P-Δ no está completamente entendido, esto se evidencia por el número de investigaciones en modelos físicos, modelos constitutivos y propuestas de ensayos de laboratorio alrededor de este tema. Algunas preguntas surgen en este punto: (a) el momento cuando ocurre la licuación y (b) la relación entre el momento de licuación y el momento en el que el colapso estructural inicia. Para hacer frente a estos problemas, se creó un modelo físico 1-g compuesto por un oscilador de un grado de libertad (SDOFO por sus siglas en inglés), capaz de transmitir cargas cíclicas al suelo bajo un modo de vibración rotacional. La metodología de medición se basó en visión por computador), usando la librería OpenCV de Python, lo cual permitió un “movimiento libre” del SDOFO. Durante este proyecto, el empleo de la visión artificial mostró una manera exitosa de obtener desplazamientos y tiempos sin sensores localizados directamente en modelos a pequeña escala en investigación geotécnica. Además, un criterio alternativo de posible licuación basado en la evolución del desplazamiento durante los ensayos fue presentado. De acuerdo a los resultados fue posible definir que la relación entre la frecuencia, la amplitud y el número de ciclos requeridos para alcanzar la posible licuación, y el colapso estructural fue inversamente proporcional. (Texto tomado de la fuente) | spa |
dc.description.abstract | A lot of structures built on sands around the world, with shallow foundations have experienced damage and overturning during and after earthquakes. Broadly, two phenomena trigger the overturning, the liquefaction phenomenon, and the P-Δ effects. However granular soil behavior during liquefaction and P-Δ effects have not been completely understood; this is shown by the number of investigations in physical models, constitutive models, and laboratory testing proposals about these topics. Some questions appear at this point: (a) the moment when the liquefaction takes place and (b) its relation to the moment when structural overturning begins. To cope with this issue, we created a physical model 1-g composed of a Single Degree of Freedom Oscillator (SDOFO), capable of transmitting cyclic loadings to the soil in a rocking vibration mode. The measurement methodology was based on artificial vision using OpenCV by Python, which allowed “free movement” of the SDOFO. During this project, the artificial vision employed showed a suitable way to obtain displacements and times without sensors located directly in small physical models in geotechnical investigations. Furthermore, an alternative possible liquefaction criterion based on displacement evolution during the tests was presented. According to the results, it was possible to define the relationship between frequency, amplitude, and the number of cycles required to reach the possible liquefaction state, and the structural overturning was inversely proportional. | eng |
dc.description.curriculararea | Ingeniería Civil.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Estructuras | spa |
dc.description.sponsorship | Proyecto HERMES 51135 “Modelo Físico de Licuación en Suelos Granulares”. CONVOCATORIA PARA EL FORTALECIMIENTO DE LA INVESTIGACIÓN, CREACIÓN E INNOVACIÓN ARTICULADO CON LA FORMACIÓN EN LA UNIVERSIDAD NACIONAL DE COLOMBIA 2020-2021. Dirección de Investigación y Extensión de sede Vicerrectoría de investigación. | spa |
dc.format.extent | 90 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84043 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructuras | spa |
dc.relation.references | Anastasopoulos, I., Gelagoti, F., Kourkoulis, R., Gazatas, G., M.ASCE. (2011). Simplified Constitutive Model for Simulation of Cyclic Response of Shallow Foundations: Validation against Laboratory Tests. Journal of Geotechnical and Geoenvironmental engineering. ASCE. Vol. 37, No. 12, pp. 1154 – 1168. | spa |
dc.relation.references | Anastasopoulos, I., Kourkoulis, R., Gelagoti, F., & Papadopoulos Efthymios. (2012). Rocking response of SDOF system on shallow improved sand: An experimental study. Soil Dynamics and Earthquake Engineering. Vol. 40, pp. 15 - 33. | spa |
dc.relation.references | Anubhav, Rao, N.S.V. Kameswara. (2001). Liquefaction Studies on Silty Clays Using Cyclic Triaxial Tests. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 36. | spa |
dc.relation.references | Al-Wakel, S.F.A; Fattah, M.Y; Karim, H.H; Chan, A.H.C. Experimental and Numerical Modeling of Machine Foundations on a Saturated Soil. Numerical Methods in Geotechnical Engineering – Proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering, NUMGE 2014. The Netherlands. | spa |
dc.relation.references | Arulmoli, K., K.K.Muraleetharan, M.M.Hosain, and L.S.Fruth, (1992). VELACS Laboratory Testing Program, Soil Data Report. The Earth Technology Corporation, Irvine, California, Report to the National Science Foundation, Washington D.C. | spa |
dc.relation.references | Ashmawy, A.K., Sukumaran, B., Hoang, V.V. (2003). Evaluating the Influence of Particle Shape on Liquefaction Behavior Using Discrete Elements Meodelling. | spa |
dc.relation.references | Avella, F., Osorio, A., Parra, E., Burgos, S., Vilardy, S., Botero, C., … Mojica, D. (2009). Gestión del Litoral en Colombia. Reto de País con Tres Costas. In J. M. Barragán, Manejo Costero Integrado Política Pública en Iberoamérica: Un diagnóstico. Necesidad de Cambio (pp. 175 – 210). Cadiz: Red Ibermar (CYTED). | spa |
dc.relation.references | Azeiteiro, R.J.N., Cohelo, P.A.L.F., Taborda, D.M.G. & Grazina, J.C.D. (2016). Energy-based evaluation of liquefaction potential under non-uniform cyclic loading. Soil Dynamics and Earthquake Engineering. Vol 92, pp. 650 – 665. | spa |
dc.relation.references | Baltzopoulos, G., Baraschino, R., Iervolino, I., & Vamvatsikos, D. (2018). Dynamic analysis of single-degree-of-freedom systems (DYANAS): A graphical user interface for OpenSees. Engineering Structures, 395 - 408. | spa |
dc.relation.references | Bao , X., Jin, Z., Cui, H., Chen, X., & Xie, X. (2019). Soil liquefaction mitigation in geotechnical engineering: An overview of recently developed methods. Soil dynamics and earthquake engineering, 273-291. | spa |
dc.relation.references | Bardet, J. P. & Kapuskar, M. (1993). Liquefaction Sand Boils in San Francisco During 1989 Loma Prieta Earthquake. J. Geotech. Engrg., pp. 119:543 – 562. | spa |
dc.relation.references | Bradski, G. (2000). The Open CV-Library. Dr. Dobb’s Journal of Software Tools. | spa |
dc.relation.references | Bray, J.D. & Sancio, R.B. (2006). Assessment of the Liquefaction Susceptibility of Fine-Grained Soils. Journal of Geotechnical and Geoenvironmental Engineering. Vol 132, No 9, pp. 1165 – 1177. | spa |
dc.relation.references | Budhu, M. (2015). Soil Mechanics Fundamentals. John Wiley & Sons. United Kingdom. | spa |
dc.relation.references | Chen, L., Yuan, X., Cao, Z., Hou, L., Sun, R., Dong, L., … Chen, H. (2009). Liquefaction Macrophenomena in the Great Wenchuan Earthquake. Earthq. Eng. Vibration, 219 – 229. | spa |
dc.relation.references | Cubides, A. (2017). Zonificación a partir del Potencial de Licuación de la Zona Urbana del municipio de Apartadó, Antioquia. Medellín, Colombia. Universidad Nacional de Colombia. | spa |
dc.relation.references | Cunning, J.C., Robertson, P.K., Sego, D.C. (1995). Shear wave velocity to evaluate in situ state of cohesionless soils. Journal of Geotechnical Engineering. (32) 848 – 858. | spa |
dc.relation.references | Das, B. M. (2011). Principles of Foundation Engineering, Seventh Edition ed., USA: Cengage Learning. | spa |
dc.relation.references | Davis, N. (02/10/2018). Indonsesia Earthquake: Soil Liquefaction Blamed for Buildings Collapses. The Guardian. | spa |
dc.relation.references | ElGhoraiby M.A., Park H. & Manzari M.T. (2020). Stress-strain behavior and liquefaction strength characteristics of Ottawa F65 sand. Soil Dynamics and Earthquake Engineering 138 106292. | spa |
dc.relation.references | Elnashai, A.S., Di Sarno, L. (2008). Fundamentals of Earthquake Engineering. John Wiley & Sons. West Sussex. United Kingdom. | spa |
dc.relation.references | Faccioli, e., Paolucci, R., Vivero, G. (2001). Investigation of Seismic Soil-Footing Interaction by Large Scale Cyclic Tests and Analytical Models. International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, S. Prakash, ed., Missouri University of Science and Technology, Rolla, MO. | spa |
dc.relation.references | Feng, D., & Feng M.Q. (2021). Computer Vision for Structural Dynamics and Health Monitoring. John Wiley & Sons Ltd. DOI: 10.1002/9781119566557. | spa |
dc.relation.references | García, J. R. (2007). Análisis Comparativo del Fenómeno de Licuación en Arenas. Aplicación a Tumaco (Colombia). Barcelona : Universitat Politècnica de Catalunya. | spa |
dc.relation.references | Garnier, J., Gaudin, C., Springman, S. M., Culligan, P. J., Goodings, D., Koning, D., . . . Thorel, L. (2007). Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics, 1-23. | spa |
dc.relation.references | Gazetas, G. (2015). 4th Ishihara lecture: Soil-foundation-structure systems beyond conventional seismic failure thresholds. Soil Dynamics and Earthquake Engineering, 23 - 39. | spa |
dc.relation.references | Guo, L., Chen, J., Wang, J., Cai, Y., & Deng, P. (2015). Influences of stress magnitude and loading frequency on cyclic behavior of k0-consolidated marine clay involving principal stress rotation. Soil Dynamics and Earthquake Engineering 84. 94 – 107. | spa |
dc.relation.references | Hamman, A.H., Abulied, A.F. (2011). Settlement of shallow foundations on sand overlaying compressible clay, Part-1. 2011 Pan-Am CGS Geotechnical Conference. Cairo, Egypt. | spa |
dc.relation.references | Herrera, J.P. (2019). Performance-Based Seismic Design of structural walls using a hysteretic multilinear model. Universidad Nacional de Colombia. Manizales, Colombia. | spa |
dc.relation.references | Iai, S. (1989). Similitude for shaking table tests on soil-structure-fluid model in 1g gravitational field. Soil and Foundations. Vol. 29, No. 1, 105-118. | spa |
dc.relation.references | Idris, I. M. & Boulanger, R.W. (2010). SPT – Based Liquefaction Triggering Procedures. Davis, California: Center for Geotechnical modelling, University of California. | spa |
dc.relation.references | Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351-415. | spa |
dc.relation.references | Jafarian, Y., Esmaeilpour, P., Shojaeemehr, S., Taghavizade, H., Rouhi, S., McCartney, J.S. (2021). Impacts of Fixed-End and Flexible Boundary Conditions on Seismic Response of Shallow Foundations on Saturated Sand in 1-g Shaking Table Tests. Geotechnical Testing Journal. Vol. 44, No. 3 pp. 637 – 664. | spa |
dc.relation.references | Jefferies, M., & Been, K. (2006). Soil liquefaction A critical state approach. London and New York: Taylor & Francis. | spa |
dc.relation.references | Jimenez, O., Lizcano, A. (2015). Liquefaction flow behavior of Guamo sand. Fundamentals to Applications in Geotechnics. | spa |
dc.relation.references | Kargar, S.H.R., Shahnazari, H., & Salehzadeh, H. (2014). Post-cyclic behavior of carbonate sand with anisotropic consolidation. International Journal of Civil Engineering. | spa |
dc.relation.references | Kenji, L., Shigeyasu, O., Norio, O. & Anatoliy, I. (1990). Liquefaction-Induced Flow slide in the collapsible Loess Deposit in Soviet Tajik. Soils and Foundations Japanese Society of Soil. Mechanics and Foundation Engeneering Vol 30, N°, 73 – 89. | spa |
dc.relation.references | Keshab, S., Lijun, D., & Diwarkar, K. (2019). Reconnaissance of liquefactioncase studies in 2015 Gorkha (Nepal) earthquake assessment of liquefaction suceptibility. International Journal of Geotechnical Engineering, 326-338. | spa |
dc.relation.references | Lin, S., Wu, C. & Kong, F. (2019). Shaking Table Model Test and Seismic Performance Analysis of High-Rise RC Shear Wall Structure. Hindawi Shock and Vibration. | spa |
dc.relation.references | Lizcano, A. & Jimenez, O. (2015). Liquefaction flow behavior of Guamo sand. Fundamentals to Applications in Geotechnics, pp 470 – 477. | spa |
dc.relation.references | Liu, J., & Chen, G. (2022). The correction factor of Monterey No. 0/30 sample with fines content liquefaction resistance between cyclic triaxial and cyclic hollow cylinder tests. | spa |
dc.relation.references | Lopez, D.E., Tapia, J., Yanez, C., & Boroscheck, R. (2022). Semantic segmentation model for crack images from concrete bridges for mobile devices. Advanced Deep Learning Methods in Risk and Reability Engineering. Journal of Risk and Reliability. | spa |
dc.relation.references | Lopez-Caballero, F. (2017). Introduction à la dynamique des sols. Paris: Laboratorie MSS-Mat CentraleSupélec. | spa |
dc.relation.references | MacRae, G.A. (1994). P-Δ Effects on Single Degree Of Freedom Structures in Earthquakes. Earthquake Spectra. Vol 10 N° 3, pp 239 – 268. | spa |
dc.relation.references | Marcuson, W. F. (1978). Definition of terms related to liquefaction. J. Geotech. Engrg. Div. ASCE, 565-588. | spa |
dc.relation.references | Martakis, P., Taeseri, Damoun., Chatzi, Eleni., Laue, Jan. (2017). A centrifuge-based experimental verification of Soil-Structure Interaction effects. Soil Dynamics and Earthquake Engineering, 103, 1 - 14. | spa |
dc.relation.references | Maurer, B., Green, R., Cubrinovski, M., Bradley, B.A. (2013). Evaluation of Liquefaction Potential Inddex (LPI) for Assessing Liquefaction Hazard: A Case Study in Christchurch, New Zealand. San Diego, CA, USA: ASCE GeoCongress, 3-6 Mar 2013. | spa |
dc.relation.references | Miur, D.W. (2004). Geotechnical Modelling. Taylor & Francis. 2 Park Square, Milton Park, Abingdon, Oxfordshire OX144RN. | spa |
dc.relation.references | Molina-Gómez, F., Viana, A. (2021). Key geomechanical properties of the historically liquefiable TP-Lisbon sand. Soil and Foundations. | spa |
dc.relation.references | Moncarz, P.D., Krawinkler, H., 1981. Theory and application of experimental model análisis in earthquake engineering (Vol. 50). California: Stanford University. | spa |
dc.relation.references | Moradi, S., Zayed, T., Golkhoo, F. (2019). Review on Computer Aided Sewer Pipeline Defect Detection and Condition Assessment. Journal of Infraestructure. | spa |
dc.relation.references | Nong, Z., Park, S.-S., Jeong, S.-W., & Lee, D.-E. (2020). Effect of Cyclic Loading Frequency on Liquefaction Prediction of Sand. Applied Sciences MDPI, 1-15. | spa |
dc.relation.references | OpenCV Lessons., (2010). Object Detection Using Color Separation. https://www.opencv-srf.com/2010/09/object-detection-using-color-seperation.html | spa |
dc.relation.references | Patiño, J. C. (2006). Parámetros Hipoplásticos de la Arena del Guamo-Colombia. Bogotá: Universidad de los Andes. | spa |
dc.relation.references | Pinho, R. (2007). Using Pushover Analysis for Assessment of Buildings and Bridges. In: Pecker, A. (eds) Advanced Earthquake Engineering Analysis. CISM International Centre for Mechanical Sciences, vol 494. Springer, Vienna. | spa |
dc.relation.references | Powell V., (2022). Image Kernels Explained Visually. Setosa. https://setosa.io/ev/imagekernels/#:~:text=An%20image%20kernel%20is%20a,important%20portions%20of%20an%20image. | spa |
dc.relation.references | Python pool., (2021). Know Everything about OpenCV Moments. https://www.pythonpool.com/opencv-moments/ | spa |
dc.relation.references | Rao, N. (2011). Foundation Design Theory and Practice. Singapore: John Wiley & Sons (Asia) Pte Ltd. | spa |
dc.relation.references | Rauch, A. F. (1997). Chapter 7. Analysis of Soil Borings for Liquefaction Resistance. En A. F. Rauch, An Empirical Method for Predicting Surface Displacements Due to Liquefaction-Induced Lateral Spreading in Earthquakes (págs. 111 - 130). Virginia, USA: Virginia Polytechnic Institud and State University. | spa |
dc.relation.references | Ravi K. S., (2018). Convex Hull using OpenCV in Python and C++. https://learnopencv.com/author/krshrimali/ | spa |
dc.relation.references | Rees, S. (2013). Part three: Dynamic triaxial testing. GDS website www.gdsinstrument.com. | spa |
dc.relation.references | Rothe, J.P. (1969). The seismicity of the earth 1953 – 1965. Unesco. | spa |
dc.relation.references | Ruelke, T. (2010). Is water more than just H2O?. AASHTO re: source (Journaly AMRL). http://aashtoresource.org/university/newsletters/newsletters/2016/08/02/is-water-more-than-just-h2o. | spa |
dc.relation.references | Ruíz, J. C. & Bermudez, J. F. (2015). Estudio Experimenta de la Línea de Inestabilidad bajo Condiciones Anisotrópicas de Carga no Drenada Monotónica. Bogotá, Colombia. Pontificia Universidad Javeriana. | spa |
dc.relation.references | Sánchez, I.A. (2020). Evaluación del Potencial de Licuefacción en la Región del Urabá Antioqueño. Medellín, Colombia. Universidad Cooperativa de Colombia. | spa |
dc.relation.references | Sadq, Q.O.S. (2019). Response of Soil-Foundation-Structure Interaction of Tall Building (Frame – Wall) Structural System under Seismic Effect. University of Salford. Greater Manchester, United Kingdom. | spa |
dc.relation.references | Seed, H.B. & Lee, K.L. (1966). Liquefaction of Saturated Sands during Cyclic Loading. J. Soil Mech Fdn Engng Am. Soc. Civ. Engrs 92, SM6, 105-134. | spa |
dc.relation.references | Servicio Geológico Colombiano SGC. (27/08/2020). http://sish.sgc.gov/visor/sesionServlet?metodo)=irAInfoDetallada&idSismo=69 | spa |
dc.relation.references | Spenser Jr, B.F., Hoskere, V., & Narazaki, Y. (2019). Advances in Computer Vision-Based Civil Infraestructure Inspection and Monitoring. Engineering 5 pp. 199-222. | spa |
dc.relation.references | Srbulov, M. (2008). Geotechnical Earthquake Engineering Simplified Analyses with Case Studies and Examples. Reino Unido: Springer Science+Business Media B.V. | spa |
dc.relation.references | Stamatopoulos, C.B., López-Caballero, F., & Modaressi-Farahmand-Razavi. (2012). Laboratory Tests and Numerical Simulations giving the effect of preloading on the Cyclic Liquefaction Strength. 15th World Conference on Earthquake Engineering Lisboa 2012. | spa |
dc.relation.references | Stokoe, K. H. (2003). Attachment A-7, Results of Resonant Column/Cyclic Torsional Shear Testing. Austin, Texas: United States Nuclear Regulatory Commission Site Safety Analysis Report for Exelon Generation Company, LLC Early Site Permit. | spa |
dc.relation.references | Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philp, H., Bijwaard H., … Rivera, C. (2000). Geodynamics of the Northern Andes: Subductions and Intracontinental deformation (Colombia). Tectonics 19/5, 787 – 813. | spa |
dc.relation.references | Taeseri, D., Laue, J., Martakis, P., Chatzi, E., & Anastasopoulos, I. (2018). Static and dynamic rocking stiffness of shallow footings on sand: centrifuge modeling. International Journal of Physical Modelling in Geotechnics, 18(6), 315 - 339. | spa |
dc.relation.references | Taylor, R. N. (1995). Geotechnical centrifuge technology. New York: Taylor & Francis. | spa |
dc.relation.references | United Nations. (2022). The Sustainable Development Goals. https://www.un.org/sustainabledevelopment/sustainable-development-goals/. (28/10/2022). | spa |
dc.relation.references | Vasko, A., Ghoraiby, M.E., & Manzari, M.T. (2014). An Investigation into the Behavior of Ottawa-F65 Sand. Characterization Tests. The George Washington University. | spa |
dc.relation.references | Verdugo, R. (2015). Liquefaction Observed During the 2010 Chile Earthquake. Geotechnical, Geological and Earthquake 37. Springer International.Switzeland. | spa |
dc.relation.references | Wu, J., Kammerer, A.M., Riemer, M.F., Seed, R.B., & Pestana J.M. (2004). Laboratory Study of Liquefaction Triggering Criteria. 13th World Conference on Earthquake Engineering. Paper No. 2580 Vancouver, B.C., Canada. | spa |
dc.relation.references | Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., … Stokoe II, K.H. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 817 – 833. | spa |
dc.relation.references | Youd, T.L. & Perkins, D.M. (1987). Mapping of Liquefaction Severity Index. Journal of Geotechnical Engineering. ASCE, Vol. 113, No 11, pp. 1374 – 1392. | spa |
dc.relation.references | Zhao, Hong-hua., Liu , Cong., Tang, Xiao-wei., Wei, Huan-wei., Zhu, Feng. (2020). Study of visualization measurement system of spatial deformation based on transparent soil and three-dimensional reconstruction technology. Rock and Soil Mechanics 2020 41(9): 3170 -3179. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.proposal | Physical model | eng |
dc.subject.proposal | Liquefaction | eng |
dc.subject.proposal | Overturning | eng |
dc.subject.proposal | Computer vision | eng |
dc.subject.proposal | Modelo físico | spa |
dc.subject.proposal | Licuación | spa |
dc.subject.proposal | Volcamiento | spa |
dc.subject.proposal | Visión por computador | spa |
dc.subject.unesco | Ingeniería sísmica | spa |
dc.subject.unesco | Earthquake engineering | eng |
dc.title | Study of the behavior of shallow foundations under dynamic loads in sands through a physical model using artificial vision | eng |
dc.title.translated | Estudio del comportamiento de cimentaciones superficiales bajo cargas dinámicas en arenas a través de un modelo físico usando visión artificial | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Proyecto HERMES 51135 - UNAL Manizales | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1057305577.2023.pdf
- Tamaño:
- 2.64 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Estructuras
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: