Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva

dc.contributor.advisorHerrera Quintero, Liz Karen
dc.contributor.authorTirado González, Johanna Gisell
dc.contributor.educationalvalidatorJohanna Esguerra Arce
dc.contributor.googlescholarTirado González, Johanna Gisell [https://scholar.google.com/citations?user=N5EjpAgAAAAJ&hl=es]spa
dc.contributor.orcidTirado Gonzalez, Johanna Gisell [0009-0000-7224-4512]spa
dc.contributor.researchgateTirado González, Johanna Gisell [https://www.researchgate.net/profile/Johanna-Tirado-Gonzalez]spa
dc.contributor.researchgroupGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)spa
dc.date.accessioned2023-09-25T15:24:17Z
dc.date.available2023-09-25T15:24:17Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa técnica de impresión 3D basada en extrusión (MEX) ha demostrado ser confiable y de bajo costo para la obtención de piezas metálicas. Por tanto, en el presente trabajo se estudia su idoneidad para obtener piezas de un material compuesto de hierro/óxido de hierro proveniente de un residuo industrial. Inicialmente se evaluó la influencia del tiempo de molienda y la temperatura de reducción química. Una vez obtenido el polvo se fabricaron filamentos con matriz polimérica de TPU/PP/SA y TPE/PP/SA en una proporción para ambos casos de 87-13 %wt., (polvo metálico – mezcla polimérica, respectivamente). Se obtuvo el filamento, se evaluó la influencia de la temperatura y la velocidad de impresión en la geometría de las piezas impresas, y se eligieron las probetas que más se acercaron al valor nominal de diseño. Por último, se evaluó la influencia del ciclo de sinterización en las propiedades mecánicas y microestructurales de las mismas. Los resultados mostraron que la temperatura de impresión no tuvo un impacto significativo en la geometría de impresión de las piezas como sí lo mostró la velocidad de impresión. Durante el debinding térmico y la sinterización se observó un fenómeno de reducción química adicional sobre los polvos de hierro, producto de la descomposición de la matriz polimérica que generó agentes reductores, lo que demuestra que la selección de la matriz polimérica afecta la microestructura de las piezas sinterizadas. Finalmente se encontró que una menor velocidad de impresión (7mm/s) llevó a una mayor contracción, mayor densidad y dureza de las piezas metálicas. (Texto tomado de la fuente)spa
dc.description.abstractThe 3D printing technique based on extrusion (MEX) has proven to be reliable and low cost for obtaining metal parts. Therefore, in the present work, we study its suitability to obtain parts of a composite material of iron/iron oxide from an industrial waste. Initially, the influence of grinding time and chemical reduction temperature was evaluated. Once the powder was obtained, filaments were manufactured with polymer matrix of TPU/PP/SA and TPE/PP/SA in a proportion for both cases of 87-13 %wt., (metal powder – polymer mixture, respectively). The filament was obtained, the influence of temperature and printing speed on the geometry of the printed parts was evaluated, and the specimens that came closest to the nominal design value were chosen. Finally, the influence of the sintering cycle on their mechanical and microstructural properties was evaluated. The results showed that the printing temperature did not have a significant impact on the printing geometry of the parts as the printing speed did. During thermal debinding and sintering, an additional chemical reduction phenomenon was observed on iron powders, product of the decomposition of the polymer matrix that generated reducing agents, demonstrating that the selection of the polymer matrix affects the microstructure of the sintered parts. Finally, it was found that a lower printing speed (7mm/s) led to greater shrinkage, higher density and hardness of metal parts.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaPulvimetalurgia y manufactura aditivaspa
dc.description.sponsorshipICETEX, el Ministerio de Ciencia, Tecnología e Innovación y la Universidad Nacional de Colombiaspa
dc.format.extentxxi, 93 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84723
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesNaciones Unidas, “Consumo y producción sostenibles - Desarrollo Sostenible,” Objetivos de desarrollo sostenible. p. 1, 2020. Accessed: Apr. 19, 2022. [Online]. Available: https://www.un.org/sustainabledevelopment/es/sustainable-consumption-production/spa
dc.relation.referencesNoticias Parlamento Europeo, “Economía circular: definición, importancia y beneficios,” Economía circular: definición, importancia y beneficios, May 24, 2023.spa
dc.relation.referencesISO/ASTM, “Additive Manufacturing - General Principles Terminology (ASTM52900),” 2013. doi: 10.1520/F2792-12A.2.spa
dc.relation.referencesS. Cacace and Q. Semeraro, “Influence of the atomization medium on the properties of stainless steel SLM parts,” Addit Manuf, vol. 36, p. 101509, Dec. 2020, doi: 10.1016/J.ADDMA.2020.101509.spa
dc.relation.referencesL. S. Santos, S. K. Gupta, and H. A. Bruck, “Simulation of buckling of internal features during selective laser sintering of metals,” Addit Manuf, vol. 23, pp. 235–245, Oct. 2018, doi: 10.1016/J.ADDMA.2018.08.002.spa
dc.relation.referencesA. Mostafaei, E. L. Stevens, J. J. Ference, D. E. Schmidt, and M. Chmielus, “Binder jetting of a complex-shaped metal partial denture framework,” Addit Manuf, vol. 21, pp. 63–68, May 2018, doi: 10.1016/J.ADDMA.2018.02.014.spa
dc.relation.referencesA. P. S. Cruz, “Estado del Arte de la Fabricación Aditiva.,” 2013.spa
dc.relation.references“Chemical store Inc,” Iron powder. https://shop.chemicalstore.com/navigation/search.asp?keyword=iron%20powder (accessed Mar. 25, 2023).spa
dc.relation.referencesZ. Lotfizarei, A. Mostafapour, A. Barari, A. Jalili, and A. E. Patterson, “Overview of debinding methods for parts manufactured using powder material extrusion,” Addit Manuf, vol. 61, p. 103335, Jan. 2023, doi: 10.1016/J.ADDMA.2022.103335.spa
dc.relation.referencesN. Birks and G. Meier, Introduction to High Temperature Oxidation of Metals. 1982.spa
dc.relation.referencesL. Rojas and S. Restrepo, “Evaluación Del Uso De Cascarilla De Laminación Como Agregado Fino En La Elaboración De Concreto Convencional,” UNIVERSIDAD EAFIT, 2016. [Online]. Available: https://repository.eafit.edu.co/bitstream/handle/10784/12229/RojasHenao_LinaMaria_SierraRestrepo_Simon_2016.pdf?sequence=2spa
dc.relation.references“Mill Scale, Sales and Information Such As Mill Scale Uses.” https://millscale.org/ (accessed May 03, 2022).spa
dc.relation.referencesJ. G. Tirado González, B. T. Reyes Segura, J. Esguerra-Arce, A. Bermúdez Castañeda, Y. Aguilar, and A. Esguerra-Arce, “An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy,” J Clean Prod, vol. 268, no. 205, 2020, doi: 10.1016/j.jclepro.2020.122362.spa
dc.relation.referencesC. K. Blakely, S. R. Bruno, Z. J. Baum, and V. v. Poltavets, “Effects of ball milling and thermal annealing on size and strain of ASnO3 (A = Ba, Sr) ceramics,” Solid State Sci, vol. 15, pp. 110–114, 2013, doi: 10.1016/j.solidstatesciences.2012.09.006.spa
dc.relation.referencesM. Sherif El-Eskandarany et al., “Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials,” Nanomaterials, vol. 11, no. 10, 2021, doi: 10.3390/nano11102484.spa
dc.relation.referencesM. S. El-Eskandarany, “Controlling the powder milling process,” in Mechanical Alloying, 2015, pp. 48–83. doi: 10.1016/b978-1-4557-7752-5.00003-6.spa
dc.relation.referencesZ. H. Chin and T. P. Perng, “Amorphization of Ni-Si-C ternary alloy powder by mechanical alloying,” Materials Science Forum, vol. 235–238, no. PART 1, pp. 121–126, 1997, doi: 10.4028/www.scientific.net/msf.235-238.121.spa
dc.relation.referencesM. K. Vargas and D. L. Beke, “Phase transitions in Cu-Sb systems induced by ball milling,” Trans Tech Publications, vol. 225, pp. 465–470, 1996, doi: 10.1557/mrs2002.257.spa
dc.relation.referencesC. Suryanarayana, “Mechanical alloying and milling,” Prog Mater Sci, vol. 46, no. 1–2, pp. 1–184, 2001, doi: 10.1016/S0079-6425(99)00010-9.spa
dc.relation.referencesP. Sharma, S. Sharma, and D. Khanduja, “On the Use of Ball Milling for the Production of Ceramic Powders,” Materials and Manufacturing Processes, vol. 30, no. 11, pp. 1370–1376, 2015, doi: 10.1080/10426914.2015.1037904.spa
dc.relation.referencesG. S. Upadhyaya, Powder Metallurgy Technology, no. 1. 1998.spa
dc.relation.referencesK. Jabbour and N. el Hassan, “Optimized conditions for reduction of iron (III) oxide into metallic form under hydrogen atmosphere: A thermodynamic approach,” Chem Eng Sci, vol. 252, p. 117297, 2022, doi: 10.1016/j.ces.2021.117297.spa
dc.relation.referencesW. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, and W. Maniukiewicz, “Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres,” Appl Catal A Gen, vol. 326, no. 1, 2007, doi: 10.1016/j.apcata.2007.03.021.spa
dc.relation.referencesM. N. Abu Tahari, F. Salleh, T. S. Tengku Saharuddin, A. Samsuri, S. Samidin, and M. A. Yarmo, “Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations,” Int J Hydrogen Energy, vol. 46, no. 48, pp. 24791–24805, Jul. 2021, doi: 10.1016/J.IJHYDENE.2020.06.250.spa
dc.relation.referencesM. Bystrzejewski, “Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles,” J Solid State Chem, vol. 184, no. 6, pp. 1492–1498, Jun. 2011, doi: 10.1016/J.JSSC.2011.04.018.spa
dc.relation.referencesS. H. Kim et al., “Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700°C,” Acta Mater, vol. 212, 2021, doi: 10.1016/j.actamat.2021.116933.spa
dc.relation.referencesF. Patisson and O. Mirgaux, “metals Hydrogen Ironmaking: How It Works”, doi: 10.3390/met10070922.spa
dc.relation.referencesA. Pineau, N. Kanari, and I. Gaballah, “Kinetics of reduction of iron oxides by H2: Part II. Low temperature reduction of magnetite,” Thermochim Acta, vol. 456, no. 2, pp. 75–88, May 2007, doi: 10.1016/J.TCA.2007.01.014.spa
dc.relation.referencesA. Heidari, N. Niknahad, M. Iljana, and T. Fabritius, “A review on the kinetics of iron ore reduction by hydrogen,” Materials, vol. 14, no. 24, 2021, doi: 10.3390/ma14247540.spa
dc.relation.referencesA. Zhang, B. J. Monaghan, R. J. Longbottom, M. Nusheh, and C. W. Bumby, “Reduction Kinetics of Oxidized New Zealand Ironsand Pellets in H2 at Temperatures up to 1443 K,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 51, no. 2, pp. 492–504, Apr. 2020, doi: 10.1007/S11663-020-01790-3/METRICS.spa
dc.relation.referencesL. Yi, Z. Huang, H. Peng, and T. Jiang, “Action rules of H2 and CO in gas-based direct reduction of iron ore pellets,” Journal of Central South University 2012 19:8, vol. 19, no. 8, pp. 2291–2296, Aug. 2012, doi: 10.1007/S11771-012-1274-0.spa
dc.relation.referencesJ. Szekely, J. Evans, and H. Sohn, Gas-Solid Reactions , 1st ed. New York: Academic Press Inc, 1976.spa
dc.relation.referencesO. Benchiheub, S. Mechachti, S. Serrai, and M. G. Khalifa, “Elaboration of iron powder from mill scale,” J. Mater. Environ. Sci, vol. 1, no. 4, pp. 267–276, 2010.spa
dc.relation.referencesA. Zhang, B. J. Monaghan, R. J. Longbottom, M. Nusheh, and C. W. Bumby, “Reduction Kinetics of Oxidized New Zealand Ironsand Pellets in H2 at Temperatures up to 1443 K,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 51, no. 2, pp. 492–504, 2020, doi: 10.1007/s11663-020-01790-3.spa
dc.relation.referencesF. Chen, Y. Mohassab, T. Jiang, and H. Y. Sohn, “Hydrogen Reduction Kinetics of Hematite Concentrate Particles Relevant to a Novel Flash Ironmaking Process,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 46, no. 3, pp. 1133–1145, 2015, doi: 10.1007/s11663-015-0332-z.spa
dc.relation.referencesJ. Chen, R. Zhang, T. Simmonds, and P. C. Hayes, “Microstructural Changes and Kinetics of Reduction of Hematite to Magnetite in CO/CO2 Gas Atmospheres,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 50, no. 6, 2019, doi: 10.1007/s11663-019-01659-0.spa
dc.relation.referencesC. Scharm et al., “Direct reduction of iron ore pellets by H2 and CO: In-situ investigation of the structural transformation and reduction progression caused by atmosphere and temperature,” Miner Eng, vol. 180, p. 107459, Apr. 2022, doi: 10.1016/J.MINENG.2022.107459.spa
dc.relation.referencesM. I. A. Barustan and S. M. Jung, “Morphology of Iron and Agglomeration Behaviour During Reduction of Iron Oxide Fines,” Metals and Materials International, vol. 25, no. 4, 2019, doi: 10.1007/s12540-019-00259-6.spa
dc.relation.referencesA. A. Barde, J. F. Klausner, and R. Mei, “Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent,” Int J Hydrogen Energy, vol. 41, no. 24, pp. 10103–10119, 2016, doi: 10.1016/j.ijhydene.2015.12.129.spa
dc.relation.referencesM. S. Valipour, M. Y. Motamed Hashemi, and Y. Saboohi, “Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: An isothermal study,” Advanced Powder Technology, vol. 17, no. 3, pp. 277–295, 2006, doi: 10.1163/156855206777213375.spa
dc.relation.referencesA. D. Mazurchevici, D. Nedelcu, and R. Popa, “Additive manufacturing of composite materials by FDM technology: A review,” Indian Journal of Engineering and Materials Sciences, vol. 27, no. 2, pp. 179–192, 2020.spa
dc.relation.referencesT. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos B Eng, vol. 143, no. December 2017, pp. 172–196, 2018, doi: 10.1016/j.compositesb.2018.02.012.spa
dc.relation.referencesA. I. Nurhudan, S. Supriadi, Y. Whulanza, and A. S. Saragih, “Additive manufacturing of metallic based on extrusion process: A review,” J Manuf Process, vol. 66, pp. 228–237, Jun. 2021, doi: 10.1016/J.JMAPRO.2021.04.018.spa
dc.relation.referencesM. K. Agarwala, R. van Weeren, A. Bandyopadhyayl, P. J. Whalen, A. Safari, and S. C. Danforth, “Fused Deposition of Ceramics and Metals : An Overview,” Proceedings of Solid Freeform Fabrication Symposium, pp. 385–392, 1996, [Online]. Available: http://hdl.handle.net/2152/70261spa
dc.relation.referencesG. Wu, N. A. Langrana, R. Sadanji, and S. Danforth, “Solid freeform fabrication of metal components using fused deposition of metals,” Mater Des, vol. 23, no. 1, pp. 97–105, Feb. 2002, doi: 10.1016/S0261-3069(01)00079-6.spa
dc.relation.referencesS. Hwang, E. I. Reyes, K. sik Moon, R. C. Rumpf, and N. S. Kim, “Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process,” J Electron Mater, vol. 44, no. 3, pp. 771–777, 2015, doi: 10.1007/s11664-014-3425-6.spa
dc.relation.referencesS. Riecker, S. B. Hein, T. Studnitzky, O. Andersen, and B. Kieback, “3D printing of metal parts by means of fused filament fabrication - A non beam-based approach,” Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition, no. October, 2017.spa
dc.relation.referencesC. Kukla, J. Gonzalez-Gutierrez, I. Duretek, S. Schuschnigg, and C. Holzer, “Effect of particle size on the properties of highly-filled polymers for fused filament fabrication,” AIP Conf Proc, vol. 1914, no. July, pp. 2–6, 2017, doi: 10.1063/1.5016795.spa
dc.relation.referencesJ. Gonzalez-Gutierrez, R. Guráň, M. Spoerk, C. Holzer, D. Godec, and C. Kukla, “3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts,” in Metalurgija, 2018, pp. 117–120.spa
dc.relation.referencesM. A. Ryder, D. A. Lados, G. S. Iannacchione, and A. M. Peterson, “Fabrication and properties of novel polymer-metal composites using fused deposition modeling,” Compos Sci Technol, vol. 158, pp. 43–50, Apr. 2018, doi: 10.1016/J.COMPSCITECH.2018.01.049.spa
dc.relation.referencesY. Thompson, J. Gonzalez-Gutierrez, C. Kukla, and P. Felfer, “Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel,” Addit Manuf, vol. 30, p. 100861, Dec. 2019, doi: 10.1016/J.ADDMA.2019.100861.spa
dc.relation.referencesW. Lengauer, I. Duretek, M. Fürst, J. Gonzalez-Gutierrez, S. Schuschnigg, and C. Kukla, “Fused-filament printing of hardmetals and cermets with feedstock from RTP powders,” in Euro PM 2019 Congress and Exhibition, 2019, pp. 1–8.spa
dc.relation.referencesS. Roshchupkin, A. Kolesov, A. Tarakhovskiy, and I. Tishchenko, “A brief review of main ideas of metal fused filament fabrication,” Mater Today Proc, vol. 38, pp. 2063–2067, Jan. 2021, doi: 10.1016/J.MATPR.2020.10.142.spa
dc.relation.referencesM. Bek, J. Gonzalez-Gutierrez, C. Kukla, K. P. Črešnar, B. Maroh, and L. S. Perše, “Rheological behaviour of highly filled materials for injection moulding and additive manufacturing: Effect of particle material and loading,” Applied Sciences (Switzerland), vol. 10, no. 22, pp. 1–23, 2020, doi: 10.3390/app10227993.spa
dc.relation.referencesP. Singh, V. K. Balla, A. Tofangchi, S. v. Atre, and K. H. Kate, “Printability studies of Ti-6Al-4V by metal fused filament fabrication (MF3),” Int J Refract Metals Hard Mater, vol. 91, p. 105249, Sep. 2020, doi: 10.1016/J.IJRMHM.2020.105249.spa
dc.relation.referencesD. Godec, S. Cano, C. Holzer, and J. Gonzalez-Gutierrez, “Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17-4PH stainless steel,” Materials, vol. 13, no. 3, 2020, doi: 10.3390/ma13030774.spa
dc.relation.referencesC. Gloeckle, T. Konkol, O. Jacobs, W. Limberg, T. Ebel, and U. A. Handge, “Processing of highly filled polymer–metal feedstocks for fused filament fabrication and the production of metallic implants,” Materials, vol. 13, no. 19, pp. 1–16, 2020, doi: 10.3390/ma13194413.spa
dc.relation.referencesJ. Slapnik, I. Pulko, R. Rudolf, I. Anžel, and M. Brunčko, “Fused filament fabrication of Nd-Fe-B bonded magnets: Comparison of PA12 and TPU matrices,” Addit Manuf, vol. 38, p. 101745, Feb. 2021, doi: 10.1016/J.ADDMA.2020.101745.spa
dc.relation.referencesY. Zhang, L. Poli, E. Garratt, S. Foster, and A. Roch, “Utilizing Fused Filament Fabrication for Printing Iron Cores for Electrical Devices,” 3D Print Addit Manuf, vol. 7, no. 6, pp. 279–287, 2020, doi: 10.1089/3dp.2020.0136.spa
dc.relation.referencesA. G. Hasib et al., “Rheology scaling of spherical metal powders dispersed in thermoplastics and its correlation to the extrudability of filaments for 3D printing,” Addit Manuf, vol. 41, p. 101967, May 2021, doi: 10.1016/J.ADDMA.2021.101967.spa
dc.relation.referencesA.-F. Gil-Plazas et al., “Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication,” Revista Facultad de Ingeniería, vol. 31, no. 60, p. e13913, May 2022, doi: 10.19053/01211129.V31.N60.2022.13913.spa
dc.relation.references“Flexa Grey | Flexible material for 3D printing.” https://sinterit.com/materials/flexa-grey/ (accessed Oct. 07, 2022).spa
dc.relation.referencesJ. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, “Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives,” Materials, vol. 11, no. 5, 2018, doi: 10.3390/ma11050840.spa
dc.relation.referencesG. George et al., “Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties,” RSC Adv, vol. 8, no. 53, pp. 30412–30428, Aug. 2018, doi: 10.1039/C8RA05007D.spa
dc.relation.referencesX. Chen, Y. He, Y. Fan, Q. Yang, G. Zeng, and H. Shi, “Facile fabrication of a robust superwetting three-dimensional (3D) nickel foam for oil/water separation,” J Mater Sci, vol. 52, no. 4, pp. 2169–2179, Feb. 2017, doi: 10.1007/S10853-016-0505-4/METRICS.spa
dc.relation.referencesK. Polat, “Low-Cost and High-Capacity Dye Remover: a Study of Methylene Blue Adsorption by a Thermoplastic-Elastomer Blend System,” Water Air Soil Pollut, vol. 228, no. 9, pp. 1–10, Sep. 2017, doi: 10.1007/S11270-017-3510-6/METRICS.spa
dc.relation.referencesC. Zhang, S. Zhang, D. Sun, J. Lin, F. Meng, and H. Liu, “Superhydrophobic fluoride conversion coating on bioresorbable magnesium alloy – fabrication, characterization, degradation and cytocompatibility with BMSCs,” Journal of Magnesium and Alloys, vol. 9, no. 4, pp. 1246–1260, Jul. 2021, doi: 10.1016/J.JMA.2020.05.017.spa
dc.relation.referencesL. Tong et al., “Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor,” Nanoscale Res Lett, vol. 13, no. 1, pp. 1–8, Mar. 2018, doi: 10.1186/S11671-018-2499-0/FIGURES/10.spa
dc.relation.referencesA. Stefan et al., “Multi-walled carbon nanotubes effect in polypropylene nanocomposites ,” Materials and technology, pp. 11–16, 2016, doi: 10.17222/mit.2014.142.spa
dc.relation.referencesA. Haryńska, I. Gubanska, J. Kucinska-Lipka, and H. Janik, “Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology,” Polymers 2018, Vol. 10, Page 1304, vol. 10, no. 12, p. 1304, Nov. 2018, doi: 10.3390/POLYM10121304.spa
dc.relation.referencesO. D. Maynez-Navarro, M. A. Mendez-Rojas, D. X. Flores-Cervantes, and J. L. Sanchez-Salas, “Hydroxyl Radical Generation by Recyclable Photocatalytic Fe3O4/ZnO Nanoparticles for Water Disinfection,” Air, Soil and Water Research, vol. 13, 2020, doi: 10.1177/1178622120970954.spa
dc.relation.referencesN. Kurnaz Yetim, F. Kurşun Baysak, M. M. Koç, and D. Nartop, “Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 20, 2020, doi: 10.1007/s10854-020-04375-7.spa
dc.relation.referencesM. A. Wagner et al., “Fused filament fabrication of stainless steel structures - from binder development to sintered properties,” Addit Manuf, vol. 49, p. 102472, Jan. 2022, doi: 10.1016/j.addma.2021.102472.spa
dc.relation.referencesH. Lgaz and H. seung Lee, “First‐principles based theoretical investigation of the adsorption of alkanethiols on the iron surface: A DFT-D3 study,” J Mol Liq, vol. 348, 2022, doi: 10.1016/j.molliq.2021.118071.spa
dc.relation.referencesH. Öström, Chemical Bonding of Hydrocarbons to Metal Surfaces. Stockholm, 2004.spa
dc.relation.referencesP. O. Bedolla et al., “Effects of van der Waals interactions in the adsorption of isooctane and ethanol on Fe(100) surfaces,” Journal of Physical Chemistry C, vol. 118, no. 31, pp. 17608–17615, Aug. 2014, doi: 10.1021/JP503829C/ASSET/IMAGES/LARGE/JP-2014-03829C_0008.JPEG.spa
dc.relation.referencesA. A. Tafti, V. Demers, S. M. Majdi, G. Vachon, and V. Brailovski, “Effect of thermal debinding conditions on the sintered density of low-pressure powder injection molded iron parts,” Metals (Basel), vol. 11, no. 2, 2021, doi: 10.3390/met11020264.spa
dc.relation.references“Impresora 3D Creality Ender 3 PRO - impresoras3d.com.” https://www.impresoras3d.com/producto/impresora-3d-creality-ender-3-pro/ (accessed Oct. 07, 2022).spa
dc.relation.referencesB. Liu, Y. Wang, Z. Lin, and T. Zhang, “Creating metal parts by Fused Deposition Modeling and Sintering,” Mater Lett, vol. 263, p. 127252, Mar. 2020, doi: 10.1016/J.MATLET.2019.127252.spa
dc.relation.referencesK. S. Hwang and Y. M. Hsieh, “Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts,” Metall Mater Trans A Phys Metall Mater Sci, vol. 27, no. 2, 1996, doi: 10.1007/BF02648403.spa
dc.relation.referencesM. Sadaf, M. Bragaglia, and F. Nanni, “A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication,” J Manuf Process, vol. 67, 2021, doi: 10.1016/j.jmapro.2021.04.055.spa
dc.relation.referencesJ. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla, and C. Holzer, “Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing,” Mater Lett, vol. 248, 2019, doi: 10.1016/j.matlet.2019.04.024.spa
dc.relation.referencesY. Zhang, S. Bai, M. Riede, E. Garratt, and A. Roch, “A comprehensive study on fused filament fabrication of Ti-6Al-4V structures,” Addit Manuf, vol. 34, 2020, doi: 10.1016/j.addma.2020.101256.spa
dc.relation.referencesJ. H. H. Ter Maat, J. Ebenhöch, and H.-J. Sterzel, “Fast Catalytic Debinding of Injection Moulded Parts,” 4th International Symposium on Ceramic Materials and Components for Engines, pp. 544–551, 1992, doi: 10.1007/978-94-011-2882-7_58.spa
dc.relation.referencesI. Todd and A. T. Sidambe Dr, “Developments in metal injection moulding (MIM),” Advances in Powder Metallurgy: Properties, Processing and Applications, pp. 109–146, Jan. 2013, doi: 10.1533/9780857098900.1.109.spa
dc.relation.referencesM. F. F. A. Hamidi, W. S. W. Harun, N. Z. Khalil, S. A. C. Ghani, and M. Z. Azir, “Study of solvent debinding parameters for metal injection moulded 316L stainless steel,” in IOP Conference Series: Materials Science and Engineering, 2017. doi: 10.1088/1757-899X/257/1/012035.spa
dc.relation.referencesN. A. N. Dandang, W. S. W. Harun, N. Z. Khalil, A. H. Ahmad, F. R. M. Romlay, and N. A. Johari, “Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process,” IOP Conf Ser Mater Sci Eng, vol. 257, no. 1, p. 012020, Oct. 2017, doi: 10.1088/1757-899X/257/1/012020.spa
dc.relation.referencesG. R. M. and B. A., “Injection Moulding of Metals and Ceramics.” Metal Powder Industries Federation, Princeton, New Jersey, USA, 1997.spa
dc.relation.referencesT. Kurose et al., “Influence of the layer directions on the properties of 316l stainless steel parts fabricated through fused deposition of metals,” Materials, vol. 13, no. 11, 2020, doi: 10.3390/ma13112493.spa
dc.relation.referencesD. F. Heaney, Handbook of Metal Injection Molding. 2019. doi: 10.1016/B978-0-08-102152-1.09991-8.spa
dc.relation.referencesS. Banerjee and C. J. Joens, “Debinding and sintering of metal injection molding (MIM) components,” Handbook of Metal Injection Molding, pp. 129–171, Jan. 2019, doi: 10.1016/B978-0-08-102152-1.00009-X.spa
dc.relation.referencesM. Quarto, M. Carminati, and G. D’Urso, “Density and shrinkage evaluation of AISI 316L parts printed via FDM process,” Materials and Manufacturing Processes, vol. 36, no. 13, 2021, doi: 10.1080/10426914.2021.1905830.spa
dc.relation.referencesC. Suwanpreecha and A. Manonukul, “A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding,” Metals, vol. 12, no. 3. 2022. doi: 10.3390/met12030429.spa
dc.relation.referencesP. Singh, V. K. Balla, S. v. Atre, R. M. German, and K. H. Kate, “Factors affecting properties of Ti-6Al-4V alloy additive manufactured by metal fused filament fabrication,” Powder Technol, vol. 386, 2021, doi: 10.1016/j.powtec.2021.03.026.spa
dc.relation.referencesD. R. Askeland and W. J. Wright, The Science and Engineering of Materials 7th Edition. 2016.spa
dc.relation.referencesJ. Gonzalez-Gutierrez et al., “Powder content in powder extrusion moulding of tool steel: Dimensional stability, shrinkage and hardness,” Mater Lett, vol. 283, 2021, doi: 10.1016/j.matlet.2020.128909.spa
dc.relation.referencesJ. Gonzalez-Gutierrez et al., “Shaping, Debinding and Sintering of Steel Components via Fused Filament Fabrication,” in 16 th INTERNATIONAL SCIENTIFIC CONFERENCE ON PRODUCTION ENGINEERING, 2017, pp. 8–10.spa
dc.relation.referencesM. K. Agarwala, V. R. Jamalabad, N. A. Langrana, A. Safari, P. J. Whalen, and S. C. Danforth, “Structural quality of parts processed by fused deposition,” Rapid Prototyp J, vol. 2, no. 4, 1996, doi: 10.1108/13552549610732034.spa
dc.relation.referencesM. Mousapour, M. Salmi, L. Klemettinen, and J. Partanen, “Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) technique,” J Manuf Process, vol. 67, 2021, doi: 10.1016/j.jmapro.2021.05.021.spa
dc.relation.referencesD. C. Pang, Z. J. Shi, P. X. Xie, H. C. Huang, and G. T. Bui, “Investigation of an Inset Micro Permanent Magnet Synchronous Motor Using Soft Magnetic Composite Material,” Energies 2020, Vol. 13, Page 4445, vol. 13, no. 17, p. 4445, Aug. 2020, doi: 10.3390/EN13174445.spa
dc.relation.referencesM. U. Naseer, A. Kallaste, B. Asad, T. Vaimann, and A. Rassõlkin, “A Review on Additive Manufacturing Possibilities for Electrical Machines,” Energies 2021, Vol. 14, Page 1940, vol. 14, no. 7, p. 1940, Mar. 2021, doi: 10.3390/EN14071940.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.armarcPlastics - Additives
dc.subject.ddc670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosasspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc660 - Ingeniería química::669 - Metalurgiaspa
dc.subject.lembMetalurgia de polvosspa
dc.subject.lembPowder metallurgyeng
dc.subject.lembPlásticos aditivosspa
dc.subject.lembImagen tridimensional en diseñospa
dc.subject.lembDesign imagingeng
dc.subject.proposalManufactura aditivaspa
dc.subject.proposaleconomía circularspa
dc.subject.proposalhierro/óxido de hierrospa
dc.subject.proposalPulvimetalurgiaspa
dc.subject.proposalAdditive manufacturingeng
dc.subject.proposalCircular economyeng
dc.subject.proposalIron/iron oxideeng
dc.subject.proposalPowder metallurgyeng
dc.titleReincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva
dc.title.translatedReincorporation into the production cycle of an industrial waste from steel mills in the manufacture of filaments for additive manufacturingeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo tecnológico para la fabricación de herramientas metálicas mediante técnicas de manufactura aditiva basada en extrusión para aplicaciones de alta temperatura y desgaste usadas por la industria de autopartes colombianaspa
oaire.fundernameICETEX, el Ministerio de Ciencia, Tecnología e Innovación y la Universidad Nacional de Colombiaspa
oaire.fundernameUniversidad Escuela Colombiana de Ingeniería Julio Garavitospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020820949.2023.pdf
Tamaño:
5.06 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesais de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: