Estudio de las propiedades estructurales, electrónicas, magnéticas y topológicas de la familia de materiales magnéticos M(Bi1-xSbx)2Te4

dc.contributor.advisorLandínez Tellez, Davidspa
dc.contributor.advisorGonzález Hernández, Rafael Julianspa
dc.contributor.authorLeón, Diego Andrésspa
dc.contributor.orcidLeón, Diego Andrés [0000-0001-5832-3230]spa
dc.contributor.researchgroupGrupo de Física de Nuevos Materialesspa
dc.date.accessioned2025-04-02T18:16:39Z
dc.date.available2025-04-02T18:16:39Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEl estudio de materiales, desde el punto de vista de la topología, ha abierto caminos en la obtención de nuevas fases de la materia; sin embargo, en los últimos años se ha comenzado a explorar la posibilidad de obtener al mismo tiempo fases magnéticas. Estos nuevos materiales encuentran una guía para su adquisición experimental a través de trabajos teóricos de primeros principios que permitan fijar un camino seguro y un ahorro de esfuerzos y recursos. En esta tesis doctoral, por medio de primeros principios utilizando la teoría de la densidad funcional DFT, se investigan las propiedades estructurales, electrónicas, magnéticas y topológicas de la familia de materiales magnéticos M(Bi1−xSbx)2Te4, donde M representa los metales de transición del grupo 3d: Vanadio V, Cromo Cr, Manganeso Mn, Hierro Fe y Níquel Ni para x=0, x=0.5 y x=1. Se obtienen las características estructurales y las geometrías de los quince materiales magnéticos energéticamente más estables; se encuentra que en su gran mayoría esta familia de materiales crece en capas séptuples de Te, Bi (Sb), Te, M, Te, Bi (Sb), Te, unidas por fuerzas de Van der Waals. Estos materiales cristalizan en los grupos espaciales 156 y 166 con disposiciones antiferromagnéticas para el Vanadio, Manganeso, Níquel y Hierro, además de ferromagnéticas para el Cromo; las propiedades electrónicas con la corrección relativista del acoplamiento espín-órbita SOC revelan que los materiales con Vanadio, Manganeso, Hierro y Níquel son materiales semiconductores con una reducción de la brecha de energía prohibida comparada con la estructura de bandas sin SOC; se identifica el invariante topológico Z4 de los cristales, revelando la naturaleza topológica de algunas de las estructuras que contienen Vanadio, Manganeso, Hierro y Níquel (Texto tomado de la fuente).spa
dc.description.abstractThe materials study, from the topological point of view, has opened ways to obtaining new matter´s phases; however, in recent years, the possibility of obtaining magnetic phases at the same time has begun to be explored. These new materials find a guide for their experimental acquisition through theoretical first-principles works that allow setting a safe path and a saving of efforts and resources. In this PhD thesis, the structural, electronic, magnetic, and topological properties of the magnetic materials family M(Bi1−xSbx)2Te4, where M represents the 3d group transition metals: Vanadium V, Chromium Cr, Manganese Mn, Iron Fe and Nickel Ni for x=0, x=0.5 and x=1, using density functional theory (DFT). The structural characteristics and geometries of the fifteen most energetically stable magnetic materials are obtained; it is found that this materials family grows in septuple layers of Te, Bi (Sb), Te, M, Te, Bi (Sb), Te, bound by Van der Waals forces. These materials crystallize in the space groups 156 and 166 with antiferromagnetic dispositions for Vanadium, Manganese, Nickel and Iron, as well ferromagnetic for Chromium; the electronic properties with relativistic spin-orbit-coupling SOC correction reveal that the materials with Vanadium, Manganese, Iron, and Nickel are semiconducting materials with a gap reduction compared to the band structure without SOC; the topological invariant Z4 of the crystals is identified, revealing the topological nature of some of the structures containing Vanadium, Manganese, Iron, and Nickel.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.description.methodsEstudio teórico por medio de la teoría de la densidad funcional DFTspa
dc.description.researchareaEstudio de nuevos materialesspa
dc.format.extentxiv, 289 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87821
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesJiaheng Li, Yang Li, Shiqiao Du, Zun Wang, Bing-Lin Gu, Shou-Cheng Zhang, Ke He, Wenhui Duan, and Yong Xu. Intrinsic magnetic topological insulators in van der waals layered mnbi2te4-family materials. Science Advances, 5(6):eaaw5685, 2019. DOI: 10.1126/sciadv.aaw5685.spa
dc.relation.referencesM. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Yu. Vyazovskaya, S. V. Eremeev, Yu. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. S´anchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. B¨uchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. ¨Unzelmann, C. H. Min, Simon Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E. V. Chulkov. Prediction and observation of an antiferromagnetic topological insulator. Nature, 576(7787):416–422, 2019. DOI: 10.1038/s41586-019-1840-9.spa
dc.relation.referencesKenji Yasuda. Emergent transport properties of magnetic topological insulator heterostructures. Springer Nature, 2020. DOI: 978-981-15-7183-1.spa
dc.relation.referencesYoshinori Tokura, Kenji Yasuda, and Atsushi Tsukazaki. Magnetic topological insulators. Nature Reviews Physics, 1(2):126–143, 2019. DOI: 10.1038/s42254-018-0011-5.spa
dc.relation.referencesSergey V Eremeev, Igor P Rusinov, Yu M Koroteev, A Yu Vyazovskaya, M Hoffmann, Pedro Miguel Echenique, Arthur Ernst, Mikhail M Otrokov, and Evgueni V Chulkov. Topological magnetic materials of the (mnsb2te4)(sb2te3) n van der waals compounds family. The Journal of Physical Chemistry Letters, 12(17):4268–4277, 2021. DOI: 10.1021/acs.jpclett.1c00875.spa
dc.relation.referencesLiang He, Xufeng Kou, and Kang L. Wang. Review of 3d topological insulator thin-film growth by molecular beam epitaxy and potential applications. physica status solidi (RRL) – Rapid Research Letters, 7(1-2):50–63, 2013. DOI: 10.1002/pssr.201307003.spa
dc.relation.referencesFucong Fei, Shuai Zhang, Minhao Zhang, Syed Adil Shah, Fengqi Song, Xuefeng Wang, and Baigeng Wang. The material efforts for quantized hall devices based on topological insulators. Advanced Materials, 32(27):1904593, 2020. DOI: 10.1002/adma.201904593.spa
dc.relation.referencesB. Bernevig, Claudia Felser, and Haim Beidenkopf. Progress and prospects in magnetic topological materials. Nature, 603(7900):41–51, 2022. DOI: 10.1038/s41586-021-04105-x.spa
dc.relation.referencesIvana Vobornik, Unnikrishnan Manju, Jun Fujii, Francesco Borgatti, Piero Torelli, Damjan Krizmancic, Yew San Hor, Robert J Cava, and Giancarlo Panaccione. Magnetic proximity effect as a pathway to spintronic applications of topological insulators. Nano letters, 11(10):4079–4082, 2011. DOI: 10.1021/nl201275q.spa
dc.relation.referencesLiang He, Yafei Zhao, Wenqing Liu, and Yongbing Xu. Chapter 8 - magnetic topological insulators: growth, structure, and properties. In Wenqing Liu and Yongbing Xu, editors, Spintronic 2D Materials, Materials Today, pages 191–226. Elsevier, 2020. DOI: 10.1016/B978-0-08-102154-5.00010-2.spa
dc.relation.referencesA Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003. DOI: 10.1016/S0003-4916(02)00018-0.spa
dc.relation.referencesC. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev. Lett., 95:226801, 2005. DOI: 10.1103/PhysRevLett.95.226801.spa
dc.relation.referencesB. Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum spin hall effect and topological phase transition in hgte quantum wells. Science, 314(5806):1757–1761, 2006. DOI: 10.1126/science.1133734.spa
dc.relation.referencesF. D. M. Haldane. Model for a quantum hall effect without landau levels: Condensed-matter realization of the ”parity anomaly”. Phys. Rev. Lett., 61:2015–2018, 1988. DOI: 10.1103/PhysRevLett.61.2015.spa
dc.relation.referencesPeng Wei, Ferhat Katmis, Badih A. Assaf, Hadar Steinberg, Pablo Jarillo-Herrero, Donald Heiman, and Jagadeesh S. Moodera. Exchange-coupling-induced symmetry breaking in topological insulators. Phys. Rev. Lett., 110:186807, 2013. DOI: 10.1103/PhysRevLett.110.186807.spa
dc.relation.referencesFerhat Katmis, Valeria Lauter, Flavio S Nogueira, Badih A Assaf, Michelle E Jamer, Peng Wei, Biswarup Satpati, John W Freeland, Ilya Eremin, Don Heiman, et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature, 533(7604):513–516, 2016. DOI: 10.1038/nature17635.spa
dc.relation.referencesMurong Lang, Mohammad Montazeri, Mehmet C. Onbasli, Xufeng Kou, Yabin Fan, Pramey Upadhyaya, Kaiyuan Yao, Frank Liu, Ying Jiang, Wanjun Jiang, Kin L. Wong, Guoqiang Yu, Jianshi Tang, Tianxiao Nie, Liang He, Robert N. Schwartz, Yong Wang, Caroline A. Ross, and Kang L. Wang. Proximity induced high-temperature magnetic order in topological insulator - ferrimagnetic insulator heterostructure. Nano Letters, 14(6):3459–3465, 2014. DOI: 10.1021/nl500973k.spa
dc.relation.referencesCui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen, Zuocheng Zhang, Minghua Guo, Kang Li, Yunbo Ou, Pang Wei, Li-Li Wang, Zhong-Qing Ji, Yang Feng, Shuaihua Ji, Xi Chen, Jinfeng Jia, Xi Dai, Zhong Fang, Shou-Cheng Zhang, Ke He, Yayu Wang, Li Lu, Xu-Cun Ma, and Qi-Kun Xue. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science, 340(6129):167–170, 2013. DOI: 10.1126/science.1234414.spa
dc.relation.referencesJeffrey S Dyck, Pavel H´ajek, Petr Loˇst’´ak, and Ctirad Uher. Diluted magnetic semiconductors based on sb 2- x v x te 3 (0.01<˜ x<˜ 0.03). Physical Review B, 65(11):115212, 2002. DOI: 10.1103/PhysRevB.65.115212.spa
dc.relation.referencesXufeng Kou, Murong Lang, Yabin Fan, Ying Jiang, Tianxiao Nie, Jianmin Zhang, Wanjun Jiang, Yong Wang, Yugui Yao, Liang He, et al. Interplay between different magnetisms in cr-doped topological insulators. ACS nano, 7(10):9205–9212, 2013. DOI: 10.1021/nn4038145.spa
dc.relation.referencesP. P. J. Haazen, J.-B. Lalo¨e, T. J. Nummy, H. J. M. Swagten, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera. Ferromagnetism in thin-film cr-doped topological insulator bi2se3. Applied Physics Letters, 100(8):082404, 2012. DOI: 10.1063/1.3688043.spa
dc.relation.referencesXianqing Lin and Jun Ni. Layer-dependent intrinsic anomalous hall effect in fe3gete2. Phys. Rev. B, 100:085403, 2019. DOI: 10.1103/PhysRevB.100.085403.spa
dc.relation.referencesJinsong Xu, W Adam Phelan, and Chia-Ling Chien. Large anomalous nernst effect in a van der waals ferromagnet fe3gete2. Nano Letters, 19(11):8250–8254, 2019. DOI: 10.1021/acs.nanolett.9b03739.spa
dc.relation.referencesGeorg Kresse and J¨urgen Furthm¨uller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 54(16):11169, 1996. DOI: 10.1103/PhysRevB.54.11169.spa
dc.relation.referencesRaphael C. Vidal, Alexander Zeugner, Jorge I. Facio, Rajyavardhan Ray, M. Hossein Haghighi, Anja U. B. Wolter, Laura T. Corredor Bohorquez, Federico Caglieris, Simon Moser, Tim Figgemeier, Thiago R. F. Peixoto, Hari Babu Vasili, Manuel Valvidares, Sungwon Jung, Cephise Cacho, Alexey Alfonsov, Kavita Mehlawat, Vladislav Kataev, Christian Hess, Manuel Richter, Bernd B¨uchner, Jeroen van den Brink, Michael Ruck, Friedrich Reinert, Hendrik Bentmann, and Anna Isaeva. Topological electronic structure and intrinsic magnetization in mnbi4te7: A bi2te3 derivative with a periodic mn sublattice. Phys. Rev. X, 9:041065, 2019. DOI: 10.1103/PhysRevX.9.041065.spa
dc.relation.referencesSeng Huat Lee, David Graf, Lujin Min, Yanglin Zhu, Hemian Yi, Samuel Ciocys, Yuanxi Wang, Eun Sang Choi, Rabindra Basnet, Arash Fereidouni, Aaron Wegner, Yi-Fan Zhao, Katrina Verlinde, Jingyang He, Ronald Redwing, V. Gopalan, Hugh O. H. Churchill, Alessandra Lanzara, Nitin Samarth, Cui-Zu Chang, Jin Hu, and Z. Q. Mao. Evidence for a magnetic-field-induced ideal type-ii weyl state in antiferromagnetic topological insulator Mn(Bi1−xSbx)2te4. Phys. Rev. X, 11:031032, 2021. DOI: 10.1103/PhysRevX.11.031032.spa
dc.relation.referencesK. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45:494–497, 1980. DOI: 10.1103/PhysRevLett.45.494.spa
dc.relation.referencesMahito Kohmoto. Topological invariant and the quantization of the hall conductance. Annals of Physics, 160(2):343–354, 1985. DOI: 10.1016/0003-4916(85)90148-4.spa
dc.relation.referencesMichael phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A Victor Berry. Quantal. Mathematical and Physical Sciences, 392(1802):45–57, 1984. DOI: 10.1098/rspa.1984.0023.spa
dc.relation.referencesB.A. Bernevig and T.L. Hughes. Topological Insulators and Topological Superconductors. Princeton University Press, 2013. ISBN: 9780691151755.spa
dc.relation.referencesB Andrei Bernevig. Topological insulators and topological superconductors. Princeton university press, 2013. ISBN: 9780691151755.spa
dc.relation.referencesJ. Zak. Berry’s phase for energy bands in solids. Phys. Rev. Lett., 62:2747–2750, 1989. DOI: 10.1103/PhysRevLett.62.2747.spa
dc.relation.referencesVladimir Litvinov. Magnetism in Topological insulators. Springer, 2020. ISBN: 978-3-030-12053-5.spa
dc.relation.referencesM. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82:3045–3067, 2010. DOI: 10.1103/RevModPhys.82.3045.spa
dc.relation.referencesRyogo Kubo. Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12(6):570–586, 1957. DOI: 10.1143/JPSJ.12.570.spa
dc.relation.referencesJanos K. Asboth, Laszlo Oroszlany, and Andr´as P´alyi. A Short Course on Topological Insulators. Springer International Publishing, 2016. DOI: 10.1007/978-3-319-25607-8.spa
dc.relation.referencesVíctor Barceló Rubio and Manuel Asorey Carballeira. Aislantes Topológicos. Tesis de Universidad de Zaragoza, 2018. ISBN: TAZ-TFG-2018-155.spa
dc.relation.referencesRichard M Martin. Electronic structure: basic theory and practical methods. Cambridge university press, 2020. ISBN: 9780521782852.spa
dc.relation.referencesLuis EF Foa Torres, Stephan Roche, and Jean-Christophe Charlier. Introduction to graphene-based nanomaterials: from electronic structure to quantum transport. Cambridge university press, 2014.spa
dc.relation.referencesCharles L Kane. Topological band theory and the Z2 invariant, volume 6. Elsevier, 2013.spa
dc.relation.referencesYoichi Ando. Topological insulator materials. Journal of the Physical Society of Japan, 82(10):102001, 2013.spa
dc.relation.referencesLiang Fu and Charles L Kane. Time reversal polarization and a z 2 adiabatic spin pump. Physical Review B, 74(19):195312, 2006.spa
dc.relation.referencesLiang Fu and Charles L Kane. Topological insulators with inversion symmetry. Physical Review B, 76(4):045302, 2007.spa
dc.relation.referencesJoel E Moore and Leon Balents. Topological invariants of time-reversal-invariant band structures. Physical Review B, 75(12):121306, 2007.spa
dc.relation.referencesEslam Khalaf, Hoi Chun Po, Ashvin Vishwanath, and Haruki Watanabe. Symmetry indicators and anomalous surface states of topological crystalline insulators. Physical Review X, 8(3):031070, 2018.spa
dc.relation.referencesLiang Fu. Topological crystalline insulators. Physical review letters, 106(10):106802, 2011.spa
dc.relation.referencesHoi Chun Po, Ashvin Vishwanath, and Haruki Watanabe. Symmetry-based indicators of band topology in the 230 space groups. Nature communications, 8(1):50, 2017.spa
dc.relation.referencesFrank Schindler, Ashley M Cook, Maia G Vergniory, Zhijun Wang, Stuart SP Parkin, B Andrei Bernevig, and Titus Neupert. Higher-order topological insulators. Science advances, 4(6):eaat0346, 2018.spa
dc.relation.referencesFrank Schindler, Zhijun Wang, Maia G Vergniory, Ashley M Cook, Anil Murani, Shamashis Sengupta, Alik Yu Kasumov, Richard Deblock, Sangjun Jeon, Ilya Drozdov, et al. Higher-order topology in bismuth. Nature physics, 14(9):918–924, 2018.spa
dc.relation.referencesYi Liu and Roland E Allen. Electronic structure of the semimetals bi and sb. Physical Review B, 52(3):1566, 1995.spa
dc.relation.referencesMikel Iraola, Juan L Mañes, Barry Bradlyn, Matthew K Horton, Titus Neupert, Maia G Vergniory, and Stepan S Tsirkin. Irrep: Symmetry eigenvalues and irreducible representations of ab initio band structures. Computer Physics Communications, 272:108226, 2022.spa
dc.relation.referencesSeishiro Ono and Haruki Watanabe. Unified understanding of symmetry indicators for all internal symmetry classes. Physical Review B, 98(11):115150, 2018.spa
dc.relation.referencesZhida Song, Tiantian Zhang, Zhong Fang, and Chen Fang. Quantitative mappings between symmetry and topology in solids. Nature communications, 9(1):3530, 2018.spa
dc.relation.referencesFeng Tang, Hoi Chun Po, Ashvin Vishwanath, and XiangangWan. Efficient topological materials discovery using symmetry indicators. Nature Physics, 15(5):470–476, 2019.spa
dc.relation.referencesZhijun Wang, Benjamin J Wieder, Jian Li, Binghai Yan, and B Andrei Bernevig. Higher-order topology, monopole nodal lines, and the origin of large fermi arcs in transition metal dichalcogenides x te 2 (x= mo, w). Physical review letters, 123(18):186401, 2019.spa
dc.relation.referencesYutaro Tanaka, Ryo Takahashi, Tiantian Zhang, and Shuichi Murakami. Theory of inversion Z4 protected topological chiral hinge states and its applications to layered antiferromagnets. arXiv preprint arXiv:2005.12294, 2020.spa
dc.relation.referencesTan Zhang, Frank Coen, and Andrew M. Rappe. Strain-induced topological phase transitions covering the z4 indicator in orthorhombic li2aubi. Nano Letters, 24(7):2210–2217, 2024. PMID: 38320301.spa
dc.relation.referencesLiqin Zhou, Zhiyun Tan, Dayu Yan, Zhong Fang, Youguo Shi, and Hongming Weng. Topological phase transition in the layered magnetic compound mnsb 2 te 4: Spin-orbit coupling and interlayer coupling dependence. Physical review B, 102(8):085114, 2020.spa
dc.relation.referencesJiewen Xiao and Binghai Yan. First-principles calculations for topological quantum materials. Nature reviews physics, 3(4):283–297, 2021.spa
dc.relation.referencesMichael Stone. Quantum Hall Effect. World Scientific, 1992.spa
dc.relation.referencesYuan Yan, Zhi-Min Liao, Yang-Bo Zhou, Han-Chun Wu, Ya-Qing Bie, Jing-Jing Chen, Jie Meng, Xiao-Song Wu, and Da-Peng Yu. Synthesis and quantum transport properties of bi2se3 topological insulator nanostructures. Scientific reports, 3(1):1264, 2013.spa
dc.relation.referencesHaijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang, and Shou-Cheng Zhang. Topological insulators in bi2se3, bi2te3 and sb2te3 with a single dirac cone on the surface. Nature physics, 5(6):438–442, 2009.spa
dc.relation.referencesDavid Vanderbilt. Berry phases in electronic structure theory: electric polarization, orbital magnetization and topological insulators. Cambridge University Press, 2018.spa
dc.relation.referencesYulei Han, Shiyang Sun, Shifei Qi, Xiaohong Xu, and Zhenhua Qiao. Interlayer ferromagnetism and high-temperature quantum anomalous hall effect in p-doped Mnbi2te4 multilayers. Phys. Rev. B, 103:245403, Jun 2021. Doi: 10.1103/PhysRevB.103.245403.spa
dc.relation.referencesDavid S Sholl and Janice A Steckel. Density functional theory: a practical introduction. John Wiley & Sons, 2011. ISBN: 34876509.spa
dc.relation.referencesBorn, M. and Oppenheimer, R. Zur quantentheorie der molekeln. Annalen der Physik, 389 (1):457–484, 1927. Doi:10.1002/andp.19273892002.spa
dc.relation.referencesS. Cottenier. Density Functional Theory and the family of (L)APW - methods: a step-by -step introduction. Instituut voor Kern-en Stralingsfysica, B´elgica, 2002-2013. Disponible on-line in: http://www.wien2k.at/reg_user/textbooks2.spa
dc.relation.referencesE. Z. Fermi. Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente. Physik, pages 48–73, 1928. doi: 10.1007/BF01351576.spa
dc.relation.referencesP. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, Nov 1964. doi:10.1103/PhysRev.136.B864.spa
dc.relation.referencesW. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140(4A):A1133–A1138, November 1965. doi:10.1103/PhysRev.140.A1133.spa
dc.relation.referencesLeón D. A. Estudio dft de las propiedades estructurales y electrónicas de las espinelas mg2tio4 y zn2tio4, 2017-11-29.spa
dc.relation.referencesJ. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18):3865–3868, October 1996. doi:10.1103/PhysRevLett.77.3865.spa
dc.relation.referencesDavid J Griffiths and Darrell Schroeter. Introduction to Quantum Mechanics. Pearson education, 2003.spa
dc.relation.referencesSoner Steiner, Sergii Khmelevskyi, Martijn Marsmann, and Georg Kresse. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered fe 1- x co x alloys. Physical review B, 93(22):224425, 2016.spa
dc.relation.referencesG Kresse and J Furthm¨uller. Vasp the guide (universit¨at wien, wien, austria, 2007); g. kresse and j. hafner. Phys. Rev. B, 47:558, 1993. En: www.vasp.at/wiki.spa
dc.relation.referencesDong Sun Lee, Tae-Hoon Kim, Cheol-Hee Park, Chan-Yeup Chung, Young Soo Lim, Won-Seon Seo, and Hyung-Ho Park. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, bi2mnte4. CrystEngComm, 15:5532–5538, 2013. Doi: doi.org/10.1039/C3CE40643A.spa
dc.relation.referencesS.V. Eremeev, M.M. Otrokov, and E.V. Chulkov. Competing rhombohedral and monoclinic crystal structures in mnpn2ch4 compounds: An ab-initio study. Journal of Alloys and Compounds, 709:172–178, 2017.spa
dc.relation.referencesMatthias Ernzerhof and Gustavo E Scuseria. Assessment of the perdew–burke–ernzerhof exchange-correlation functional. The Journal of chemical physics, 110(11):5029–5036, 1999.spa
dc.relation.referencesSergei L Dudarev, Gianluigi A Botton, Sergey Y Savrasov, CJ Humphreys, and Adrian P Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda+ u study. Physical Review B, 57(3):1505, 1998.spa
dc.relation.referencesJiazhen Wu, Fucai Liu, Masato Sasase, Koichiro Ienaga, Yukiko Obata, Ryu Yukawa, Koji Horiba, Hiroshi Kumigashira, Satoshi Okuma, Takeshi Inoshita, et al. Natural van der waals heterostructural single crystals with both magnetic and topological properties. Science advances, 5(11):eaax9989, 2019.spa
dc.relation.referencesJ-Q Yan, Qiang Zhang, Thomas Heitmann, Zengle Huang, KY Chen, J-G Cheng, WeidaWu, David Vaknin, Brian C Sales, and Robert John McQueeney. Crystal growth and magnetic structure of mnbi 2 te 4. Physical Review Materials, 3(6):064202, 2019.spa
dc.relation.referencesJiaheng Li, Yang Li, Shiqiao Du, Zun Wang, Bing-Lin Gu, Shou-Cheng Zhang, Ke He, Wenhui Duan, and Yong Xu. Intrinsic magnetic topological insulators in van der waals layered mnbi<sub>2</sub>te<sub>4</sub>-family materials. Science Advances, 5(6):Doi:10.1038/s41586–019–1840–9, 2019. Doi:10.1038/s41586-019-1840-9.spa
dc.relation.referencesLi Chen, Dongchao Wang, Changmin Shi, Chuan Jiang, Hongmei Liu, Guangliang Cui, Xiaoming Zhang, and Xiaolong Li. Electronic structure and magnetism of mnsb 2 te 4. Journal of Materials Science, 55:14292–14300, 2020.spa
dc.relation.referencesMikhail M Otrokov, Tatiana V Menshchikova, Maia G Vergniory, Igor P Rusinov, A Yu Vyazovskaya, Yu M Koroteev, Gustav Bihlmayer, Arthur Ernst, Pedro M Echenique, Andr´es Arnau, et al. Highly-ordered wide bandgap materials for quantized anomalous hall and magnetoelectric effects. 2D Materials, 4(2):025082, 2017.spa
dc.relation.referencesA Bafekry, M Faraji, MM Fadlallah, HR Jappor, NN Hieu, M Ghergherehchi, SAH Feghhi, and D Gogova. Prediction of two-dimensional bismuth-based chalcogenides bi2x3 (x= s, se, te) monolayers with orthorhombic structure: a first-principles study. Journal of Physics D: Applied Physics, 54(39):395103, 2021.spa
dc.relation.referencesCui-Zu Chang, Weiwei Zhao, Duk Y Kim, Haijun Zhang, Badih A Assaf, Don Heiman, Shou-Cheng Zhang, Chaoxing Liu, Moses HW Chan, and Jagadeesh S Moodera. High-precision realization of robust quantum anomalous hall state in a hard ferromagnetic topological insulator. Nature materials, 14(5):473–477, 2015.spa
dc.relation.referencesYaling Zhang, YingyingWang,Wenjia Yang, Huisheng Zhang, and Jianfeng Jia. Strain-tunable magnetism and topological states in layered vbi2te4. Phys. Chem. Chem. Phys., pages–, 2023.spa
dc.relation.referencesYaling Zhang, YingyingWang,Wenjia Yang, Huisheng Zhang, and Jianfeng Jia. Strain-tunable magnetism and topological states in layered vbi 2 te 4. Physical Chemistry Chemical Physics, 25(41):28189–28195, 2023.spa
dc.relation.referencesJS Dyck, and C Uher. Low-temperature ferromagnetic properties of the diluted magnetic semiconductor sb 2- x cr x te 3. Physical Review B—Condensed Matter and Materials Physics, 71(11):115214, 2005.spa
dc.relation.referencesCui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen, Zuocheng Zhang, Minghua Guo, Kang Li, Yunbo Ou, Pang Wei, Li-Li Wang, et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science, 340(6129):167–170, 2013.spa
dc.relation.referencesEvgeny K Petrov, Arthur Ernst, Tatiana V Menshchikova, and Evgueni V Chulkov. Intrinsic magnetic topological insulator state induced by the jahn–teller effect. The Journal of Physical Chemistry Letters, 12(37):9076–9085, 2021.spa
dc.relation.referencesZiya S. Aliev, Imamaddin R. Amiraslanov, Daria I. Nasonova, Andrei V. Shevelkov, Nadir A. Abdullayev, Zakir A. Jahangirli, Elnur N. Orujlu, Mikhail M. Otrokov, Nazim T. Mamedov, Mahammad B. Babanly, and Evgueni V. Chulkov. Novel ternary layered manganese bismuth tellurides of the mnte-bi2te3 system: Synthesis and crystal structure. Journal of Alloys and Compounds, 789:443–450, 2019.spa
dc.relation.referencesJ-Q Yan, Satoshi Okamoto, Michael A McGuire, Andrew F May, Robert John McQueeney, and Brian C Sales. Evolution of structural, magnetic, and transport properties in mnbi 2- x sb x te 4. Physical Review B, 100(10):104409, 2019.spa
dc.relation.referencesChao Lei, Shu Chen, and Allan H MacDonald. Magnetized topological insulator multilayers. Proceedings of the National Academy of Sciences, 117(44):27224–27230, 2020.spa
dc.relation.referencesAksel Kobia lka, Ma lgorzata Sternik, and Andrzej Ptok. Dynamical properties of the magnetic topological insulator t bi 2 te 4 (t= mn, fe): Phonons dispersion, raman active modes, and chiral phonons study. Physical Review B, 105(21):214304, 2022.spa
dc.relation.referencesAnkush Saxena, Poonam Rani, Vipin Nagpal, S Patnaik, I Felner, and VPS Awana. Crystal growth and characterization of possible new magnetic topological insulators febi 2 te 4. Journal of Superconductivity and Novel Magnetism, 33:2251–2256, 2020.spa
dc.relation.referencesJhonathan Rafael Castillo Sáenz. Síntesis y caracterización de óxido de níquel para aplicación en dispositivos electrónicos. Physical Chemistry Chemical Physics, 2018.spa
dc.relation.referencesWahyu Setyawan and Stefano Curtarolo. High-throughput electronic band structure calculations: Challenges and tools. Computational materials science, 49(2):299–312, 2010.spa
dc.relation.referencesHarold T Stokes and Dorian M Hatch. Findsym: program for identifying the spacegroup symmetry of a crystal. Journal of Applied Crystallography, 38(1):237–238, 2005.spa
dc.relation.referencesWenqin Zou, Wei Wang, Xufeng Kou, Murong Lang, Yabin Fan, Eun Sang Choi, Alexei V. Fedorov, Kejie Wang, Liang He, Yongbing Xu, and Kang. L. Wang. Observation of quantum hall effect in an ultra-thin (bi0.53sb0.47)2te3 film. Applied Physics Letters, 110(21):212401, 2017. DOI: 10.1063/1.4983684.spa
dc.relation.referencesYL Chen, James G Analytis, J-H Chu, ZK Liu, S-K Mo, Xiao-Liang Qi, HJ Zhang, DH Lu, Xi Dai, Zhong Fang, et al. Experimental realization of a three-dimensional topological insulator, bi2te3. science, 325(5937):178–181, 2009.spa
dc.relation.referencesNitesh Kumar, Satya N Guin, Kaustuv Manna, Chandra Shekhar, and Claudia Felser. Topological quantum materials from the viewpoint of chemistry. Chemical Reviews, 121(5):2780–2815, 2020.spa
dc.relation.referencesYuqi Xia, Dong Qian, David Hsieh, L Wray, Arijeet Pal, Hsin Lin, Arun Bansil, DHYS Grauer, Yew San Hor, Robert Joseph Cava, et al. Observation of a large-gap topological-insulator class with a single dirac cone on the surface. Nature physics, 5(6):398–402, 2009.spa
dc.relation.referencesJiacheng Gao, Quansheng Wu, Clas Persson, and Zhijun Wang. Irvsp: To obtain irreducible representations of electronic states in the vasp. Computer Physics Communications, 261:107760, 2021.spa
dc.relation.referencesE. K. Petrov, V. N. Men’shov, I. P. Rusinov, M. Hoffmann, A. Ernst, M. M. Otrokov, V. K. Dugaev, T. V. Menshchikova, and E. V. Chulkov. Domain wall induced spin-polarized flat bands in antiferromagnetic topological insulators. Phys. Rev. B, 103:235142, Jun 2021. Doi:10.1103/PhysRevB.103.235142.spa
dc.relation.referencesSergey V Eremeev, Igor P Rusinov, Yu M Koroteev, A Yu Vyazovskaya, Martin Hoffmann, Pedro Miguel Echenique, Arthur Ernst, Mikhail M Otrokov, and Evgueni V Chulkov. Topological magnetic materials of the (mnsb2te4)(sb2te3) n van der waals compounds family. The Journal of Physical Chemistry Letters, 12(17):4268–4277, 2021.spa
dc.relation.referencesWen-Ti Guo, Ningjing Yang, Zhigao Huang, and Jian-Min Zhang. Novel magnetic topological insulator febi 2 te 4 with controllable topological quantum phase. Journal of Materials Chemistry C, 11(36):12307–12319, 2023.spa
dc.relation.referencesYJ Chen, LX Xu, JH Li, YW Li, HY Wang, CF Zhang, Hao Li, Yang Wu, AJ Liang, Cheng Chen, et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator mnbi 2 te 4. Physical Review X, 9(4):041040, 2019.spa
dc.relation.referencesDelgado Saavedra Juan Camilo. Fabricación y caracterización de sistemas intermetálicos de la familia rt2ai10 a base de tierras raras mediante la técnica de flujo, 2022.spa
dc.relation.referencesXiaolong Xu, Shiqi Yang, Huan Wang, Roger Guzman, Yuchen Gao, Yaozheng Zhu, Yuxuan Peng, Zhihao Zang, Ming Xi, Shangjie Tian, et al. Ferromagneticantiferromagnetic coexisting ground state and exchange bias effects in mnbi4te7 and mnbi6te10. Nature Communications, 13(1):7646, 2022.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembMATERIALES MAGNETICOSspa
dc.subject.lembMagnetic materialseng
dc.subject.lembALEACIONES MAGNETICASspa
dc.subject.lembMagnetic alloyseng
dc.subject.lembFISICOQUIMICAspa
dc.subject.lembChemistry, physical and theoreticaleng
dc.subject.lembALEACIONES MAGNETICASspa
dc.subject.lembMagnetic alloyseng
dc.subject.lembPROPIEDADES DE LA MATERIAspa
dc.subject.lembMatter - propertieseng
dc.subject.proposalAislantes topológicosspa
dc.subject.proposalAislantes topológicos magnéticosspa
dc.subject.proposalTeoría de la densidad funcionalspa
dc.subject.proposalPropiedades electrónicasspa
dc.subject.proposalEstructura de bandasspa
dc.subject.proposalTopological insulatorseng
dc.subject.proposalMagnetic topological insulatorseng
dc.subject.proposalDensity functional theoryeng
dc.subject.proposalElectronic propertieseng
dc.subject.proposalBand structureeng
dc.titleEstudio de las propiedades estructurales, electrónicas, magnéticas y topológicas de la familia de materiales magnéticos M(Bi1-xSbx)2Te4spa
dc.title.translatedStructural, electronic, magnetic and topological properties study for the magnetic materials family M(Bi1-xSbx)2Te4eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
80871572.2024.pdf
Tamaño:
40.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física
Cargando...
Miniatura
Nombre:
Anexo Tablas de operaciones de los grupos magnéticos.pdf
Tamaño:
133.04 KB
Formato:
Adobe Portable Document Format
Descripción:
Anexo Tablas de operaciones de los grupos magnéticos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: