Estudio de las propiedades estructurales, electrónicas, magnéticas y topológicas de la familia de materiales magnéticos M(Bi1-xSbx)2Te4
dc.contributor.advisor | Landínez Tellez, David | spa |
dc.contributor.advisor | González Hernández, Rafael Julian | spa |
dc.contributor.author | León, Diego Andrés | spa |
dc.contributor.orcid | León, Diego Andrés [0000-0001-5832-3230] | spa |
dc.contributor.researchgroup | Grupo de Física de Nuevos Materiales | spa |
dc.date.accessioned | 2025-04-02T18:16:39Z | |
dc.date.available | 2025-04-02T18:16:39Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | El estudio de materiales, desde el punto de vista de la topología, ha abierto caminos en la obtención de nuevas fases de la materia; sin embargo, en los últimos años se ha comenzado a explorar la posibilidad de obtener al mismo tiempo fases magnéticas. Estos nuevos materiales encuentran una guía para su adquisición experimental a través de trabajos teóricos de primeros principios que permitan fijar un camino seguro y un ahorro de esfuerzos y recursos. En esta tesis doctoral, por medio de primeros principios utilizando la teoría de la densidad funcional DFT, se investigan las propiedades estructurales, electrónicas, magnéticas y topológicas de la familia de materiales magnéticos M(Bi1−xSbx)2Te4, donde M representa los metales de transición del grupo 3d: Vanadio V, Cromo Cr, Manganeso Mn, Hierro Fe y Níquel Ni para x=0, x=0.5 y x=1. Se obtienen las características estructurales y las geometrías de los quince materiales magnéticos energéticamente más estables; se encuentra que en su gran mayoría esta familia de materiales crece en capas séptuples de Te, Bi (Sb), Te, M, Te, Bi (Sb), Te, unidas por fuerzas de Van der Waals. Estos materiales cristalizan en los grupos espaciales 156 y 166 con disposiciones antiferromagnéticas para el Vanadio, Manganeso, Níquel y Hierro, además de ferromagnéticas para el Cromo; las propiedades electrónicas con la corrección relativista del acoplamiento espín-órbita SOC revelan que los materiales con Vanadio, Manganeso, Hierro y Níquel son materiales semiconductores con una reducción de la brecha de energía prohibida comparada con la estructura de bandas sin SOC; se identifica el invariante topológico Z4 de los cristales, revelando la naturaleza topológica de algunas de las estructuras que contienen Vanadio, Manganeso, Hierro y Níquel (Texto tomado de la fuente). | spa |
dc.description.abstract | The materials study, from the topological point of view, has opened ways to obtaining new matter´s phases; however, in recent years, the possibility of obtaining magnetic phases at the same time has begun to be explored. These new materials find a guide for their experimental acquisition through theoretical first-principles works that allow setting a safe path and a saving of efforts and resources. In this PhD thesis, the structural, electronic, magnetic, and topological properties of the magnetic materials family M(Bi1−xSbx)2Te4, where M represents the 3d group transition metals: Vanadium V, Chromium Cr, Manganese Mn, Iron Fe and Nickel Ni for x=0, x=0.5 and x=1, using density functional theory (DFT). The structural characteristics and geometries of the fifteen most energetically stable magnetic materials are obtained; it is found that this materials family grows in septuple layers of Te, Bi (Sb), Te, M, Te, Bi (Sb), Te, bound by Van der Waals forces. These materials crystallize in the space groups 156 and 166 with antiferromagnetic dispositions for Vanadium, Manganese, Nickel and Iron, as well ferromagnetic for Chromium; the electronic properties with relativistic spin-orbit-coupling SOC correction reveal that the materials with Vanadium, Manganese, Iron, and Nickel are semiconducting materials with a gap reduction compared to the band structure without SOC; the topological invariant Z4 of the crystals is identified, revealing the topological nature of some of the structures containing Vanadium, Manganese, Iron, and Nickel. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Física | spa |
dc.description.methods | Estudio teórico por medio de la teoría de la densidad funcional DFT | spa |
dc.description.researcharea | Estudio de nuevos materiales | spa |
dc.format.extent | xiv, 289 páginas + anexos | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87821 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Física | spa |
dc.relation.references | Jiaheng Li, Yang Li, Shiqiao Du, Zun Wang, Bing-Lin Gu, Shou-Cheng Zhang, Ke He, Wenhui Duan, and Yong Xu. Intrinsic magnetic topological insulators in van der waals layered mnbi2te4-family materials. Science Advances, 5(6):eaaw5685, 2019. DOI: 10.1126/sciadv.aaw5685. | spa |
dc.relation.references | M. M. Otrokov, I. I. Klimovskikh, H. Bentmann, D. Estyunin, A. Zeugner, Z. S. Aliev, S. Gaß, A. U. B. Wolter, A. V. Koroleva, A. M. Shikin, M. Blanco-Rey, M. Hoffmann, I. P. Rusinov, A. Yu. Vyazovskaya, S. V. Eremeev, Yu. M. Koroteev, V. M. Kuznetsov, F. Freyse, J. S´anchez-Barriga, I. R. Amiraslanov, M. B. Babanly, N. T. Mamedov, N. A. Abdullayev, V. N. Zverev, A. Alfonsov, V. Kataev, B. B¨uchner, E. F. Schwier, S. Kumar, A. Kimura, L. Petaccia, G. Di Santo, R. C. Vidal, S. Schatz, K. Kißner, M. ¨Unzelmann, C. H. Min, Simon Moser, T. R. F. Peixoto, F. Reinert, A. Ernst, P. M. Echenique, A. Isaeva, and E. V. Chulkov. Prediction and observation of an antiferromagnetic topological insulator. Nature, 576(7787):416–422, 2019. DOI: 10.1038/s41586-019-1840-9. | spa |
dc.relation.references | Kenji Yasuda. Emergent transport properties of magnetic topological insulator heterostructures. Springer Nature, 2020. DOI: 978-981-15-7183-1. | spa |
dc.relation.references | Yoshinori Tokura, Kenji Yasuda, and Atsushi Tsukazaki. Magnetic topological insulators. Nature Reviews Physics, 1(2):126–143, 2019. DOI: 10.1038/s42254-018-0011-5. | spa |
dc.relation.references | Sergey V Eremeev, Igor P Rusinov, Yu M Koroteev, A Yu Vyazovskaya, M Hoffmann, Pedro Miguel Echenique, Arthur Ernst, Mikhail M Otrokov, and Evgueni V Chulkov. Topological magnetic materials of the (mnsb2te4)(sb2te3) n van der waals compounds family. The Journal of Physical Chemistry Letters, 12(17):4268–4277, 2021. DOI: 10.1021/acs.jpclett.1c00875. | spa |
dc.relation.references | Liang He, Xufeng Kou, and Kang L. Wang. Review of 3d topological insulator thin-film growth by molecular beam epitaxy and potential applications. physica status solidi (RRL) – Rapid Research Letters, 7(1-2):50–63, 2013. DOI: 10.1002/pssr.201307003. | spa |
dc.relation.references | Fucong Fei, Shuai Zhang, Minhao Zhang, Syed Adil Shah, Fengqi Song, Xuefeng Wang, and Baigeng Wang. The material efforts for quantized hall devices based on topological insulators. Advanced Materials, 32(27):1904593, 2020. DOI: 10.1002/adma.201904593. | spa |
dc.relation.references | B. Bernevig, Claudia Felser, and Haim Beidenkopf. Progress and prospects in magnetic topological materials. Nature, 603(7900):41–51, 2022. DOI: 10.1038/s41586-021-04105-x. | spa |
dc.relation.references | Ivana Vobornik, Unnikrishnan Manju, Jun Fujii, Francesco Borgatti, Piero Torelli, Damjan Krizmancic, Yew San Hor, Robert J Cava, and Giancarlo Panaccione. Magnetic proximity effect as a pathway to spintronic applications of topological insulators. Nano letters, 11(10):4079–4082, 2011. DOI: 10.1021/nl201275q. | spa |
dc.relation.references | Liang He, Yafei Zhao, Wenqing Liu, and Yongbing Xu. Chapter 8 - magnetic topological insulators: growth, structure, and properties. In Wenqing Liu and Yongbing Xu, editors, Spintronic 2D Materials, Materials Today, pages 191–226. Elsevier, 2020. DOI: 10.1016/B978-0-08-102154-5.00010-2. | spa |
dc.relation.references | A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003. DOI: 10.1016/S0003-4916(02)00018-0. | spa |
dc.relation.references | C. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev. Lett., 95:226801, 2005. DOI: 10.1103/PhysRevLett.95.226801. | spa |
dc.relation.references | B. Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum spin hall effect and topological phase transition in hgte quantum wells. Science, 314(5806):1757–1761, 2006. DOI: 10.1126/science.1133734. | spa |
dc.relation.references | F. D. M. Haldane. Model for a quantum hall effect without landau levels: Condensed-matter realization of the ”parity anomaly”. Phys. Rev. Lett., 61:2015–2018, 1988. DOI: 10.1103/PhysRevLett.61.2015. | spa |
dc.relation.references | Peng Wei, Ferhat Katmis, Badih A. Assaf, Hadar Steinberg, Pablo Jarillo-Herrero, Donald Heiman, and Jagadeesh S. Moodera. Exchange-coupling-induced symmetry breaking in topological insulators. Phys. Rev. Lett., 110:186807, 2013. DOI: 10.1103/PhysRevLett.110.186807. | spa |
dc.relation.references | Ferhat Katmis, Valeria Lauter, Flavio S Nogueira, Badih A Assaf, Michelle E Jamer, Peng Wei, Biswarup Satpati, John W Freeland, Ilya Eremin, Don Heiman, et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature, 533(7604):513–516, 2016. DOI: 10.1038/nature17635. | spa |
dc.relation.references | Murong Lang, Mohammad Montazeri, Mehmet C. Onbasli, Xufeng Kou, Yabin Fan, Pramey Upadhyaya, Kaiyuan Yao, Frank Liu, Ying Jiang, Wanjun Jiang, Kin L. Wong, Guoqiang Yu, Jianshi Tang, Tianxiao Nie, Liang He, Robert N. Schwartz, Yong Wang, Caroline A. Ross, and Kang L. Wang. Proximity induced high-temperature magnetic order in topological insulator - ferrimagnetic insulator heterostructure. Nano Letters, 14(6):3459–3465, 2014. DOI: 10.1021/nl500973k. | spa |
dc.relation.references | Cui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen, Zuocheng Zhang, Minghua Guo, Kang Li, Yunbo Ou, Pang Wei, Li-Li Wang, Zhong-Qing Ji, Yang Feng, Shuaihua Ji, Xi Chen, Jinfeng Jia, Xi Dai, Zhong Fang, Shou-Cheng Zhang, Ke He, Yayu Wang, Li Lu, Xu-Cun Ma, and Qi-Kun Xue. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science, 340(6129):167–170, 2013. DOI: 10.1126/science.1234414. | spa |
dc.relation.references | Jeffrey S Dyck, Pavel H´ajek, Petr Loˇst’´ak, and Ctirad Uher. Diluted magnetic semiconductors based on sb 2- x v x te 3 (0.01<˜ x<˜ 0.03). Physical Review B, 65(11):115212, 2002. DOI: 10.1103/PhysRevB.65.115212. | spa |
dc.relation.references | Xufeng Kou, Murong Lang, Yabin Fan, Ying Jiang, Tianxiao Nie, Jianmin Zhang, Wanjun Jiang, Yong Wang, Yugui Yao, Liang He, et al. Interplay between different magnetisms in cr-doped topological insulators. ACS nano, 7(10):9205–9212, 2013. DOI: 10.1021/nn4038145. | spa |
dc.relation.references | P. P. J. Haazen, J.-B. Lalo¨e, T. J. Nummy, H. J. M. Swagten, P. Jarillo-Herrero, D. Heiman, and J. S. Moodera. Ferromagnetism in thin-film cr-doped topological insulator bi2se3. Applied Physics Letters, 100(8):082404, 2012. DOI: 10.1063/1.3688043. | spa |
dc.relation.references | Xianqing Lin and Jun Ni. Layer-dependent intrinsic anomalous hall effect in fe3gete2. Phys. Rev. B, 100:085403, 2019. DOI: 10.1103/PhysRevB.100.085403. | spa |
dc.relation.references | Jinsong Xu, W Adam Phelan, and Chia-Ling Chien. Large anomalous nernst effect in a van der waals ferromagnet fe3gete2. Nano Letters, 19(11):8250–8254, 2019. DOI: 10.1021/acs.nanolett.9b03739. | spa |
dc.relation.references | Georg Kresse and J¨urgen Furthm¨uller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 54(16):11169, 1996. DOI: 10.1103/PhysRevB.54.11169. | spa |
dc.relation.references | Raphael C. Vidal, Alexander Zeugner, Jorge I. Facio, Rajyavardhan Ray, M. Hossein Haghighi, Anja U. B. Wolter, Laura T. Corredor Bohorquez, Federico Caglieris, Simon Moser, Tim Figgemeier, Thiago R. F. Peixoto, Hari Babu Vasili, Manuel Valvidares, Sungwon Jung, Cephise Cacho, Alexey Alfonsov, Kavita Mehlawat, Vladislav Kataev, Christian Hess, Manuel Richter, Bernd B¨uchner, Jeroen van den Brink, Michael Ruck, Friedrich Reinert, Hendrik Bentmann, and Anna Isaeva. Topological electronic structure and intrinsic magnetization in mnbi4te7: A bi2te3 derivative with a periodic mn sublattice. Phys. Rev. X, 9:041065, 2019. DOI: 10.1103/PhysRevX.9.041065. | spa |
dc.relation.references | Seng Huat Lee, David Graf, Lujin Min, Yanglin Zhu, Hemian Yi, Samuel Ciocys, Yuanxi Wang, Eun Sang Choi, Rabindra Basnet, Arash Fereidouni, Aaron Wegner, Yi-Fan Zhao, Katrina Verlinde, Jingyang He, Ronald Redwing, V. Gopalan, Hugh O. H. Churchill, Alessandra Lanzara, Nitin Samarth, Cui-Zu Chang, Jin Hu, and Z. Q. Mao. Evidence for a magnetic-field-induced ideal type-ii weyl state in antiferromagnetic topological insulator Mn(Bi1−xSbx)2te4. Phys. Rev. X, 11:031032, 2021. DOI: 10.1103/PhysRevX.11.031032. | spa |
dc.relation.references | K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45:494–497, 1980. DOI: 10.1103/PhysRevLett.45.494. | spa |
dc.relation.references | Mahito Kohmoto. Topological invariant and the quantization of the hall conductance. Annals of Physics, 160(2):343–354, 1985. DOI: 10.1016/0003-4916(85)90148-4. | spa |
dc.relation.references | Michael phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A Victor Berry. Quantal. Mathematical and Physical Sciences, 392(1802):45–57, 1984. DOI: 10.1098/rspa.1984.0023. | spa |
dc.relation.references | B.A. Bernevig and T.L. Hughes. Topological Insulators and Topological Superconductors. Princeton University Press, 2013. ISBN: 9780691151755. | spa |
dc.relation.references | B Andrei Bernevig. Topological insulators and topological superconductors. Princeton university press, 2013. ISBN: 9780691151755. | spa |
dc.relation.references | J. Zak. Berry’s phase for energy bands in solids. Phys. Rev. Lett., 62:2747–2750, 1989. DOI: 10.1103/PhysRevLett.62.2747. | spa |
dc.relation.references | Vladimir Litvinov. Magnetism in Topological insulators. Springer, 2020. ISBN: 978-3-030-12053-5. | spa |
dc.relation.references | M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 82:3045–3067, 2010. DOI: 10.1103/RevModPhys.82.3045. | spa |
dc.relation.references | Ryogo Kubo. Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12(6):570–586, 1957. DOI: 10.1143/JPSJ.12.570. | spa |
dc.relation.references | Janos K. Asboth, Laszlo Oroszlany, and Andr´as P´alyi. A Short Course on Topological Insulators. Springer International Publishing, 2016. DOI: 10.1007/978-3-319-25607-8. | spa |
dc.relation.references | Víctor Barceló Rubio and Manuel Asorey Carballeira. Aislantes Topológicos. Tesis de Universidad de Zaragoza, 2018. ISBN: TAZ-TFG-2018-155. | spa |
dc.relation.references | Richard M Martin. Electronic structure: basic theory and practical methods. Cambridge university press, 2020. ISBN: 9780521782852. | spa |
dc.relation.references | Luis EF Foa Torres, Stephan Roche, and Jean-Christophe Charlier. Introduction to graphene-based nanomaterials: from electronic structure to quantum transport. Cambridge university press, 2014. | spa |
dc.relation.references | Charles L Kane. Topological band theory and the Z2 invariant, volume 6. Elsevier, 2013. | spa |
dc.relation.references | Yoichi Ando. Topological insulator materials. Journal of the Physical Society of Japan, 82(10):102001, 2013. | spa |
dc.relation.references | Liang Fu and Charles L Kane. Time reversal polarization and a z 2 adiabatic spin pump. Physical Review B, 74(19):195312, 2006. | spa |
dc.relation.references | Liang Fu and Charles L Kane. Topological insulators with inversion symmetry. Physical Review B, 76(4):045302, 2007. | spa |
dc.relation.references | Joel E Moore and Leon Balents. Topological invariants of time-reversal-invariant band structures. Physical Review B, 75(12):121306, 2007. | spa |
dc.relation.references | Eslam Khalaf, Hoi Chun Po, Ashvin Vishwanath, and Haruki Watanabe. Symmetry indicators and anomalous surface states of topological crystalline insulators. Physical Review X, 8(3):031070, 2018. | spa |
dc.relation.references | Liang Fu. Topological crystalline insulators. Physical review letters, 106(10):106802, 2011. | spa |
dc.relation.references | Hoi Chun Po, Ashvin Vishwanath, and Haruki Watanabe. Symmetry-based indicators of band topology in the 230 space groups. Nature communications, 8(1):50, 2017. | spa |
dc.relation.references | Frank Schindler, Ashley M Cook, Maia G Vergniory, Zhijun Wang, Stuart SP Parkin, B Andrei Bernevig, and Titus Neupert. Higher-order topological insulators. Science advances, 4(6):eaat0346, 2018. | spa |
dc.relation.references | Frank Schindler, Zhijun Wang, Maia G Vergniory, Ashley M Cook, Anil Murani, Shamashis Sengupta, Alik Yu Kasumov, Richard Deblock, Sangjun Jeon, Ilya Drozdov, et al. Higher-order topology in bismuth. Nature physics, 14(9):918–924, 2018. | spa |
dc.relation.references | Yi Liu and Roland E Allen. Electronic structure of the semimetals bi and sb. Physical Review B, 52(3):1566, 1995. | spa |
dc.relation.references | Mikel Iraola, Juan L Mañes, Barry Bradlyn, Matthew K Horton, Titus Neupert, Maia G Vergniory, and Stepan S Tsirkin. Irrep: Symmetry eigenvalues and irreducible representations of ab initio band structures. Computer Physics Communications, 272:108226, 2022. | spa |
dc.relation.references | Seishiro Ono and Haruki Watanabe. Unified understanding of symmetry indicators for all internal symmetry classes. Physical Review B, 98(11):115150, 2018. | spa |
dc.relation.references | Zhida Song, Tiantian Zhang, Zhong Fang, and Chen Fang. Quantitative mappings between symmetry and topology in solids. Nature communications, 9(1):3530, 2018. | spa |
dc.relation.references | Feng Tang, Hoi Chun Po, Ashvin Vishwanath, and XiangangWan. Efficient topological materials discovery using symmetry indicators. Nature Physics, 15(5):470–476, 2019. | spa |
dc.relation.references | Zhijun Wang, Benjamin J Wieder, Jian Li, Binghai Yan, and B Andrei Bernevig. Higher-order topology, monopole nodal lines, and the origin of large fermi arcs in transition metal dichalcogenides x te 2 (x= mo, w). Physical review letters, 123(18):186401, 2019. | spa |
dc.relation.references | Yutaro Tanaka, Ryo Takahashi, Tiantian Zhang, and Shuichi Murakami. Theory of inversion Z4 protected topological chiral hinge states and its applications to layered antiferromagnets. arXiv preprint arXiv:2005.12294, 2020. | spa |
dc.relation.references | Tan Zhang, Frank Coen, and Andrew M. Rappe. Strain-induced topological phase transitions covering the z4 indicator in orthorhombic li2aubi. Nano Letters, 24(7):2210–2217, 2024. PMID: 38320301. | spa |
dc.relation.references | Liqin Zhou, Zhiyun Tan, Dayu Yan, Zhong Fang, Youguo Shi, and Hongming Weng. Topological phase transition in the layered magnetic compound mnsb 2 te 4: Spin-orbit coupling and interlayer coupling dependence. Physical review B, 102(8):085114, 2020. | spa |
dc.relation.references | Jiewen Xiao and Binghai Yan. First-principles calculations for topological quantum materials. Nature reviews physics, 3(4):283–297, 2021. | spa |
dc.relation.references | Michael Stone. Quantum Hall Effect. World Scientific, 1992. | spa |
dc.relation.references | Yuan Yan, Zhi-Min Liao, Yang-Bo Zhou, Han-Chun Wu, Ya-Qing Bie, Jing-Jing Chen, Jie Meng, Xiao-Song Wu, and Da-Peng Yu. Synthesis and quantum transport properties of bi2se3 topological insulator nanostructures. Scientific reports, 3(1):1264, 2013. | spa |
dc.relation.references | Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang, and Shou-Cheng Zhang. Topological insulators in bi2se3, bi2te3 and sb2te3 with a single dirac cone on the surface. Nature physics, 5(6):438–442, 2009. | spa |
dc.relation.references | David Vanderbilt. Berry phases in electronic structure theory: electric polarization, orbital magnetization and topological insulators. Cambridge University Press, 2018. | spa |
dc.relation.references | Yulei Han, Shiyang Sun, Shifei Qi, Xiaohong Xu, and Zhenhua Qiao. Interlayer ferromagnetism and high-temperature quantum anomalous hall effect in p-doped Mnbi2te4 multilayers. Phys. Rev. B, 103:245403, Jun 2021. Doi: 10.1103/PhysRevB.103.245403. | spa |
dc.relation.references | David S Sholl and Janice A Steckel. Density functional theory: a practical introduction. John Wiley & Sons, 2011. ISBN: 34876509. | spa |
dc.relation.references | Born, M. and Oppenheimer, R. Zur quantentheorie der molekeln. Annalen der Physik, 389 (1):457–484, 1927. Doi:10.1002/andp.19273892002. | spa |
dc.relation.references | S. Cottenier. Density Functional Theory and the family of (L)APW - methods: a step-by -step introduction. Instituut voor Kern-en Stralingsfysica, B´elgica, 2002-2013. Disponible on-line in: http://www.wien2k.at/reg_user/textbooks2. | spa |
dc.relation.references | E. Z. Fermi. Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente. Physik, pages 48–73, 1928. doi: 10.1007/BF01351576. | spa |
dc.relation.references | P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–B871, Nov 1964. doi:10.1103/PhysRev.136.B864. | spa |
dc.relation.references | W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140(4A):A1133–A1138, November 1965. doi:10.1103/PhysRev.140.A1133. | spa |
dc.relation.references | León D. A. Estudio dft de las propiedades estructurales y electrónicas de las espinelas mg2tio4 y zn2tio4, 2017-11-29. | spa |
dc.relation.references | J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18):3865–3868, October 1996. doi:10.1103/PhysRevLett.77.3865. | spa |
dc.relation.references | David J Griffiths and Darrell Schroeter. Introduction to Quantum Mechanics. Pearson education, 2003. | spa |
dc.relation.references | Soner Steiner, Sergii Khmelevskyi, Martijn Marsmann, and Georg Kresse. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered fe 1- x co x alloys. Physical review B, 93(22):224425, 2016. | spa |
dc.relation.references | G Kresse and J Furthm¨uller. Vasp the guide (universit¨at wien, wien, austria, 2007); g. kresse and j. hafner. Phys. Rev. B, 47:558, 1993. En: www.vasp.at/wiki. | spa |
dc.relation.references | Dong Sun Lee, Tae-Hoon Kim, Cheol-Hee Park, Chan-Yeup Chung, Young Soo Lim, Won-Seon Seo, and Hyung-Ho Park. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, bi2mnte4. CrystEngComm, 15:5532–5538, 2013. Doi: doi.org/10.1039/C3CE40643A. | spa |
dc.relation.references | S.V. Eremeev, M.M. Otrokov, and E.V. Chulkov. Competing rhombohedral and monoclinic crystal structures in mnpn2ch4 compounds: An ab-initio study. Journal of Alloys and Compounds, 709:172–178, 2017. | spa |
dc.relation.references | Matthias Ernzerhof and Gustavo E Scuseria. Assessment of the perdew–burke–ernzerhof exchange-correlation functional. The Journal of chemical physics, 110(11):5029–5036, 1999. | spa |
dc.relation.references | Sergei L Dudarev, Gianluigi A Botton, Sergey Y Savrasov, CJ Humphreys, and Adrian P Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda+ u study. Physical Review B, 57(3):1505, 1998. | spa |
dc.relation.references | Jiazhen Wu, Fucai Liu, Masato Sasase, Koichiro Ienaga, Yukiko Obata, Ryu Yukawa, Koji Horiba, Hiroshi Kumigashira, Satoshi Okuma, Takeshi Inoshita, et al. Natural van der waals heterostructural single crystals with both magnetic and topological properties. Science advances, 5(11):eaax9989, 2019. | spa |
dc.relation.references | J-Q Yan, Qiang Zhang, Thomas Heitmann, Zengle Huang, KY Chen, J-G Cheng, WeidaWu, David Vaknin, Brian C Sales, and Robert John McQueeney. Crystal growth and magnetic structure of mnbi 2 te 4. Physical Review Materials, 3(6):064202, 2019. | spa |
dc.relation.references | Jiaheng Li, Yang Li, Shiqiao Du, Zun Wang, Bing-Lin Gu, Shou-Cheng Zhang, Ke He, Wenhui Duan, and Yong Xu. Intrinsic magnetic topological insulators in van der waals layered mnbi<sub>2</sub>te<sub>4</sub>-family materials. Science Advances, 5(6):Doi:10.1038/s41586–019–1840–9, 2019. Doi:10.1038/s41586-019-1840-9. | spa |
dc.relation.references | Li Chen, Dongchao Wang, Changmin Shi, Chuan Jiang, Hongmei Liu, Guangliang Cui, Xiaoming Zhang, and Xiaolong Li. Electronic structure and magnetism of mnsb 2 te 4. Journal of Materials Science, 55:14292–14300, 2020. | spa |
dc.relation.references | Mikhail M Otrokov, Tatiana V Menshchikova, Maia G Vergniory, Igor P Rusinov, A Yu Vyazovskaya, Yu M Koroteev, Gustav Bihlmayer, Arthur Ernst, Pedro M Echenique, Andr´es Arnau, et al. Highly-ordered wide bandgap materials for quantized anomalous hall and magnetoelectric effects. 2D Materials, 4(2):025082, 2017. | spa |
dc.relation.references | A Bafekry, M Faraji, MM Fadlallah, HR Jappor, NN Hieu, M Ghergherehchi, SAH Feghhi, and D Gogova. Prediction of two-dimensional bismuth-based chalcogenides bi2x3 (x= s, se, te) monolayers with orthorhombic structure: a first-principles study. Journal of Physics D: Applied Physics, 54(39):395103, 2021. | spa |
dc.relation.references | Cui-Zu Chang, Weiwei Zhao, Duk Y Kim, Haijun Zhang, Badih A Assaf, Don Heiman, Shou-Cheng Zhang, Chaoxing Liu, Moses HW Chan, and Jagadeesh S Moodera. High-precision realization of robust quantum anomalous hall state in a hard ferromagnetic topological insulator. Nature materials, 14(5):473–477, 2015. | spa |
dc.relation.references | Yaling Zhang, YingyingWang,Wenjia Yang, Huisheng Zhang, and Jianfeng Jia. Strain-tunable magnetism and topological states in layered vbi2te4. Phys. Chem. Chem. Phys., pages–, 2023. | spa |
dc.relation.references | Yaling Zhang, YingyingWang,Wenjia Yang, Huisheng Zhang, and Jianfeng Jia. Strain-tunable magnetism and topological states in layered vbi 2 te 4. Physical Chemistry Chemical Physics, 25(41):28189–28195, 2023. | spa |
dc.relation.references | JS Dyck, and C Uher. Low-temperature ferromagnetic properties of the diluted magnetic semiconductor sb 2- x cr x te 3. Physical Review B—Condensed Matter and Materials Physics, 71(11):115214, 2005. | spa |
dc.relation.references | Cui-Zu Chang, Jinsong Zhang, Xiao Feng, Jie Shen, Zuocheng Zhang, Minghua Guo, Kang Li, Yunbo Ou, Pang Wei, Li-Li Wang, et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science, 340(6129):167–170, 2013. | spa |
dc.relation.references | Evgeny K Petrov, Arthur Ernst, Tatiana V Menshchikova, and Evgueni V Chulkov. Intrinsic magnetic topological insulator state induced by the jahn–teller effect. The Journal of Physical Chemistry Letters, 12(37):9076–9085, 2021. | spa |
dc.relation.references | Ziya S. Aliev, Imamaddin R. Amiraslanov, Daria I. Nasonova, Andrei V. Shevelkov, Nadir A. Abdullayev, Zakir A. Jahangirli, Elnur N. Orujlu, Mikhail M. Otrokov, Nazim T. Mamedov, Mahammad B. Babanly, and Evgueni V. Chulkov. Novel ternary layered manganese bismuth tellurides of the mnte-bi2te3 system: Synthesis and crystal structure. Journal of Alloys and Compounds, 789:443–450, 2019. | spa |
dc.relation.references | J-Q Yan, Satoshi Okamoto, Michael A McGuire, Andrew F May, Robert John McQueeney, and Brian C Sales. Evolution of structural, magnetic, and transport properties in mnbi 2- x sb x te 4. Physical Review B, 100(10):104409, 2019. | spa |
dc.relation.references | Chao Lei, Shu Chen, and Allan H MacDonald. Magnetized topological insulator multilayers. Proceedings of the National Academy of Sciences, 117(44):27224–27230, 2020. | spa |
dc.relation.references | Aksel Kobia lka, Ma lgorzata Sternik, and Andrzej Ptok. Dynamical properties of the magnetic topological insulator t bi 2 te 4 (t= mn, fe): Phonons dispersion, raman active modes, and chiral phonons study. Physical Review B, 105(21):214304, 2022. | spa |
dc.relation.references | Ankush Saxena, Poonam Rani, Vipin Nagpal, S Patnaik, I Felner, and VPS Awana. Crystal growth and characterization of possible new magnetic topological insulators febi 2 te 4. Journal of Superconductivity and Novel Magnetism, 33:2251–2256, 2020. | spa |
dc.relation.references | Jhonathan Rafael Castillo Sáenz. Síntesis y caracterización de óxido de níquel para aplicación en dispositivos electrónicos. Physical Chemistry Chemical Physics, 2018. | spa |
dc.relation.references | Wahyu Setyawan and Stefano Curtarolo. High-throughput electronic band structure calculations: Challenges and tools. Computational materials science, 49(2):299–312, 2010. | spa |
dc.relation.references | Harold T Stokes and Dorian M Hatch. Findsym: program for identifying the spacegroup symmetry of a crystal. Journal of Applied Crystallography, 38(1):237–238, 2005. | spa |
dc.relation.references | Wenqin Zou, Wei Wang, Xufeng Kou, Murong Lang, Yabin Fan, Eun Sang Choi, Alexei V. Fedorov, Kejie Wang, Liang He, Yongbing Xu, and Kang. L. Wang. Observation of quantum hall effect in an ultra-thin (bi0.53sb0.47)2te3 film. Applied Physics Letters, 110(21):212401, 2017. DOI: 10.1063/1.4983684. | spa |
dc.relation.references | YL Chen, James G Analytis, J-H Chu, ZK Liu, S-K Mo, Xiao-Liang Qi, HJ Zhang, DH Lu, Xi Dai, Zhong Fang, et al. Experimental realization of a three-dimensional topological insulator, bi2te3. science, 325(5937):178–181, 2009. | spa |
dc.relation.references | Nitesh Kumar, Satya N Guin, Kaustuv Manna, Chandra Shekhar, and Claudia Felser. Topological quantum materials from the viewpoint of chemistry. Chemical Reviews, 121(5):2780–2815, 2020. | spa |
dc.relation.references | Yuqi Xia, Dong Qian, David Hsieh, L Wray, Arijeet Pal, Hsin Lin, Arun Bansil, DHYS Grauer, Yew San Hor, Robert Joseph Cava, et al. Observation of a large-gap topological-insulator class with a single dirac cone on the surface. Nature physics, 5(6):398–402, 2009. | spa |
dc.relation.references | Jiacheng Gao, Quansheng Wu, Clas Persson, and Zhijun Wang. Irvsp: To obtain irreducible representations of electronic states in the vasp. Computer Physics Communications, 261:107760, 2021. | spa |
dc.relation.references | E. K. Petrov, V. N. Men’shov, I. P. Rusinov, M. Hoffmann, A. Ernst, M. M. Otrokov, V. K. Dugaev, T. V. Menshchikova, and E. V. Chulkov. Domain wall induced spin-polarized flat bands in antiferromagnetic topological insulators. Phys. Rev. B, 103:235142, Jun 2021. Doi:10.1103/PhysRevB.103.235142. | spa |
dc.relation.references | Sergey V Eremeev, Igor P Rusinov, Yu M Koroteev, A Yu Vyazovskaya, Martin Hoffmann, Pedro Miguel Echenique, Arthur Ernst, Mikhail M Otrokov, and Evgueni V Chulkov. Topological magnetic materials of the (mnsb2te4)(sb2te3) n van der waals compounds family. The Journal of Physical Chemistry Letters, 12(17):4268–4277, 2021. | spa |
dc.relation.references | Wen-Ti Guo, Ningjing Yang, Zhigao Huang, and Jian-Min Zhang. Novel magnetic topological insulator febi 2 te 4 with controllable topological quantum phase. Journal of Materials Chemistry C, 11(36):12307–12319, 2023. | spa |
dc.relation.references | YJ Chen, LX Xu, JH Li, YW Li, HY Wang, CF Zhang, Hao Li, Yang Wu, AJ Liang, Cheng Chen, et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator mnbi 2 te 4. Physical Review X, 9(4):041040, 2019. | spa |
dc.relation.references | Delgado Saavedra Juan Camilo. Fabricación y caracterización de sistemas intermetálicos de la familia rt2ai10 a base de tierras raras mediante la técnica de flujo, 2022. | spa |
dc.relation.references | Xiaolong Xu, Shiqi Yang, Huan Wang, Roger Guzman, Yuchen Gao, Yaozheng Zhu, Yuxuan Peng, Zhihao Zang, Ming Xi, Shangjie Tian, et al. Ferromagneticantiferromagnetic coexisting ground state and exchange bias effects in mnbi4te7 and mnbi6te10. Nature Communications, 13(1):7646, 2022. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | spa |
dc.subject.ddc | 530 - Física::539 - Física moderna | spa |
dc.subject.lemb | MATERIALES MAGNETICOS | spa |
dc.subject.lemb | Magnetic materials | eng |
dc.subject.lemb | ALEACIONES MAGNETICAS | spa |
dc.subject.lemb | Magnetic alloys | eng |
dc.subject.lemb | FISICOQUIMICA | spa |
dc.subject.lemb | Chemistry, physical and theoretical | eng |
dc.subject.lemb | ALEACIONES MAGNETICAS | spa |
dc.subject.lemb | Magnetic alloys | eng |
dc.subject.lemb | PROPIEDADES DE LA MATERIA | spa |
dc.subject.lemb | Matter - properties | eng |
dc.subject.proposal | Aislantes topológicos | spa |
dc.subject.proposal | Aislantes topológicos magnéticos | spa |
dc.subject.proposal | Teoría de la densidad funcional | spa |
dc.subject.proposal | Propiedades electrónicas | spa |
dc.subject.proposal | Estructura de bandas | spa |
dc.subject.proposal | Topological insulators | eng |
dc.subject.proposal | Magnetic topological insulators | eng |
dc.subject.proposal | Density functional theory | eng |
dc.subject.proposal | Electronic properties | eng |
dc.subject.proposal | Band structure | eng |
dc.title | Estudio de las propiedades estructurales, electrónicas, magnéticas y topológicas de la familia de materiales magnéticos M(Bi1-xSbx)2Te4 | spa |
dc.title.translated | Structural, electronic, magnetic and topological properties study for the magnetic materials family M(Bi1-xSbx)2Te4 | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | DataPaper | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- 80871572.2024.pdf
- Tamaño:
- 40.85 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Física
Cargando...
- Nombre:
- Anexo Tablas de operaciones de los grupos magnéticos.pdf
- Tamaño:
- 133.04 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Anexo Tablas de operaciones de los grupos magnéticos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: