Mejoramiento del comportamiento físico y químico de las arcillas y materiales micáceos presentes en agregados finos de mala calidad para su uso en la producción de concreto hidráulico

dc.contributor.advisorBeltran Calvo, Gloria Ines
dc.contributor.authorLema Zambrano, Juan Camilo
dc.date.accessioned2021-10-05T15:13:46Z
dc.date.available2021-10-05T15:13:46Z
dc.date.issued2021-09-30
dc.descriptionilustraciones, fotografías a color, gráficas, tablasspa
dc.description.abstractEn la actualidad, el alto consumo de arena en el concreto hidráulico constituye un problema de sostenibilidad y de desempeño para la construcción, pues las fuentes de agregado de buena calidad se hacen más escasas con el transcurrir de los años, considerando que es el material más explotado por el hombre después del agua. Con el fin de abordar opciones de aprovechamiento de arenas con presencia de minerales nocivos, en esta investigación se ha propuesto el mejoramiento mediante el uso de dos moléculas basadas en tecnología de polímeros polieléctricos denominados experimentales 1931-1 y 1831-5. Para dichos polímeros se evaluó la retención de flujo en presencia de arenas de mala calidad y se ha comparado su desempeño con un policarboxilato convencional (EXP 3457), en dosis que van de 0,35% a 0,60% respecto del peso del cementante. Se empleó un modelo factorial de diseño de experimentos para mezclas de concreto con un contenido de arena del 25% al 40% y se utilizaron dos fuentes de agregado (Cordobita y Cogua) con diferentes tipos de minerales nocivos como cuarzos ondulantes, arcillolitas, micas y óxidos que se caracterizaron mediante petrografía, absorción TOC y FRX. Los resultados del diseño experimental se modelaron bajo la metodología de mortero equivalente de concreto, obteniendo un mejoramiento del 15% al 25% en términos de la capacidad de reducción de agua en las mezclas, de un 25% al 90% en términos de capacidad de retención de flujo a los 90 minutos, y una mitigación del incremento del esfuerzo de fluencia de 2 a 3 veces comparando el desempeño de los polímeros polieléctricos, versus el policarboxilato convencional evaluado. La investigación demuestra que no se generan efectos significativos sobre el fraguado inicial y final de las mezclas, y tampoco en su desarrollo de resistencia a compresión a todas las edades. Finalmente, se evidenció que el desempeño de esta alternativa de mitigación química depende ampliamente tanto de la composición química y morfología del agregado como de la capacidad de bloqueo catiónico que tiene cada tipo de polímero. (Texto tomado de la fuente).spa
dc.description.abstractNowadays, the use of sand in the concrete generates a sustainability and performance problem for the construction, since the good quality aggregates resources become scarce over the years, considering that this material is the most demanded by man after water. In order to address options for the use of sands with harmful minerals, in this research, it was proposed their improvement by using two molecules based on polyelectric polymer technology named experimental 1931-1 and 1831-5. For these polymers, flow retention was evaluated in the presence of poor-quality sands and then performance was compared to a conventional slump retainer polycarboxylate (EXP 3457) at dosage from 0,35% to 0,60% over the total cementitious weight. It was used a factorial experimental design for concrete mixes with sand content varying from 25% to 40% and two sand sources were used (Cordobita and Cogua) with different harmful minerals such as wavy quartz, clays, micas, and oxides which were characterized by petrography, TOC absorption and XRF. The experimental design results were modeled using the equivalent mortar of concrete methodology, obtaining an improvement of 15% to 25% in terms of water reduction in the mixes, 25% to 90% in term of flow retention capability after 90 minutes, and a mitigation of the yield stress increasing of 2 to 3 times, comparing the proposed polyelectric polymers performance vs the conventional polycarboxylate. This research demonstrates that there are not significant effects, neither on the initial and final setting of the mixtures, nor on the development of compressive strength at all ages. Finally, it was evidenced that the performance of this chemical mitigation alternative depends widely not only on the chemical composition and morphology of the aggregates but also on the cationic blocking capacity of each type of polymer.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Estructurasspa
dc.description.methodsPara el desarrollo de la presente investigación, se han planteado cinco fases conceptuales y experimentales, en las cuales se contempla la selección de materiales, las técnicas de caracterización, la evaluación de desempeño y el modelamiento de las mezclas de concreto a través del mortero empleando los diferentes aditivos químicos a estudiar.spa
dc.description.notesMaterial de investigación alrededor del uso de materiales de mala calidad en el concreto de manera sostenible.spa
dc.description.researchareaMateriales para estructurasspa
dc.format.extentxxvi, 206 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80384
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícolaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructurasspa
dc.relation.referencesAbbas, Z. H., & Majdi, H. S. (2017). Study of heat of hydration of Portland cement used in Iraq. Case Studies in Construction Materials, 7(April), 154–162. https://doi.org/10.1016/j.cscm.2017.07.003spa
dc.relation.referencesAbo-El-Enein, S. A., El-Sayed, H. A., Ali, A. H., Mohammed, Y. T., Khater, H. M., & Ouda, A. S. (2014). Physico-mechanical properties of high performance concrete using different aggregates in presence of silica fume. HBRC Journal, 10(1), 43–48. https://doi.org/10.1016/j.hbrcj.2013.06.002spa
dc.relation.referencesAl-Neshawy, F. (2003). Building Materials Technology. In Building Materials Technology (pp. 1–41).spa
dc.relation.referencesAmann-Hildenbrand, A., Bertier, P., Busch, A., & Krooss, B. M. (2013). Experimental investigation of the sealing capacity of generic clay-rich caprocks. International Journal of Greenhouse Gas Control, 19(October 2017), 620–641. https://doi.org/10.1016/j.ijggc.2013.01.040spa
dc.relation.referencesAra Jeknavorian, & Koehler, E. (2010). Use of Chemical Admixtures to Modify the Rheological Behavior of Cementitious Systems Containing Manufactured Aggregates. Concrete Sustainability Conference, 1–14.spa
dc.relation.referencesASOGRAVAS. (2016). Colombia duplicará su consumo de agregados pétreos en los próximos diez años - Grandes Realidades | ArgosGrandes Realidades | Argos. Retrieved October 24, 2017, from http://grandesrealidades.argos.co/colombia-duplicara-consumo-agregados-petreos-los-proximos-diez-anos/spa
dc.relation.referencesBanfill, P. F. G. (1991). Rheology of Fresh Cement and Concrete. 2006, 61–130. https://doi.org/10.4324/9780203473290spa
dc.relation.referencesBarton, C. D., & Karathanasis, A. D. (2002). CLAY MINERALS, United States Department of Agriculture Forest Service, Aiken, South Carolina, U.S.A & University of Kentucky, Lexington, Kentucky, U.S.A. https://doi.org/10.1081/E-ESS-120001688spa
dc.relation.referencesBASF. (2019). Master Builders Solutions BASF. Retrieved February 24, 2019, from https://www.master-builders-solutions.basf.com.co/es-cospa
dc.relation.referencesBrindley, G. W. (1952). Structural Mineralogy of Clays. Clays and Clay Minerals, 1(1), 33–43. https://doi.org/10.1346/CCMN.1952.0010105spa
dc.relation.referencesCardoso, F. A., John, V. M., Pileggi, R. G., & Banfill, P. F. G. (2014). Characterisation of rendering mortars by squeeze-flow and rotational rheometry. Cement and Concrete Research, 57, 79–87. https://doi.org/10.1016/j.cemconres.2013.12.009spa
dc.relation.referencesCavazzuti, M. (2013). Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics. Heidelberg: Springer.spa
dc.relation.referencesChen, G., Lei, J., Du, Y., Du, X., & Chen, X. (2018). A polycarboxylate as a superplasticizer for montmorillonite clay in cement: Adsorption and tolerance studies. Arabian Journal of Chemistry, 11(6), 747–755. https://doi.org/10.1016/j.arabjc.2017.12.027spa
dc.relation.referencesDANE. (2021). Boletín Técnico Indicadores Económicos Alrededor de la Boletín Técnico. Retrieved from https://www.dane.gov.co/files/investigaciones/boletines/pib_const/Bol_ieac_IVtrim20.pdfspa
dc.relation.referencesDean, A. (2017). Design and Analysis of Experiments (Second). Dayton: Springer. Del Vecchio, R. J. (2007). Design of Experiments. Handbook of Vinyl Formulating: Second Edition, 515–527. https://doi.org/10.1002/9780470253595.ch22spa
dc.relation.referencesEl país. (2014). El 2015 será otro buen año para el sector de la construcción, dicen expertos. Retrieved October 25, 2017, from http://www.elpais.com.co/economia/el-2015-sera-otro-buen-ano-para-el-sector-de-la-construccion-dicen-expertos.htmlspa
dc.relation.referencesEnvironmental Justice Organizations. Liabilities and Trade. (2014). Building an economy on quicksand. Retrieved from http://www.ejolt.org/2014/08/building-an-economy-on-quicksand/spa
dc.relation.referencesErdem, T. K., Khayat, K. H., & Yahia, A. (2009). Correlating rheology of self-consolidating concrete to corresponding concrete-equivalent mortar. ACI Materials Journal, 106(2), 154–160.spa
dc.relation.referencesErmut, A. H. R. M. (2001). BASELINE STUDIES OF THE CLAY MINERALS SOCIETY SOURCE CLAYS : LAYER-CHARGE DETERMINATION AND CHARACTERISTICS OF THOSE MINERALS CONTAINING 2 : 1 LAYERS. 49(5), 393–397.spa
dc.relation.referencesFeys, D., Cepuritis, R., Jacobsen, S., Lesage, K., Secrieru, E., & Yahia, A. (2017). Measuring Rheological Properties of Cement Pastes: Most common Techniques, Procedures and Challenges. RILEM Technical Letters, 2, 129–135. https://doi.org/10.21809/rilemtechlett.2017.43spa
dc.relation.referencesGermann Instruments A/S. (2010). Rheology using the ICAR Plus – An Introduction. Copenhagen.spa
dc.relation.referencesGillespie, M., & Styles, M. (1999). Rock classification, igneous rocks. In BGS Rock Classification Scheme (2nd ed., Vol. 1). Nottingham.spa
dc.relation.referencesGillespie, M., & Styles, M. (1999). Rock classification, igneous rocks. In BGS Rock Classification Scheme (2nd ed., Vol. 1). Nottingham.spa
dc.relation.referencesGök, S. G., & Kılınç, K. (2016). Effect of Clay-Mitigating Chemical Admixtures on Compressive Strength of Concrete. (April), 518–521spa
dc.relation.referencesGómez-Zamorano, L. Y., García-Guillén, G., & Acevedo-Dávila, J. L. (2015). Estudio de la hidratación de pastas de cemento portland reemplazadas con escoria granulada de alto horno, ceniza volante y metacaolín: efecto del empleo de dos aditivos superplastificantes. Revista ALCONPAT, 5(3), 193–208. https://doi.org/10.21041/ra.v5i3.89spa
dc.relation.referencesGoven, N. (2001). MICA STRUCTURE AND FIBROUS GROWTH OF ILLITE. Clays and Clay Minerals, 49(3), 189–196. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.8483&rep=rep1&type=pdfspa
dc.relation.referencesGuerra, N. (2014). 1 Las Arcillas: Propiedades Y Usos. 1–28. https://doi.org/10.1007/s10551-010-0632-9spa
dc.relation.referencesGutierrez, L. (2003). EL CONCRETO Y OTROS MATERIALES PARA LA CONSTRUCCIÓN. Manizalez.spa
dc.relation.referencesHasdemir, S., Tuʇrul, A., & Yilmaz, M. (2016). The effect of natural sand composition on concrete strength. Construction and Building Materials, 112, 940–948. https://doi.org/10.1016/j.conbuildmat.2016.02.188spa
dc.relation.referencesHill, T., Werner, M., & Horton, J. (1997). Chemical composition of sedimentary rocks in Colorado, Kansas, Montana, Nebraska, North Dakota, South Dakota and Wyoming. Washington.spa
dc.relation.referencesHu, J., Ge, Z., & Wang, K. (2014). Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times. Construction and Building Materials, 50(January), 657–663. https://doi.org/10.1016/j.conbuildmat.2013.10.011spa
dc.relation.referencesHydration Products of Cement | Chemical Reaction | Significance. (n.d.). Retrieved November 5, 2018, from https://learnandearnd5.blogspot.com/2017/08/hydration-products-of-cement-chemical.htmlspa
dc.relation.referencesIffat, S. (2015). Relation Between Density and Compressive Strength of Hardened Concrete. Concrete Research Letters, 6(4), 182–189.spa
dc.relation.referencesKondelchuk, D., & Miskovsky, K. (2009). Determination of the test methods sensitive to free mica content in aggregate fine fractions. Journal of Materials Engineering and Performance, 18(3), 282–286. https://doi.org/10.1007/s11665-008-9293-6spa
dc.relation.referencesKosmatka, S. H., & Wilson, M. (2013). Design and Control of Concrete Mixtures. In Universidad Carlos III de Madrid (15 th). https://doi.org/10.1080/08920753.2011.566117spa
dc.relation.referencesLiu, X., Jianan, G., & Lai, G. (2017). Novel designs of polycarboxylate superplasticizers for improving resistance in clay-contaminated concrete. Journal of Industrial and Engineering Chemistry, 55, 80–90. https://doi.org/10.1016/J.JIEC.2017.06.031spa
dc.relation.referencesLxxi, R. O. K., Przelaskowska, A., Łykowska, G., Klaja, J., Kowalska, S., & Gąsior, I. (2015). Application of the cation exchange capacity parameter ( CEC ) to the characterisation of the swelling capacity of lower Paleozoic , Carpathian Flysch and Miocene Carpathian Foredeep clay rocks. (6), 384–389.spa
dc.relation.referencesMacÍas-Quiroga, I. F., Giraldo-Gómez, G. I., & Sanabria-González, N. R. (2018). Characterization of Colombian Clay and Its Potential Use as Adsorbent. Scientific World Journal, 2018, 15–17. https://doi.org/10.1155/2018/5969178spa
dc.relation.referencesMadero, N., Madero, F., Paola, S., Ortíz, M., Alberto, C., Reyes, R., & Alarcón, M. C. (2014). Characterization and testing of rock aggregates of the Santa Marta Batholith , ( Colombia ) Caracterización y ensayo de agregados de rocas del Batolito de Santa Marta , ( Colombia ) Caracterização e testes de agregados de rochas do Batólito de Santa Marta. 27(2), 87–104.spa
dc.relation.referencesMaster Builders Solutions. (2020). Aditivo para hormigón de Master Builders Solutions, consigue una mención en los Premios Construmat 2019. Retrieved from https://www.master-builders-solutions.com/es-es/quienes-somos/noticias-y-comunicacion/construmat-awards-2019spa
dc.relation.referencesMelo, O. O., López, L. A., & Melo, S. E. (2007). Diseño de Experimentos: Métodos y Aplicaciones.spa
dc.relation.referencesMINVIVIENDA. (2015). Reglamentacion de construccion sostenible. Retrieved October 24, 2017, from http://www.minvivienda.gov.co/sala-de-prensa/noticias/2015/julio/colombia-puso-en-marcha-su-nueva-reglamentacion-de-construccion-sosteniblespa
dc.relation.referencesMontoya, D. M., & Reyes, G. A. (2003). Geología de la Plancha 209 Zipaquirá. Servicio Geológico Colombiano, 156.spa
dc.relation.referencesMoreno, R. (2005). Reología de suspensiones cerámicas. Madrid.spa
dc.relation.referencesNgugi, H. N., Mutuku, R. N., & Gariy, Z. A. (2014). Effects of Sand Quality on Compressive Strength of Concrete: A Case of Nairobi County and Its Environs, Kenya. Open Journal of Civil Engineering, 4(September), 255–273. https://doi.org/10.4236/ojce.2014.43022spa
dc.relation.referencesNikolaides, A., Manthos, E., Sarafidou, M. (2007). Sand equivalent and methylene blue value of aggregates for highway engineering. Foundations of Civil and Environmental Engineering, 10(06), 111–121spa
dc.relation.referencesNIST. (2021). National Institut of Standards and Technology. Retrieved from https://webbook.nist.gov/cgi/cbook.cgi?ID=61-73-4spa
dc.relation.referencesNRMCA. (2017). Concrete in practice. Retrieved November 5, 2018, from https://www.concreteanswers.org/CIPs/CIP26.htmspa
dc.relation.referencesOchieng, O. (2016). Characterization and classification of clay minerals for potential applications in Rugi Ward, Kenya. African Journal of Environmental Science and Technology, 10(11), 415–431. https://doi.org/10.5897/ajest2016.2184spa
dc.relation.referencesOlanitori, L. (2006). Mitigating the effect of clay content of sand on concrete strength. 31st Conference on Our World in Concrete & Structures, 16–17.spa
dc.relation.referencesOlanitori, L. M., & Olotuah, A. O. (2005). the Effect of Clayey Impurities in Sand on the Crushing Strength of Concrete ( a Case Study of Sand in Akure Metropolis , Ondo State , Nigeria ) the Effect of Clayey Impurities in Sand on the Crushing Strength of Concrete ( a Case Study of Sand in Akure M.spa
dc.relation.referencesPadilla, C. R. (2011). Efecto de la temperatura y tiempo de tratamiento térmico de las almendras trituradas de Sacha Inchi (Plukenetia volubilis L.) sobre el rendimiento y las características físico-químicas del aceite obtenido por prensado mecánico en frío. 2.spa
dc.relation.referencesPal, D. K., Bhattacharyya, T., Sinha, R., Srivastava, P., Dasgupta, A. S., Chandran, P., … Nimje, A. (2012). Clay minerals record from Late Quaternary drill cores of the Ganga Plains and their implications for provenance and climate change in the Himalayan foreland. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 27–37. https://doi.org/10.1016/j.palaeo.2011.05.009spa
dc.relation.referencesPoole, A., & Sims, I. (2016). Concrete petrography. A Handbook of investigative Techniques. CRC Press.spa
dc.relation.referencesRajadell, F., Planelles, J., & Climente, I. (2014). Cálculo del tensor de deformaciones en puntos cuánticos enterrados en matrices semiconductoras. Departament de Ciències Experimentals, Universitat Jaume I, 1–29.spa
dc.relation.referencesRamachandran, V. (1997). Alkali-aggregate expansion inhibiting admixtures. Cement and Concrete Composites, 20, 149–161.spa
dc.relation.referencesRivera L, G. A. (2011). Concreto Simple. Popayan: Universidad del Cauca.spa
dc.relation.referencesRouseel, N. (2012). Understanding the rheology of concrete. Cambridge: Woodhead Publishing Limited.spa
dc.relation.referencesRudy, A., & Olek, J. (2012). Optimization of Mixture Proportions for Concrete Pavements—Influence of Supplementary Cementitious Materials, Paste Content and Aggregate Gradation. 69p. https://doi.org/10.5703/1288284315038spa
dc.relation.referencesSchulze, D. G., & Lafayette, W. (2005). Clay minerals. 246–254.spa
dc.relation.referencesServicio Geológico Colombiano. (2003). Geología de las planchas 11 Santa Marta y 18 Ciénaga. Memoria Explicativa.spa
dc.relation.referencesServicio Geológico Colombiano. (2008). PLANCHA 209 - Zipaquiraspa
dc.relation.referencesServicio Geológico Colombiano. (2019). geoportal @ www2.sgc.gov.co. Retrieved from https://www2.sgc.gov.co/sgc/mapas/Paginas/geoportal.aspxspa
dc.relation.referencesServicio Geológico Colombino. (2009). Plancha 18 - Ciénaga. 720.spa
dc.relation.referencesShetty, M. S. (2000). Concrete Technology Theory and practice (Vol. 055). https://doi.org/10.1007/s13398-014-0173-7.2spa
dc.relation.referencesThermo Fisher Scientific. (2020). HAAKETM RheoWinTM Measuring and Evaluation Software. Retrieved from Measuring and Evaluation Software website: https://www.thermofisher.com/order/catalog/product/098-5062#/098-5062spa
dc.relation.referencesTobón, G. B., & Sánchez, C. B. (2014). Comportamiento mecánico de concreto con agregado reciclado tratado con lechadas pobres. Repository.Javeriana.Edu.Co. Retrieved from http://repository.javeriana.edu.co/handle/10554/15052spa
dc.relation.referencesUniversidad Autónoma de Madrid. (2021). Variedades de Cuarzo Microcristalino Microcris Información de caracter general. 1–16.spa
dc.relation.referencesUniversidad Autónoma de Madrid. (2021). Variedades de Cuarzo Microcristalino Microcris Información de caracter general. 1–16. Uriel, D. (2012). Procesos de dispersión de arcillas en agregados finos para mejorar su comportamiento físico y químico. Universidad Autónoma de Querétano. Woolf, G. (2019). World of Cities. BASF. Retrieved from http://www.worldcat.org/oclc/1050133187 TS - WorldCat T4 - The rise and fall of the ancient city M4 - Citavispa
dc.relation.referencesYang, W. (2015). The Issues and Discussion of Modern Concrete Science. https://doi.org/10.1007/978-3-662-47247-7spa
dc.relation.referencesYoon, M., Kim, G., Choel, G., Lee, Y., & Lee, T. (2015). Effect of coarse aggregate type and loading level on the high temperature properties of concrete. Construction and Building Materials, 78, 26–33. https://doi.org/10.1016/j.conbuildmat.2014.12.096spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.lembConcrete productseng
dc.subject.lembProductos de hormigónspa
dc.subject.lembMicaspa
dc.subject.lembMicaeng
dc.subject.proposalArenaspa
dc.subject.proposalArcillasspa
dc.subject.proposalConcreto hidráulicospa
dc.subject.proposalSustainabilityeng
dc.subject.proposalSandeng
dc.subject.proposalSostenibilidadspa
dc.subject.proposalPolímero polieléctricospa
dc.subject.proposalClayseng
dc.subject.proposalPolyelectric polymereng
dc.subject.proposalHydraulic concreteeng
dc.subject.unescoMateriales de construcciónspa
dc.subject.unescoBuilding materialseng
dc.titleMejoramiento del comportamiento físico y químico de las arcillas y materiales micáceos presentes en agregados finos de mala calidad para su uso en la producción de concreto hidráulicospa
dc.title.translatedImprovement of the physical and chemical behavior of clays and micaceous materials present in poor quality fine aggregates for use in the production of hydraulic concreteeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030609867.2021.pdf
Tamaño:
8.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Estructuras

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: