Hybrid Optomechanics: an interface for qubits, cavities, and mechanical resonators

dc.contributor.advisorVinck Posada, Herbertspa
dc.contributor.authorRamírez Muñoz, Jhon Edinsonspa
dc.contributor.researchgroupGrupo de Óptica e Información Cuánticaspa
dc.date.accessioned2021-02-12T18:21:54Zspa
dc.date.available2021-02-12T18:21:54Zspa
dc.date.issued2020-08-01spa
dc.description.abstractThe insertion of motion into the quantum realm, on one hand, has opened the door to study fundamental non-classical physics with macroscopic objects, and, on the other hand, brings promising applications for the emerging field of quantum technologies. The two main paradigms to accomplish such intriguing properties in mechanical resonators are their coupling with light confined in cavities and with artificial atoms working as quantum bits (qubits). Both are framed within the quantum acoustics field. Accordingly, implementation of many proof-of-principle studies brought from the quantum optics led to outstanding achievements in the field during the last decade, not to mention that quantum acoustics has only just started to be catapulted as a preferred scenario to realise highly performant quantum networks by being integrated with already existing architectures. A step further, the combination of qubits, cavities and mechanical resonators in a single platform, brings so many unprecedented opportunities that nowadays it has become a very active research field known as hybrid optomechanics. In this thesis, several setups involving atoms, light and motion are studied from the theoretical point of view. The main goal of the thesis is to obtain widely desired attributes of quantum networks using mechanical resonators. Firstly, this thesis demonstrates that mechanical resonators, working as mediators between qubits and cavities, allow the emission of on-demand single photons. Secondly, the research proposes that mechanical resonators can work as resources for entangling separated light-matter or cQED (from cavity Quantum Electrodynamics) nodes in a quantum network. Finally, along with experiments carried out by researchers from the Quantum Nanomechanics group at Aalto University, this thesis presents a scheme to interface multiple modes of a microwave mechanical resonator by the use of a superconducting qubit. Particularly, the external modulation on the qubit frequency is proposed as a mechanism to switch on and off the qubit-mechanics interaction, which is accompanied by a protocol for quantum storage.spa
dc.description.abstractLa introducción de movimiento en el dominio cuántico, por un lado, ha abierto la puerta al estudio de física no-clásica fundamental con objetos macroscópicos, y por otro lado, trae aplicaciones prometedoras para el campo emergente de tecnologías cuánticas. Los dos principales paradigmas para lograr tales propiedades interesantes en resonadores mecánicos son su acople con luz confinada en cavidades y átomos artificiales funcionando como bits cuánticos (qubits). Ambos están enmarcados en la acústica cuántica. Por consiguiente, implementaciones de pruebas de concepto traídas de la óptica cuántica llevó a logros extraordinarios en el área durante la última década, sin mencionar que la acústica cuántica apenas ha empezado a catapultarse como un escenario predilecto para realizar redes cuánticas muy eficientes al ser integrada con las arquitecturas ya existentes. Un paso más allá, la combinación de qubits, cavidades y resonadores mecánicos en una sola plataforma, trae tantas oportunidades sin precedentes que actualmente ha llegado a ser un campo de investigación muy activo conocido como optomecánica híbrida. En esta tesis, varias configuraciones involucrando átomos, luz y movimiento son estudiadas desde el punto de vista teórico. El principal objetivo de la tesis es obtener atributos muy deseados en redes cuánticas usando resonadores mecánicos. En primer lugar, este tesis demuestra que los resonadores mecánicos, funcionando como mediadores entre qubits y cavidades, permiten la emisión de fotones individuales bajo demanda. En segundo lugar, la investigación aquí propone que los resonadores mecánicos pueden funcionar como recursos para entrelazar nodos luz-materia o cQED (del inglés cavity Quantum Electrodynamics) en una red cuántica. Finalmente, junto con experimentos llevados a cabo por investigadores del grupo Quantum Nanomechanics en la Universidad de Aalto, esta tesis presenta un esquema para interactuar multiples modos de un resonador mecánico de microondas mediante el uso de un qubit superconductor. En particular, la modulación externa de la frecuencia del qubit es propuesta como un mecanismo para prender y apagar la interacción entre el qubit y el resonador mecánico, lo cual está acompañado por un protocolo de almacenamiento cuántico.spa
dc.description.additionalGrupo de Superconductividad y Nanotecnología “Convocatoria No. 727 de 2015 – Doctorados Nacionales 2015”, y también por financiar el trabajo de investigación a través de los proyectos “Emisión en sistemas de qubits superconductores acoplados a la radiación” (código 110171249692, CT 293- 2016, HERMES 31361), “Control dinámico de la emisión en sistemas de qubits acoplados con cavidades no-estacionarias” (HERMES 41611) y “Optomecánica y Electrodinámica con Puntos Cuánticos en Microcavidades” (HERMES 39177).spa
dc.description.degreelevelDoctoradospa
dc.description.projectEmisión en sistemas de qubits superconductores acoplados a la radiaciónspa
dc.description.sponsorshipCOLCIENCIASspa
dc.format.extent1 recurso en línea (127 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79224
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesG. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, “Quantum technologies with hybrid systems”, Proceedings of the National Academy of Sciences 112, 3866 (2015), https://doi.org/10.1073/pnas.1419326112spa
dc.relation.referencesM. Weiß, and H. J. Krenner, “Interfacing quantum emitters with propagating surface acoustic waves”, Journal of Physics D: Applied Physics 51 (2018) 10.1088/1361-6463/aace3c, https://doi.org/ 10.1088/1361-6463/aace3cspa
dc.relation.referencesJ.-M. Pirkkalainen, S. U. Cho, J. Li, G. S. Paraoanu, P. J. Hakonen, and M. a. Sillanpää, “Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator”, Nature 494, 211 (2013), https://doi.org/10.1038/nature11821spa
dc.relation.referencesS Kapfinger, T Reichert, J. J. Finley, A Wixforth, M Kaniber, and H. J. Krenner, “Surface acoustic wave regulated single photon emission from a coupled quantum dot– nanocavity system”, Applied Physics Letters 109, 1 (2016), http://dx.doi.org/10.1063/1.4959079spa
dc.relation.referencesB. Villa, A. J. Bennett, D. J. Ellis, J. P. Lee, J. Skiba-Szymanska, T. A. Mitchell, J. P. Griffiths, I. Farrer, D. A. Ritchie, C. J. Ford, and A. J. Shields, “Surface acoustic wave modulation of a coherently driven quantum dot in a pillar microcavity”, Applied Physics Letters 111, 1 (2017), http://dx.doi.org/10.1063/1.4990966spa
dc.relation.referencesJ.-M. Pirkkalainen, S. U. Cho, F Massel, J Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, “Cavity optomechanics mediated by a quantum two-level system”, Nature communications 6 (2015) 10.1038/ncomms7981, https:/ /doi.org/10.1038/ncomms7981spa
dc.relation.referencesA. A. Clerk, K. W. Lehnert, P. Bertet, J. R. Petta, and Y. Nakamura, “Hybrid quantum systems with circuit quantum electrodynamics”, Nature Physics 16, 257 (2020), https://doi.org/10.1038/s41567-020-0797-9spa
dc.relation.referencesZ.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems”, Reviews of Modern Physics 85, 623(31) (2013), https://doi.org/10.1103/RevModPhys.85.623spa
dc.relation.referencesY. Chu, and S. Gr¨oblacher, “A perspective on hybrid quantum opto- and electromechanical systems”, arXiv:2007.03360 (2020), http://arxiv.org/abs/2007.03360spa
dc.relation.referencesC. Dong, Y. Wang, and H. Wang, “Optomechanical interfaces for hybrid quantum networks”, National Science Review 2, 510 (2015), https://doi.org/10.1093/nsr/nwv048spa
dc.relation.referencesK. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom”, Physical Review Letters 103, 1 (2009), https://doi.org/10.1103/PhysRevLett.103.063005spa
dc.relation.referencesJ. Restrepo, C. Ciuti, and I. Favero, “Single-polariton optomechanics”, Physical Review Letters 112, 1 (2014), https://doi.org/10.1103/PhysRevLett.112.013601spa
dc.relation.referencesB.-y. Zhou, and G.-x. Li, “Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum dot–cavity system”, Physical Review A 94, 1 (2016), https://doi.org/10.1103/PhysRevA.94.033809spa
dc.relation.referencesO. Kyriienko, T. C. H. Liew, and I. A. Shelykh, “Optomechanics with cavity polaritons: Dissipative coupling and unconventional bistability”, Physical Review Letters 112, 1 (2014), https://doi.org/10.1103/PhysRevLett.112.076402spa
dc.relation.referencesH. Ian, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Cavity optomechanical coupling assisted by an atomic gas”, Physical Review A 78, 1 (2008), https://doi.org/10.1103/PhysRevA.78.013824spa
dc.relation.referencesT. Holz, R. Betzholz, and M. Bienert, “Suppression of Rabi oscillations in hybrid optomechanical systems”, Physical Review A 92, 1 (2015), https://doi.org/10.1103/PhysRevA.92.043822spa
dc.relation.referencesY. Han, J. Cheng, and L. Zhou, “Electromagnetically induced transparency in a cavity optomechanical system with an atomic medium”, Journal of Physics B: Atomic, Molecular and Optical 44, 165505 (2011), https://doi.org/10.1088/0953- 4075/44/16/165505spa
dc.relation.referencesC. H. Bai, D. Y. Wang, H. F. Wang, A. D. Zhu, and S. Zhang, “Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system”, Scientific Reports 6, 1 (2016), http://dx.doi.org/10.1038/srep33404spa
dc.relation.referencesT. T. Heikkilä, F Massel, J Tuorila, R Khan, and M. A. Sillanpää, “Enhancing Optomechanical Coupling via the Josephson Effect”, Physical Review Letters 112, 1 (2014), https://doi.org/10 .1103/PhysRevLett.112.203603spa
dc.relation.referencesL. Neumeier, T. E. Northup, and D. E. Chang, “Reaching the optomechanical strong-coupling regime with a single atom in a cavity”, Physical Review A 97, 1 (2018), https://doi.org/10.1103/PhysRevA.97.063857spa
dc.relation.referencesX. Wang, W. Qin, A. Miranowicz, S. Savasta, and F. Nori, “Unconventional Cavity Optomechanics: Nonlinear Control of Phonons in the Acoustic Quantum Vacuum”, Physical Review A 100 (2019) 10.1103/PhysRevA.100.063827spa
dc.relation.referencesJ. E. Ramírez-Muñoz, J. P. Restrepo Cuartas, and H. Vinck-Posada, “Indirect strong coupling regime between a quantum emitter and a cavity mediated by a mechanical resonator”, Physics Letters A 382, 3109 (2018)spa
dc.relation.referencesK. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, “Optomechanical transducers for long-distance quantum communication”, Physical Review Letters 105, 1 (2010)spa
dc.relation.referencesC. Jiang, L. Jiang, H. Yu, Y. Cui, X. Li, and G. Chen, “Fano resonance and slow light in hybrid optomechanics mediated by a two-level system”, Physical Review A 96, 1 (2017)spa
dc.relation.referencesH. Wang, X. Gu, Y.-x. Liu, A. Miranowicz, and F. Nori, “Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system”, Physical Review A 92, 1(2015)spa
dc.relation.referencesM. Cotrufo, A. Fiore, and E. Verhagen, “Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems”, Physical Review Letters 118, 1 (2017)spa
dc.relation.referencesM. Abdi, M. Pernpeintner, R. Gross, H. Huebl, and M. J. Hartmann, “Quantum state engineering with circuit electromechanical three-body interactions”, Physical Review Letters 114, 1 (2015)spa
dc.relation.referencesJ. Restrepo, I. Favero, and C. Ciuti, “Fully coupled hybrid cavity optomechanics: Quantum interferences and correlations”, Physical Review A 95, 1 (2017)spa
dc.relation.referencesM. Wang, X.-Y. L¨u, A. Miranowicz, T.-S. Yin, Y. Wu, and F. Nori, “Unconventional phonon blockade via atom photon-phonon interaction in hybrid optomechanical systems”, arXiv:1806.03754, 1 (2018)spa
dc.relation.referencesS. N. Huai, Y. L. Liu, Y. Zhang, and Y. X. Liu, “Mechanically modulated emission spectra and blockade of polaritons in a hybrid semiconductor-optomechanical system”, Physical Review A 98, 1 (2018),spa
dc.relation.referencesR. Blattmann, H. J. Krenner, S. Kohler, and P. H¨anggi, “Entanglement creation in a quantum-dot-nanocavity system by Fouriersynthesized acoustic pulses”, Physical Review A 89, 1 (2014)spa
dc.relation.referencesE. Afsaneh, M. B. Harouni, and M. Jafari, “Entanglement between distant atoms mediated by a hybrid quantum system consisting of superconducting flux qubit and resonators”, Journal of Physics B: Atomic, Molecular and Optical Physics 51 (2018)spa
dc.relation.referencesJ. E. Ramírez-Muñoz, J. P. R. Cuartas, and H. Vinck-Posada, “Quantum correlations between two cavity QED systems coupled by a mechanical resonator”, European Physical Journal B 91 (2018)spa
dc.relation.referencesM. Kervinen, J. E. Ramírez-Muñoz, A. Välimaa, and M. A. Sillanpää, “Landau-Zener-Stückelberg interference in a multimode electromechanical system in the quantum regime”, Physical Review Letters 123 (2019)spa
dc.relation.referencesM. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)spa
dc.relation.referencesD. Walls, and G. J. Milburn, Quantum Optics (Springer, Berlin, 2007)spa
dc.relation.referencesC. Gerry, and P. Knight, Introductory quantum optics (Cambridge University Press, New York, 2005)spa
dc.relation.referencesJ.-M. Gérard, and B. Gayral, “Semiconductor microcavities, quantum boxes and the Purcell effect”, in Confined photon systems, Vol. 531 (Springer, 2007)spa
dc.relation.referencesE. M. Purcell, “Spontaneous emission probabilities at radio frequencies”, Physical Review 69, 681 (1946)spa
dc.relation.referencesF. P. Laussy, and E. del Valle, “Regimes of strong light-matter coupling under incoherent excitation”, Physical Review A 84, 1 (2011), https://doi.org/10.1103/PhysRevA.84.043816spa
dc.relation.referencesD. I. Schuster, A. A. Houck, J. A. Schreier, A Wallraff, J. M. Gambetta, A Blais, L Frunzio, J Majer, B. Johnson, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Resolving photon number states in a superconducting circuit”, Nature 445, 515 (2007)spa
dc.relation.referencesS. Haroche, and D. Kleppner, “Cavity quantum electrodynamics”, Physics Today 42, 24 (1989)spa
dc.relation.referencesS. Haroche, “Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary”, Reviews of Modern Physics 85, 1083 (2013)spa
dc.relation.referencesY. Arakawa, J. Finley, R. Gross, F. Laussy, E. Solano, and J. Vuckovic, “Focus on cavity and circuit quantum electrodynamics in solids”, New Journal of Physics 17, 1 (2015)spa
dc.relation.referencesJ. P. Reithmaier, G Sek, A Löffler, C Hofmann, S Kuhn, S Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system.”, Nature 432, 197 (2004)spa
dc.relation.referencesT Yoshie, A Scherer, J Hendrickson, G. Khitrova, H. M. Gibbs, G Rupper, C Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity”, Nature 432, 200 (2004)spa
dc.relation.referencesP. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures”, Reviews of Modern Physics 87 (2015)spa
dc.relation.referencesG. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A Scherer, “Vacuum Rabi splitting in semiconductors”, Nature Physics 2, 81 (2006)spa
dc.relation.referencesE. del Valle Reboul, “Quantum Electrodynamics with Quantum Dots in Microcavities”, PhD thesis (Universidad Autónoma de Madrid, 2009)spa
dc.relation.referencesA. Kavokin, J. J. Baumberg, F. P. Laussy, and G. Malpuech, Microcavities, Second (Oxford University Press, 2017)spa
dc.relation.referencesA. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation”, Physical Review A 69, 1 (2004)spa
dc.relation.referencesA Wallraff, D. I. Schuster, A Blais, L Frunzio, R.-S. Huang, J Majer, S Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics”, Nature 431, 162 (2004)spa
dc.relation.referencesX. Gu, A. F. Kockum, A. Miranowicz, Y. xi Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits”, Physics Reports 718-719, 1 (2017)spa
dc.relation.referencesJ. Q. You, and F. Nori, “Atomic physics and quantum optics using superconducting circuits”, Nature 474, 589 (2011)spa
dc.relation.referencesJ. Q. You, and F. Nori, “Superconducting Circuits and Quantum Information”, Physics Today 58, 42 (2005)spa
dc.relation.referencesM. H. Devoret, and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook”, Science 339, 1169 (2013)spa
dc.relation.referencesJ. Clarke, and F. K. Wilhelm, “Superconducting quantum bits”, Nature 453, 1031 (2008)spa
dc.relation.referencesA. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter”, Nature Reviews Physics 1 (2019)spa
dc.relation.referencesR. Loudon, The Quantum Theory of Light (Oxford University Press, 2000)spa
dc.relation.referencesP. Alsing, D. S. Guo, and H. J. Carmichael, “Dynamic Stark effect for the Jaynes-Cummings system”, Physical Review A 45, 5135 (1992)spa
dc.relation.referencesL. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. Thuneberg, S. M. Girvin, and R. J. Schoelkopf, “Nonlinear response of the vacuum Rabi resonance”, Nature Physics 5, 105 (2009)spa
dc.relation.referencesJ. M. Fink, M. G¨oppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the Jaynes-Cummings ladder and observing its n nonlinearity in a cavity QED system”, Nature 454, 315 (2008)spa
dc.relation.referencesJ Kasprzak, S Reitzenstein, E. a. Muljarov, C Kistner, C Schneider, M Strauss, S H¨ofling, A Forchel, and W Langbein, “Up on the JaynesCummings ladder of a quantum-dot/microcavity system”, Nature materials 9, 304 (2010)spa
dc.relation.referencesM. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010)spa
dc.relation.referencesC. Monroe, “Quantum information processing with atoms and photons”, Nature 416, 238 (2002)spa
dc.relation.referencesH. J. Kimble, “The quantum internet”, Nature 453, 1023 (2008)spa
dc.relation.referencesF Petruccione, and H. Breuer, The Theory of Open Quantum Systems (Oxford University Press, 2002)spa
dc.relation.referencesC. Gardiner, Quantum Noise (Springer-Verlag Berlin Heidelberg, 1991)spa
dc.relation.referencesN. Ishida, T. Byrnes, F. Nori, and Y. Yamamoto, “Photoluminescence of a microcavity quantum dot system in the quantum strong coupling regime”, Scientific reports 3 (2013)spa
dc.relation.referencesJ. I. Perea, D. Porras, and C. Tejedor, “Dynamics of the excitations of a quantum dot in a microcavity”, Physical Review B 70, 1 (2004)spa
dc.relation.referencesR. J. Glauber, “Nobel lecture: One hundred years of light quanta”, Reviews of Modern Physics 78, 1267 (2006)spa
dc.relation.referencesE. Zubizarreta Casalengua, J. C. López Carreño, F. P. Laussy, and E. del Valle, “Conventional and Unconventional Photon Statistics”, Laser and Photonics Reviews 14 (2020)spa
dc.relation.referencesM. A. Lemonde, N. Didier, and A. A. Clerk, “Antibunching and unconventional photon blockade with Gaussian squeezed states”, Physical Review A 90, 1 (2014),spa
dc.relation.referencesK. M. Birnbaum, A. Boca, R. Miller, a. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom”, Nature 436, 87 (2005)spa
dc.relation.referencesA. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade”, Nature Physics 4, 859 (2008)spa
dc.relation.referencesA. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H. E. Treci, and A. A. Houck, “Dispersive photon blockade in a superconducting circuit”, Physical Review Letters 107, 1 (2011)spa
dc.relation.referencesC. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, a. a. Abdumalikov, M. Baur, S. Filipp, M. P. Da Silva, A. Blais, and A. Wallraff, “Observation of resonant photon blockade at microwave frequencies using correlation function measurements”, Physical Review Letters 106, 1 (2011)spa
dc.relation.referencesH. J. Snijders, J. A. Frey, J. Norman, H. Flayac, V. Savona, A. C. Gossard, J. E. Bowers, M. P. Van Exter, D. Bouwmeester, and W. Löffler, “Observation of the Unconventional Photon Blockade”, Physical Review Letters 121, 1 (2018)spa
dc.relation.referencesJ. Tang, W. Geng, and X. Xu, “Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot Cavity System”, Scientific Reports 5 (2015)spa
dc.relation.referencesC. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, and J. Estève, “Observation of the Unconventional Photon Blockade in the Microwave Domain”, Physical Review Letters 121, 1 (2018)spa
dc.relation.referencesT. C. H. Liew, and V. Savona, “Single photons from coupled quantum modes”, Physical Review Letters 104, 1 (2010)spa
dc.relation.referencesM. Bamba, A. Imamoglu, I. Carusotto, and C. Ciuti, “Origin of strong photon antibunching in weakly nonlinear photonic molecules”, Physical Review A 83, 1 (2011)spa
dc.relation.referencesB. Lounis, and M. Orrit, “Single-photon sources”, Reports on Progress in Physics 68, 1129 (2005)spa
dc.relation.referencesM. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors”, Review of Scientific Instruments 82 (2011)spa
dc.relation.referencesR. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement”, Reviews of Modern Physics 81 (2009)spa
dc.relation.referencesJ. M. Raimond, M. Brune, and S. Haroche, “Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity”, Reviews of Modern Physics 73, 565 (2001)spa
dc.relation.referencesB. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, and G. Rempe, “Deterministic creation of entangled atom-light Schrödinger cat states”, Nature Photonics 13, 110 (2019)spa
dc.relation.referencesA. Peres, “Separability criterion for density matrices”, Physical Review Letters 77, 1413 (1996)spa
dc.relation.referencesD. G. Suárez-Forero, G. Cipagauta, H. Vinck-Posada, K. M. Fonseca Romero, B. A. Rodríguez, and D. Ballarini, “Entanglement properties of quantum polaritons”, Physical Review B 93, 1 (2016)spa
dc.relation.referencesC. A. Vera, N. Quesada, H. Vinck-Posada, and B. A. Rodríguez, “Characterization of dynamical regimes and entanglement sudden death in a microcavity quantum dot system”, Journal of Physics: Condensed Matter 21 (2009)spa
dc.relation.referencesK. C. Schwab, and M. L. Roukes, “Putting mechanics into quantum mechanics”, Physics Today 58, 36 (2005)spa
dc.relation.referencesM. Poot, and H. S.J.V. D. Zant, “Mechanical systems in the quantum regime”, Physics Reports 511, 273 (2012)spa
dc.relation.referencesW. Bowen, and G. Milburn, Quantum Optomechanics (CRC Press, 2016)spa
dc.relation.referencesM. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum Optomechanics”, Physics Today 65, 29 (2012)spa
dc.relation.referencesM Aspelmeyer, T. J. Kippenberg, and F Marquard, “Cavity optomechanics”, Reviews of Modern Physics 86, 1391(62) (2014)spa
dc.relation.referencesI. Favero, and K. Karrai, “Optomechanics of deformable optical cavities”, Nature Photonics 3, 201 (2009)spa
dc.relation.referencesC. A. Regal, and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics”, Journal of Physics: Conference Series 264 (2011)spa
dc.relation.referencesY. L. Liu, C. Wang, J. Zhang, and Y. X. Liu, “Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling”, Chinese Physics B 27, 1 (2018)spa
dc.relation.referencesC. K. Law, “Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation”, Physical Review A 51, 2537 (1995)spa
dc.relation.referencesM. Aspelmeyer, J. Chan, T. P. M. Alegre, A. H. Safavi-naeini, J. T. Hill, A. Krause, and S. Gro, “Laser cooling of a nanomechanical oscillator into its quantum ground state”, Nature 478, 89 (2011)spa
dc.relation.referencesT. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator”, Nature 495, 210 (2013)spa
dc.relation.referencesL. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and I. Favero, “High frequency GaAs nano-optomechanical disk resonator”, Physical Review Letters 105, 1 (2010)spa
dc.relation.referencesE Verhagen, S Del´eglise, S Weis, A Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode”, Nature 482, 63 (2012)spa
dc.relation.referencesA Fainstein, B Jusserand, and B Perrin, “Strong Optical-Mechanical Coupling in a Vertical GaAs/AlAs Microcavity for Subterahertz Phonons and Near-Infrared Light”, Physical Review Letters 110, 1 (2013)spa
dc.relation.referencesE Gavartin, R Braive, I Sagnes, O Arcizet, A Beveratos, T. J. Kippenberg, and I Robert-Philip, “Optomechanical Coupling in a TwoDimensional Photonic Crystal Defect Cavity”, Physical Review Letters 106, 1 (2011)spa
dc.relation.referencesM. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals”, Nature 462, 78 (2009)spa
dc.relation.referencesY. Pennec, V. Laude, N. Papanikolaou, B. Djafari-rouhani, M. Oudich, S. E. Jallal, J. C. Beugnot, and J. M. Escalante, “Modeling light-sound interaction in nanoscale cavities and waveguides”, Nanophotonics 3, 413 (2014)spa
dc.relation.referencesD. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons”, Nature Photonics 5, 605 (2011)spa
dc.relation.referencesS. Kapfinger, T. Reichert, S. Lichtmannecker, K. Mu, J. J. Finley, A. Wixforth, M. Kaniber, and H. J. Krenner, “Dynamic acousto-optic control of a strongly coupled photonic molecule”, Nature communications 6 (2015)spa
dc.relation.referencesS. Gr¨oblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field”, Nature 460, 724 (2009)spa
dc.relation.referencesJ. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime”, Nature 471, 204 (2011)spa
dc.relation.referencesJ. D. Thompson, B. M. Zwickl, a. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane.”, Nature 452, 72 (2008)spa
dc.relation.referencesJ.-Q. Liao, and F. Nori, “Photon blockade in quadratically coupled optomechanical systems”, Physical Review A 88, 1 (2013)spa
dc.relation.referencesK. Sala, and T. Tufarelli, “Exploring corrections to the Optomechanical Hamiltonian”, Scientific Reports 8, 1 (2018)spa
dc.relation.referencesV. Macrì, A. Ridolfo, O. Di Stefano, A. F. Kockum, F. Nori, and S. Savasta, “Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings”, Physical Review X 8 (2018)spa
dc.relation.referencesE. Jansen, J. D. Machado, and Y. M. Blanter, “Realization of a degenerate parametric oscillator in electromechanical systems”, Physical Review B 99, 1 (2019)spa
dc.relation.referencesM. Sanz, W. Wieczorek, S. Gr¨oblacher, and E. Solano, “Electromechanical Casimir effect”, Quantum 2, 91 (2018)spa
dc.relation.referencesA. B. Shkarin, A. D. Kashkanova, C. D. Brown, S. Garcia, K. Ott, J. Reichel, and J. G. E. Harris, “Quantum optomechanics in a liquid”, Physical Review Letters 122 (2019)spa
dc.relation.referencesP. Kharel, G. I. Harris, E. A. Kittlaus, W. H. Renninger, N. T. Otterstrom, J. G. E. Harris, and P. T. Rakich, “High frequency cavity optomechanics using bulk acoustic phonons”, Science Advances 5, 1 (2019)spa
dc.relation.referencesP. Kharel, Y. Chu, E. A. Kittlaus, N. T. Otterstrom, S. Gertler, and P. T. Rakich, “Multimode strong coupling in cavity optomechanics”, arXiv:1812.06202v2 (2019)spa
dc.relation.referencesX. Han, C. L. Zou, and H. X. Tang, “Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics”, Physical Review Letters 117, 1 (2016)spa
dc.relation.referencesC. L. Zou, X. Han, L. Jiang, and H. X. Tang, “Cavity piezo-mechanical strong coupling and frequency conversion on an aluminum nitride chip”, Physical Review A 94, 1 (2016)spa
dc.relation.referencesL. Midolo, A. Schliesser, and A. Fiore, “Nano-opto-electro-mechanical systems”, Nature Nanotechnology 13, 11 (2018)spa
dc.relation.referencesC. Zhong, Z. Wang, C. Zou, M. Zhang, X. Han, W. Fu, M. Xu, S. Shankar, M. H. Devoret, H. X. Tang, and L. Jiang, “Proposal for Heralded Generation and Detection of Entangled Microwave–OpticalPhoton Pairs”, Physical Review Letters 124 (2020)spa
dc.relation.referencesJ. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, “Nanomechanical coupling between microwave and optical photons”, Nature Physics 9, 712 (2013)spa
dc.relation.referencesC. Ockeloen-Korppi, E. Damsk¨agg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F Massel, M. J. Woolley, and M. A. Sillanp¨a¨a, “Stabilized entanglement of massive mechanical oscillators”, Nature 556, 478 (2018)spa
dc.relation.referencesI. Marinkovic, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, and S. Gröblacher, “Optomechanical Bell test”, Physical Review Letters 121, 1 (2018)spa
dc.relation.referencesG. Luo, Z.-z. Zhang, G.-w. Deng, H.-O. Li, G. Cao, M. Xiao, G.- C. Guo, L. Tian, and G.-P. Guo, “Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity”, Nature Communications 9 (2018)spa
dc.relation.referencesO. Di Stefano, V. Macr`ı, A. Ridolfo, R. Stassi, A. F. Kockum, S. Savasta, and F. Nori, “Interaction of Mechanical Oscillators Mediated by the Exchange of Virtual Photon Pairs”, Physical Review Letters 122, 1 (2019)spa
dc.relation.referencesP. Rabl, “Photon blockade effect in optomechanical systems”, Physical Review Letters 107, 1 (2011)spa
dc.relation.referencesA. Nunnenkamp, K. Børkje, and S. M. Girvin, “Single-photon optomechanics”, Physical Review Letters 107, 1 (2011)spa
dc.relation.referencesM. A. Lemonde, N. Didier, and A. A. Clerk, “Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification”, Nature Communications 7 (2016)spa
dc.relation.referencesV. Savona, “Unconventional photon blockade in coupled optomechanical systems”, arXiv:1302.5937v2 (2013)spa
dc.relation.referencesV. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator”, Physical Review Letters 107, 1 (2011)spa
dc.relation.referencesJ. Li, W. Bin, and K. D. Zhu, “All-Optically controlled quantum memory for light with a cavity-optomechanical system”, Entropy 15, 434 (2013)spa
dc.relation.referencesA. D. O’Connell, M Hofheinz, M Ansmann, R. C. Bialczak, M Lenander, E. Lucero, M Neeley, D Sank, H Wang, M Weides, J Wenner, J. M. Martinis, and a. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator”, Nature 464, 697spa
dc.relation.referencesY. Chu, P. Kharel, W. H. Renninger, L. D. Burkhart, L. Frunzio, P. T. Rakich, and R. J. Schoelkopf, “Quantum acoustics with superconducting qubits”, Science 358, 199 (2017)spa
dc.relation.referencesJ. J. Viennot, X Ma, and K. W. Lehnert, “Phonon-Number-Sensitive Electromechanics”, Physical Review Letters 121, 1 (2018)spa
dc.relation.referencesR. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, and P. J. Leek, “Circuit quantum acoustodynamics with surface acoustic waves”, Nature Communications 8, 1 (2017)spa
dc.relation.referencesI Yeo, P.-L. de Assis, A Gloppe, E Dupont-Ferrier, P Verlot, N. S. Malik, E Dupuy, J Claudon, J.-M. Gérard, A Auffèves, G Nogues, S Seidelin, J.-p. Poizat, O Arcizet, and M Richard, “Strain-mediated coupling in a quantum dot-mechanical oscillator hybrid system”, Nature Nanotechnology 9, 106 (2014)spa
dc.relation.referencesJ. C. Chen, Y. Sato, R. Kosaka, M. Hashisaka, K. Muraki, and T. Fujisawa, “Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity”, Scientific Reports 5, 1 (2015)spa
dc.relation.referencesA. N. Cleland, and M. R. Geller, “Superconducting Qubit Storage and Entanglement with Nanomechanical Resonators”, Physical Review Letters 93, 1 (2004)spa
dc.relation.referencesY. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, and R. J. Schoelkopf, “Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator”, Nature 563, 660 (2018)spa
dc.relation.referencesM. Kervinen, A. Välimaa, J. E. Ramírez-Muñoz, and M. A. Sillanpää, “Sideband control of a multimode quantum bulk acoustic system”, arXiv:2006.05446, 1 (2020)spa
dc.relation.referencesM. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekström, G. Johansson, and P. Delsing, “Propagating phonons coupled to an artificial atom - supplementary materials”, Science 346, 207 (2014)spa
dc.relation.referencesB. A. Moores, L. R. Sletten, J. J. Viennot, and K. W. Lehnert, “Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime”, Physical Review Letters 120, 1 (2018)spa
dc.relation.referencesL. R. Sletten, B. A. Moores, J. J. Viennot, and K. W. Lehnert, “Resolving Phonon Fock States in a Multimode Cavity with a Double-Slit Qubit”, Physical Review X 9 (2019)spa
dc.relation.referencesP. Arrangoiz-Arriola, E. A. Wollack, Z. Wang, M. Pechal, W. Jiang, T. P. McKenna, J. D. Witmer, and A. H. Safavi-Naeini, “Resolving the energy levels of a nanomechanical oscillator”, Nature 571, 537 (2019)spa
dc.relation.referencesJ.-M. Pirkkalainen, “Mechanical Resonators Coupled to Superconducting Circuits”, PhD thesis (Aalto University, 2014)spa
dc.relation.referencesI Wilson-Rae, P Zoller, and A Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state”, Physical review letters 92, 1 (2004)spa
dc.relation.referencesM. Metcalfe, S. M. Carr, A. Muller, G. S. Solomon, and J. Lawall, “Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves”, Physical Review Letters 105, 1 (2010)spa
dc.relation.referencesN. Nauman, “Solid-state-based analog of optomechanics”, Journal of the Optical Society of America B 33, 1492 (2016)spa
dc.relation.referencesJ.-j. Li, and K.-d. Zhu, “Nanometer optomechanical transistor based on nanometer cavity optomechanics with a single quantum dot”, Journal of Applied Physics 110 (2011)spa
dc.relation.referencesP. Rabl, P. Cappellaro, M. V. Dutt, L. Jiang, J. R. Maze, and M. D. Lukin, “Strong magnetic coupling between an electronic spin qubit and a mechanical resonator”, Physical Review B 79, 1 (2009)spa
dc.relation.referencesS. Kolkowitz, A. C. Bleszynski Jayich, Q. P. Unterreithmeier, S. D. Bennett, P. Rabl, J. G. Harris, and M. D. Lukin, “Coherent sensing of a mechanical resonator with a single-spin qubit”, Science 335, 1603 (2012)spa
dc.relation.referencesK. W. Lee, D. Lee, P. Ovartchaiyapong, J. Minguzzi, J. R. Maze, and A. C. Bleszynski Jayich, “Strain Coupling of a Mechanical Resonator to a Single Quantum Emitter in Diamond”, Physical Review Applied 6, 1 (2016)spa
dc.relation.referencesC. Sánchez Muñoz, A. Lara, J. Puebla, and F. Nori, “Hybrid Systems for the Generation of Nonclassical Mechanical States via Quadratic Interactions”, Physical Review Letters 121, 1 (2018)spa
dc.relation.referencesO Soykal, R. Ruskov, and C. Tahan, “Sound-based analogue of cavity quantum electrodynamics in silicon”, Physical Review Letters 107, 1 (2011)spa
dc.relation.referencesM. J. Schuetz, E. M. Kessler, G. Giedke, L. M. Vandersypen, M. D. Lukin, and J. I. Cirac, “Universal quantum transducers based on surface acoustic waves”, Physical Review X 5, 1 (2015)spa
dc.relation.referencesM. Pechal, P. Arrangoiz-arriola, and A. H. Safavi-naeini, “Superconducting circuit quantum computing with nanomechanical resonators as storage”, Quantum Science and Technology 4 (2019)spa
dc.relation.referencesA. Bienfait, K. J. Satzinger, Y. P. Zhong, H. S. Chang, M. H. Chou, C. R. Conner, E. Dumur, J. Grebel, G. A. Peairs, R. G. Povey, and A. N. Cleland, “Phonon-mediated quantum state transfer and remote qubit entanglement”, Science 364, 368 (2019)spa
dc.relation.referencesC. Dong, V. Fiore, M. Kuzyk, and H. Wang, “Optomechanical dark mode”, Science 338, 1609 (2013)spa
dc.relation.referencesJ. Li, M. P. Silveri, K. S. Kumar, J. M. Pirkkalainen, A. Vepsäläinen, W. C. Chien, J. Tuorila, M. A. Sillanpää, P. J. Hakonen, E. V. Thuneberg, and G. S. Paraoanu, “Motional Averaging in a Superconducting Qubit”, Nature Communications 4, 1 (2013)spa
dc.relation.referencesS. N. Shevchenko, S. Ashhab, and F. Nori, “Landau-Zener-St¨uckelberg interferometry”, Physics Reports 492, 1 (2010)spa
dc.relation.referencesM. Sillanpää, T. Lehtinen, A. Paila, Y. Makhlin, and P. Hakonen, “Continuous-time monitoring of Landau-Zener interference in a cooper-pair box”, Physical Review Letters 96, 1 (2006)spa
dc.relation.referencesW. D. Oliver, Y. Yu, J. C. Lee, K. K. Berggren, L. S. Levitov, and T. P. Orlando, “Mach-Zehnder interferometry in a strongly driven superconducting qubit”, Science 310, 1653 (2005)spa
dc.relation.referencesS. N. Shevchenko, A. S. Kiyko, A. N. Omelyanchouk, and W Krech, “Dynamic behavior of Josephson-junction qubits : crossover between Rabi oscillations and Landau – Zener transitions”, Low Temperature Physics 31 (2005)spa
dc.relation.referencesM. P. Silveri, K. S. Kumar, J. Tuorila, J. Li, A. Vepsäläinen, E. V. Thuneberg, and G. S. Paraoanu, “St¨uckelberg interference in a superconducting qubit under periodic latching modulation”, New Journal of Physics 17, 2 (2015)spa
dc.relation.referencesR. K. Naik, N. Leung, S. Chakram, P. Groszkowski, Y. Lu, N. Earnest, D. C. McKay, J. Koch, and D. I. Schuster, “Random access quantum information processors using multimode circuit quantum electrodynamics”, Nature Communications 8, 1 (2017)spa
dc.relation.referencesC. T. Hann, C.-L. Zou, Y. Zhang, Y. Chu, R. J. Schoelkopf, S. M. Girvin, and L. Jiang, “Hardware-Efficient Quantum Random Access Memory with hybrid Quantum Acoustic Systems”, Physical Review Letters 123, 1 (2019)spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.proposalCavity Quantum Electrodynamicseng
dc.subject.proposalElectrodinámica Cuántica de Cavidadesspa
dc.subject.proposalOptomecánica de Cavidadesspa
dc.subject.proposalCavity Optomechanicseng
dc.subject.proposalAcustodinámica Cuántica de Cavidadesspa
dc.subject.proposalCavity Quantum Acoustodynamicseng
dc.subject.proposalHybrid Optomechanicseng
dc.subject.proposalOptomecánica Híbridaspa
dc.titleHybrid Optomechanics: an interface for qubits, cavities, and mechanical resonatorsspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Thesis.pdf
Tamaño:
40.52 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: