Diseño y fabricación de un equipo prototipo para medir la potencia refractiva de lentes oftálmicas progresivas

dc.contributor.advisorMejía Barbosa, Yobanispa
dc.contributor.authorRodríguez Mendoza, Santiagospa
dc.contributor.researchgroupGrupo de Óptica Aplicada - G.O.A.spa
dc.date.accessioned2025-04-22T16:37:34Zspa
dc.date.available2025-04-22T16:37:34Zspa
dc.date.issued2024spa
dc.descriptionilustraciones (principalmente a color), diagramas, figurasspa
dc.description.abstractEl enfoque principal de esta tesis se basa en el diseño y fabricación de un equipo prototipo destinado a medir la potencia refractiva de lentes oftálmicas progresivas. Actualmente, la caracterización adecuada de estas lentes resulta en un gran interés gracias a su demanda a nivel global en los últimos años, sobretodo por su capacidad de acoplar correcciones ópticas para visión lejana y cercana en una misma lente, así como una mayor personalización de acuerdo a las necesidades visuales de cada usuario. Hoy en día las tecnologías disponibles para la caracterización de lentes progresivas son costosas o carecen de eficiencia, resaltando la necesidad de proponer soluciones más asequibles y confiables. La relevancia del presente proyecto es que afronta la problemática mencionada, mediante el equipo prototipo propuesto cuyo principio de operación se basa en una modificación de la prueba de Hartmann. Para cumplir con el objetivo, se realizaron varios desarrollos, incluyen do el uso del análisis de Fourier para estudiar los patrones de puntos que representan el frente de onda muestreado, permitiendo la obtención de mapas de fase para su procesamiento me diante un algoritmo computacional. Diseño de sistemas ópticos de iluminación y formación de imagen para los patrones de Hartmann, así como la fabricación de pantallas de Hartmann para estudiar las lentes progresivas. Además, la construcción de las piezas necesarias para el ensamblaje del equipo y el desarrollo de un algoritmo computacional para medir los mapas de potencia refractiva de las lentes progresivas. Los resultados obtenidos evidenciaron la efectividad del equipo construido al corresponder con los valores nominales de las lentes de estudio, destacando características como la genera ción de iluminación homogénea para garantizar la calidad y confiabilidad en las mediciones. Una apropiada formación de imagen gracias al sistema óptico y la pantalla de Hartmann utilizada. La implementación de un motor de paso que proporcionó un rango de trabajo di námico, presentando una alternativa de bajo costo y estable para el movimiento del equipo. Además del uso de equipos como Raspberry Pi y Arduino Uno que permiten una articulación y trabajo en conjunto de todas las componentes y funcionalidades del equipo (Texto tomado de la fuente).spa
dc.description.abstractAbstract. The main focus of this thesis is based on the design and manufacture of a prototype equipment intended to measure the refractive power of progressive ophthalmic lenses. Currently, the proper characterization of these lenses is of great interest due to their global demand in recent years, especially due to their ability to couple optical corrections for distance and near vision in the same lens, as well as greater customization according to the visual needs of each user. Today, the technologies available for the characterization of progressive lenses are expensive or lack efficiency, highlighting the need to propose more affordable and reliable solutions. The relevance of this project is that it addresses the mentioned problem through the proposed prototype equipment whose operating principle is based on a modification of the Hartmann test. To meet the objective, several developments were made, including the use of Fourier analysis to study the point patterns that represent the sampled wavefront, allowing the obtaining of phase maps for processing through a computational algorithm. Design of optical systems for lighting and image formation for Hartmann patterns, as well as the manufacture of Hartmann screens to study progressive lenses. In addition, the construction of the necessary parts for the assembly of the equipment and the development of a computational algorithm to measure the refractive power maps of progressive lenses. The results obtained showed the effectiveness of the equipment built by corresponding to the nominal values of the study lenses, highlighting characteristics such as the generation of homogeneous lighting to guarantee quality and reliability in measurements. An appropriate image formation thanks to the optical system and the Hartmann screen used. The implementation of a stepper motor that provided a dynamic working range, presenting a low-cost and stable alternative for the movement of the equipment. In addition to the use of equipment such as Raspberry Pi and Arduino Uno that allow an articulation and joint work of all the components and functionalities of the equipment.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaÓptica aplicada - Ciencias de la salud visualspa
dc.description.sponsorshipEl diseño y construcción del equipo se realizó gracias al apoyo de la Facultad de Ciencias de la Universidad Nacional de Colombia– sede Bogotá, a través del proyecto de investigación “Diseño y fabricación de un equipo prototipo para medir la potencia refractiva de lentes oftálmicas progresivas– Código Hermes 56500”spa
dc.format.extent80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88046spa
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesT. Blalock, K. Medicus, and J. DeGroote Nelson. Fabrication of freeform optics. In Optical Manufacturing and Testing XI, volume 9575, page 95750H. SPIE, 2015spa
dc.relation.referencesW.T. Plummer. Some milestones in the design, development, and manufacture of free form optics. In International Society for Optics and Photonics. SPIE, 2019.spa
dc.relation.referencesStewart Willis. Freeform optics: Notes from the revolution. Optics & Photonics News, July 2017.spa
dc.relation.referencesD. Meslin. Progressive Lenses. Essilor Academy Europe, 2006.spa
dc.relation.referencesJ.P. Rolland, M.A. Davies, T.J. Suleski, C. Evans, A. Bauer, J.C. Lambropoulos, and K. Falaggis. Freeform optics for imaging. Optica, 8:161–176, 2021.spa
dc.relation.referencesD.R. Pope. Progressive addition lenses: history, design, wearer satisfaction and trends. In Vision science and its applications. Optica Publishing Group, 2000.spa
dc.relation.referencesT.E. Fannin and T. Grosvenor. Clinical optics. Butterworth-Heinemann, 2013.spa
dc.relation.referencesJ.E. Sheedy. Progressive addition lenses and matching the specific lens to patient needs. Optometry, 75(2):83–102, 2004spa
dc.relation.referencesJ.E. Sheedy, M. Buri, I. Bailey, J. Azus, and I.M. Borish. Optics of progressive addition lenses. Am. Journal of Optometry and Physiological Optics, 64:90–99, 1987.spa
dc.relation.referencesD. Malacara. Optical shop testing. John Wiley & Sons, 3rd edition, 2007.spa
dc.relation.referencesY. Mejía. La prueba de hartmann en ciencias de la visión. Ciencia y Tecnología para la Salud Visual y Ocular, 10(1):149–165, 2012.spa
dc.relation.referencesCarmen Canovas and Erez N Ribak. Comparison of hartmann analysis methods. Applied Optics, 46(10):1830–1835, 2007.spa
dc.relation.referencesC. Castellini, F. Francini, and B. Tiribilli. Hartmann test modification for measuring ophthalmic progressive lenses. Appl. Opt., 33(19):4120–4124, Jul 1994.spa
dc.relation.referencesA. Talmi and E. N. Ribak. Direct demodulation of hartmann–shack patterns. JOSA A, 21:632–639, 2004spa
dc.relation.referencesY. Mejía. Noise reduction in the fourier spectrum of hartmann patterns for phase demodulation. Optics communications, 281(5):1047–1055, 2008.spa
dc.relation.referencesEugene Hecht. Optics. Addison-Wesley, 1987.spa
dc.relation.referencesY. Mejía. Fundamentos de óptica : Curso introductorio. Universidad Nacional de Co lombia, Facultad de ciencias, 2020.spa
dc.relation.referencesWF Harris. Astigmatism. Ophthalmic and physiological Optics, 20(1):11–30, 2000.spa
dc.relation.referencesIrvin M Borish. Clinical Refraction. Elsevier, 2006.spa
dc.relation.referencesJohn Gress. Design of ophthalmic lenses. Journal of the Optical Society of America, 94:225–235, 2004spa
dc.relation.referencesPaul Cook. Aspheric lens design: advantages and implementation. Applied Optics, 14:1912–1916, 1975.spa
dc.relation.referencesClifford W Brooks. Essentials of ophthalmic lens finishing. Elsevier Health Sciences, 2003.spa
dc.relation.referencesMatthias Jacobi. Aspherical lens technology: reducing aberrations in vision correction. Optometry and Vision Science, 84:205–211, 2007.spa
dc.relation.referencesJosé Alonso, José A Gómez-Pedrero, and Juan A Quiroga. Modern ophthalmic optics. Cambridge University Press, 2019spa
dc.relation.referencesArthur Meyrowitz. Freeform lens design and its impact on personalized vision correction. Journal of Vision, 18:341–345, 2008.spa
dc.relation.referencesJane Parker. Individualized freeform lenses: A breakthrough in personalized vision correction. Optical Review, 16:154–160, 2009.spa
dc.relation.referencesWilliam T. Plummer. Some milestones in the design, development, and manufacture of freeform optics. In 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, volume 10838. SPIE, 2019.spa
dc.relation.referencesRudolf Kingslake and R Barry Johnson. Lens design fundamentals. academic press, 2009.spa
dc.relation.referencesEssilor. Compendio de Óptica Oftálmica: Las lentes progresivas. Varilux University, 2006.spa
dc.relation.referencesJosé Miguel Boix. Lentes progresivas. Evolución científica. Editorial Complutense, 2000.spa
dc.relation.referencesErnest Abbé. Contributions to Optics: Theoretical Foundations and Practical Applica tions. Verlag Springer, 1899.spa
dc.relation.referencesGeorge Smith and David Atchison. The Eye and Visual Optical Instruments. Cambridge University Press, 1997spa
dc.relation.referencesJohn A. Bosch, editor. Coordinate measuring machines and systems. Marcel Dekker, Inc., 1995spa
dc.relation.referencesK. Creath and J. C. Wyant. Moiré and fringe projection techniques. In D. Malacara, editor, Optical Shop Testing, pages 653–658. John Wiley & Sons, 1992spa
dc.relation.referencesY. Nakano and K. Murata. Talbot interferometry for measuring the focal length of a lens. Applied Optics, 24(19):3162–3166, 1985spa
dc.relation.referencesI. Ghozeil. Hartmann and other screen test. In D. Malacara, editor, Optical Shop Testing, pages 367–396. John Wiley & Sons, 1992.spa
dc.relation.referencesE. Kreyszig. Differential Geometry, volume 11. Courier Corporation, 1991.spa
dc.relation.referencesYobani Mejía and Janneth C Galeano. Corneal topographer based on the hartmann test. Optometry and Vision Science, 86(4):370–381, 2009spa
dc.relation.referencesJuan A Quiroga, Daniel Crespo, and Eusebio Bernabeu. Fourier transform method for automatic processing of moiré deflectograms. Optical Engineering, 38(6):974–982, 1999.spa
dc.relation.referencesJoseph W Goodman. Introduction to Fourier Optics- 3rd ed. Roberts & Company Publishers, 2005spa
dc.relation.referencesGlòria Casanellas Peñalver. Optimization methods for the design of progressive lenses. Universitat Polit‘ecnica de Catalunya, 2020.spa
dc.relation.referencesMax Born and Emil Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge, 7th edition, 1999spa
dc.relation.referencesN. Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979spa
dc.relation.referencesWilliam Burger and Mark J. Burge. Principles of Digital Image Processing: Core Algo rithms. Springer, 2009spa
dc.relation.referencesY. Mejía, D.A. Mora, and D.E. Díaz. Power maps and wavefront for progressive addition lenses in eyeglass frames. Optometry and Vision Science, 91(10):1259–1270, 2014spa
dc.relation.referencesSunaina Rajora Kedar Khare, Mansi Butola. Fourier Optics and Computational Ima ging. John Wiley & Sons Ltd, 2016.spa
dc.relation.referencesGregory J. Gbur. Mathematical Methods for Optical Physics and Engineering. Cam bridge University Press, 2011.spa
dc.relation.referencesLeslie Ying. Phase unwrapping. Wiley Encyclopedia of Biomedical Engineering, 2006.spa
dc.relation.referencesRafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice Hall, 2002.spa
dc.relation.referencesR. Johnson and S. Reid. Adaptive image thresholding based on edge detection. Journal of Image and Vision Computing, 52:15–27, 2017spa
dc.relation.referencesAlan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Prentice Hall, 2nd edition edition, 1999. Chapter 4: Sampling of Continuous Time Signalsspa
dc.relation.referencesZeiss. Press photos. https://www.zeiss.com/corporate/en/about-zeiss/present/ newsroom/press-photos.html, 2024.spa
dc.relation.referencesINDO. Manual de Lentes progresivas. Indo Optical, 2020spa
dc.relation.referencesS. Cruz Ponce. Lensómetro de autocolimación usando la prueba de ronchi. 2021. https://hdl.handle.net/20.500.12371/14187.spa
dc.relation.referencesAndrew Young. Digital lensometry: Advances and applications in optometric practice. Journal of Modern Optometry, 2019.spa
dc.relation.referencesClifford W. Brooks and Irvin M. Borish. System for Ophthalmic Dispensing. Elsevier, 3rd edition, 2007.spa
dc.relation.referencesT. W. Raasch, L. Su, and A. Yi. Whole-surface characterization of progressive addition lenses. Optometry and Vision Science, 88:217–226, 2011.spa
dc.relation.referencesJ. T. Winthrop and C. R. Worthington. Theory of fresnel images. i. plane periodic objects in monochromatic light. Journal of the Optical Society of America, 55(4):373– 381, 1965.spa
dc.relation.referencesRotlex. Rotlex class plus product information. https://rotlex.com/products/ class-plus/. Consultado: 2023-10.spa
dc.relation.referencesVisionix. Brochure es vx40. https://www.visionix.com/wp-content/uploads/2023/ 03/BrochureES-VX40-ind10-0322-WEB.pdf. Consultado: 2023-10.spa
dc.relation.referencesRichard L Burden, J Douglas Faires, and Annette M Burden. Numerical analysis. Cengage learning, 2015.spa
dc.relation.referencesJiménez López Andrés Fernando. Diseño de un sistema para la medición de potencia refractiva de lentes progresivas empleando el test de hartmann, 2011.spa
dc.relation.referencesT.Langer, A.G.Belyaev, and H.P. Seidel. Asymptotic analysis of discrete normals and curvatures of polylines. Spring Conference on Computer Graphics (SCCG 2005), Budmerice, Slovakia, pages 229–232, May 2005.spa
dc.relation.referencesJohn E. Greivenkamp. Field Guide to Geometrical Optics. SPIE Press, Bellingham, Washington, 2004.spa
dc.relation.referencesEdmund Optics. Why use an achromatic lens? https://www.edmundoptics.com/ knowledge-center/application-notes/optics/why-use-an-achromatic-lens/. Consultado: 2024-02.spa
dc.relation.referencesEdmund Optics. Techspec-achromatic doublet lens. https://www.edmundoptics.com/ p/75mm-dia-x-200mm-fl-mgfsub2sub-coated-achromatic-doublet-lens/5882/. Consultado: 2024-02.spa
dc.relation.referencesThorLabs. Does collimated light maintain a constant beam diameter out to infinity? https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=12211& tabname=Collimation. Consultado: 2024-02.spa
dc.relation.referencesThorLabs. Dcc1545m - usb 2.0 cmos camera. https://www.thorlabs.com/ thorproduct.cfm?partnumber=DCC1545M. Consultado: 2024-02.spa
dc.relation.referencesEdmund Optics. Techspec-8mm uc series fixed focal length lens. https://www. edmundoptics.com/p/8mm-uc-series-fixed-focal-length-lens/41864/#. Consultado: 2024-02.spa
dc.relation.referencesRafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice Hall, 2002.spa
dc.relation.referencesY. Mejía, D.A. Mora, and D.E. Díaz. Power maps and wavefront for progressive addition lenses in eyeglass frames. Optometry and Vision Science, 91(10):1259–1270, 2014.spa
dc.relation.referencesMiguel Arevallilo Herráez, David R. Burton, Michael J. Lalor, and Munther A. Gdeisat. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl. Opt., 41(35):7437–7444, Dec 2002spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.bneLentes oftálmicas -- Investigaciónspa
dc.subject.bneOphthalmic lenses -- Researcheng
dc.subject.bneOptometría -- Material y equipospa
dc.subject.bneOptometry -- Equipment and supplieseng
dc.subject.ddc535.324spa
dc.subject.ddc530 - Físicaspa
dc.subject.ddc610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiologíaspa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.lembRefracción ocularspa
dc.subject.lembEye -- Accommodation and refractioneng
dc.subject.lembÓptica de transformaciones de Fourierspa
dc.subject.lembFourier transform opticseng
dc.subject.lembAnálisis espectral -- Aparatos e instrumentosspa
dc.subject.lembSpectrum analysis -- Instrumentseng
dc.subject.lembFísica -- Aparatos e instrumentosspa
dc.subject.lembPhysical instrumentseng
dc.subject.lembDeflectores de luzspa
dc.subject.lembLight deflectorseng
dc.subject.lembAnálisis de Fourierspa
dc.subject.lembFourier analysiseng
dc.subject.lembÓpticaspa
dc.subject.lembOpticseng
dc.subject.otherInstrumentos optométricosspa
dc.subject.otherLentes progresivosspa
dc.subject.otherProgressive lenses (Ophthalmology)eng
dc.subject.proposalPotencia refractivaspa
dc.subject.proposalPantalla de Hartmannspa
dc.subject.proposalAnálisis de Fourierspa
dc.subject.proposalLentes oftálmicas progresivasspa
dc.subject.proposalRefractive powereng
dc.subject.proposalPrototype deviceeng
dc.subject.proposalFourier analysiseng
dc.subject.proposalEquipo prototipospa
dc.subject.proposalProgressive ophthalmic lenseng
dc.subject.proposalPrototype deviceeng
dc.subject.wikidataFísica aplicadaspa
dc.subject.wikidataApplied physicseng
dc.titleDiseño y fabricación de un equipo prototipo para medir la potencia refractiva de lentes oftálmicas progresivasspa
dc.title.translatedDesign and assembly of a prototype equipment for measuring the refractive power of progressive ophthalmic lenseseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDiseño y fabricación de un equipo prototipo para medir la potencia refractiva de lentes oftálmicas progresivasspa
oaire.fundernameFacultad de Cienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010138428.2025.pdf
Tamaño:
11.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: