Diseño y fabricación de un equipo prototipo para medir la potencia refractiva de lentes oftálmicas progresivas
dc.contributor.advisor | Mejía Barbosa, Yobani | spa |
dc.contributor.author | Rodríguez Mendoza, Santiago | spa |
dc.contributor.researchgroup | Grupo de Óptica Aplicada - G.O.A. | spa |
dc.date.accessioned | 2025-04-22T16:37:34Z | spa |
dc.date.available | 2025-04-22T16:37:34Z | spa |
dc.date.issued | 2024 | spa |
dc.description | ilustraciones (principalmente a color), diagramas, figuras | spa |
dc.description.abstract | El enfoque principal de esta tesis se basa en el diseño y fabricación de un equipo prototipo destinado a medir la potencia refractiva de lentes oftálmicas progresivas. Actualmente, la caracterización adecuada de estas lentes resulta en un gran interés gracias a su demanda a nivel global en los últimos años, sobretodo por su capacidad de acoplar correcciones ópticas para visión lejana y cercana en una misma lente, así como una mayor personalización de acuerdo a las necesidades visuales de cada usuario. Hoy en día las tecnologías disponibles para la caracterización de lentes progresivas son costosas o carecen de eficiencia, resaltando la necesidad de proponer soluciones más asequibles y confiables. La relevancia del presente proyecto es que afronta la problemática mencionada, mediante el equipo prototipo propuesto cuyo principio de operación se basa en una modificación de la prueba de Hartmann. Para cumplir con el objetivo, se realizaron varios desarrollos, incluyen do el uso del análisis de Fourier para estudiar los patrones de puntos que representan el frente de onda muestreado, permitiendo la obtención de mapas de fase para su procesamiento me diante un algoritmo computacional. Diseño de sistemas ópticos de iluminación y formación de imagen para los patrones de Hartmann, así como la fabricación de pantallas de Hartmann para estudiar las lentes progresivas. Además, la construcción de las piezas necesarias para el ensamblaje del equipo y el desarrollo de un algoritmo computacional para medir los mapas de potencia refractiva de las lentes progresivas. Los resultados obtenidos evidenciaron la efectividad del equipo construido al corresponder con los valores nominales de las lentes de estudio, destacando características como la genera ción de iluminación homogénea para garantizar la calidad y confiabilidad en las mediciones. Una apropiada formación de imagen gracias al sistema óptico y la pantalla de Hartmann utilizada. La implementación de un motor de paso que proporcionó un rango de trabajo di námico, presentando una alternativa de bajo costo y estable para el movimiento del equipo. Además del uso de equipos como Raspberry Pi y Arduino Uno que permiten una articulación y trabajo en conjunto de todas las componentes y funcionalidades del equipo (Texto tomado de la fuente). | spa |
dc.description.abstract | Abstract. The main focus of this thesis is based on the design and manufacture of a prototype equipment intended to measure the refractive power of progressive ophthalmic lenses. Currently, the proper characterization of these lenses is of great interest due to their global demand in recent years, especially due to their ability to couple optical corrections for distance and near vision in the same lens, as well as greater customization according to the visual needs of each user. Today, the technologies available for the characterization of progressive lenses are expensive or lack efficiency, highlighting the need to propose more affordable and reliable solutions. The relevance of this project is that it addresses the mentioned problem through the proposed prototype equipment whose operating principle is based on a modification of the Hartmann test. To meet the objective, several developments were made, including the use of Fourier analysis to study the point patterns that represent the sampled wavefront, allowing the obtaining of phase maps for processing through a computational algorithm. Design of optical systems for lighting and image formation for Hartmann patterns, as well as the manufacture of Hartmann screens to study progressive lenses. In addition, the construction of the necessary parts for the assembly of the equipment and the development of a computational algorithm to measure the refractive power maps of progressive lenses. The results obtained showed the effectiveness of the equipment built by corresponding to the nominal values of the study lenses, highlighting characteristics such as the generation of homogeneous lighting to guarantee quality and reliability in measurements. An appropriate image formation thanks to the optical system and the Hartmann screen used. The implementation of a stepper motor that provided a dynamic working range, presenting a low-cost and stable alternative for the movement of the equipment. In addition to the use of equipment such as Raspberry Pi and Arduino Uno that allow an articulation and joint work of all the components and functionalities of the equipment. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Óptica aplicada - Ciencias de la salud visual | spa |
dc.description.sponsorship | El diseño y construcción del equipo se realizó gracias al apoyo de la Facultad de Ciencias de la Universidad Nacional de Colombia– sede Bogotá, a través del proyecto de investigación “Diseño y fabricación de un equipo prototipo para medir la potencia refractiva de lentes oftálmicas progresivas– Código Hermes 56500” | spa |
dc.format.extent | 80 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88046 | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Física | spa |
dc.relation.references | T. Blalock, K. Medicus, and J. DeGroote Nelson. Fabrication of freeform optics. In Optical Manufacturing and Testing XI, volume 9575, page 95750H. SPIE, 2015 | spa |
dc.relation.references | W.T. Plummer. Some milestones in the design, development, and manufacture of free form optics. In International Society for Optics and Photonics. SPIE, 2019. | spa |
dc.relation.references | Stewart Willis. Freeform optics: Notes from the revolution. Optics & Photonics News, July 2017. | spa |
dc.relation.references | D. Meslin. Progressive Lenses. Essilor Academy Europe, 2006. | spa |
dc.relation.references | J.P. Rolland, M.A. Davies, T.J. Suleski, C. Evans, A. Bauer, J.C. Lambropoulos, and K. Falaggis. Freeform optics for imaging. Optica, 8:161–176, 2021. | spa |
dc.relation.references | D.R. Pope. Progressive addition lenses: history, design, wearer satisfaction and trends. In Vision science and its applications. Optica Publishing Group, 2000. | spa |
dc.relation.references | T.E. Fannin and T. Grosvenor. Clinical optics. Butterworth-Heinemann, 2013. | spa |
dc.relation.references | J.E. Sheedy. Progressive addition lenses and matching the specific lens to patient needs. Optometry, 75(2):83–102, 2004 | spa |
dc.relation.references | J.E. Sheedy, M. Buri, I. Bailey, J. Azus, and I.M. Borish. Optics of progressive addition lenses. Am. Journal of Optometry and Physiological Optics, 64:90–99, 1987. | spa |
dc.relation.references | D. Malacara. Optical shop testing. John Wiley & Sons, 3rd edition, 2007. | spa |
dc.relation.references | Y. Mejía. La prueba de hartmann en ciencias de la visión. Ciencia y Tecnología para la Salud Visual y Ocular, 10(1):149–165, 2012. | spa |
dc.relation.references | Carmen Canovas and Erez N Ribak. Comparison of hartmann analysis methods. Applied Optics, 46(10):1830–1835, 2007. | spa |
dc.relation.references | C. Castellini, F. Francini, and B. Tiribilli. Hartmann test modification for measuring ophthalmic progressive lenses. Appl. Opt., 33(19):4120–4124, Jul 1994. | spa |
dc.relation.references | A. Talmi and E. N. Ribak. Direct demodulation of hartmann–shack patterns. JOSA A, 21:632–639, 2004 | spa |
dc.relation.references | Y. Mejía. Noise reduction in the fourier spectrum of hartmann patterns for phase demodulation. Optics communications, 281(5):1047–1055, 2008. | spa |
dc.relation.references | Eugene Hecht. Optics. Addison-Wesley, 1987. | spa |
dc.relation.references | Y. Mejía. Fundamentos de óptica : Curso introductorio. Universidad Nacional de Co lombia, Facultad de ciencias, 2020. | spa |
dc.relation.references | WF Harris. Astigmatism. Ophthalmic and physiological Optics, 20(1):11–30, 2000. | spa |
dc.relation.references | Irvin M Borish. Clinical Refraction. Elsevier, 2006. | spa |
dc.relation.references | John Gress. Design of ophthalmic lenses. Journal of the Optical Society of America, 94:225–235, 2004 | spa |
dc.relation.references | Paul Cook. Aspheric lens design: advantages and implementation. Applied Optics, 14:1912–1916, 1975. | spa |
dc.relation.references | Clifford W Brooks. Essentials of ophthalmic lens finishing. Elsevier Health Sciences, 2003. | spa |
dc.relation.references | Matthias Jacobi. Aspherical lens technology: reducing aberrations in vision correction. Optometry and Vision Science, 84:205–211, 2007. | spa |
dc.relation.references | José Alonso, José A Gómez-Pedrero, and Juan A Quiroga. Modern ophthalmic optics. Cambridge University Press, 2019 | spa |
dc.relation.references | Arthur Meyrowitz. Freeform lens design and its impact on personalized vision correction. Journal of Vision, 18:341–345, 2008. | spa |
dc.relation.references | Jane Parker. Individualized freeform lenses: A breakthrough in personalized vision correction. Optical Review, 16:154–160, 2009. | spa |
dc.relation.references | William T. Plummer. Some milestones in the design, development, and manufacture of freeform optics. In 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, volume 10838. SPIE, 2019. | spa |
dc.relation.references | Rudolf Kingslake and R Barry Johnson. Lens design fundamentals. academic press, 2009. | spa |
dc.relation.references | Essilor. Compendio de Óptica Oftálmica: Las lentes progresivas. Varilux University, 2006. | spa |
dc.relation.references | José Miguel Boix. Lentes progresivas. Evolución científica. Editorial Complutense, 2000. | spa |
dc.relation.references | Ernest Abbé. Contributions to Optics: Theoretical Foundations and Practical Applica tions. Verlag Springer, 1899. | spa |
dc.relation.references | George Smith and David Atchison. The Eye and Visual Optical Instruments. Cambridge University Press, 1997 | spa |
dc.relation.references | John A. Bosch, editor. Coordinate measuring machines and systems. Marcel Dekker, Inc., 1995 | spa |
dc.relation.references | K. Creath and J. C. Wyant. Moiré and fringe projection techniques. In D. Malacara, editor, Optical Shop Testing, pages 653–658. John Wiley & Sons, 1992 | spa |
dc.relation.references | Y. Nakano and K. Murata. Talbot interferometry for measuring the focal length of a lens. Applied Optics, 24(19):3162–3166, 1985 | spa |
dc.relation.references | I. Ghozeil. Hartmann and other screen test. In D. Malacara, editor, Optical Shop Testing, pages 367–396. John Wiley & Sons, 1992. | spa |
dc.relation.references | E. Kreyszig. Differential Geometry, volume 11. Courier Corporation, 1991. | spa |
dc.relation.references | Yobani Mejía and Janneth C Galeano. Corneal topographer based on the hartmann test. Optometry and Vision Science, 86(4):370–381, 2009 | spa |
dc.relation.references | Juan A Quiroga, Daniel Crespo, and Eusebio Bernabeu. Fourier transform method for automatic processing of moiré deflectograms. Optical Engineering, 38(6):974–982, 1999. | spa |
dc.relation.references | Joseph W Goodman. Introduction to Fourier Optics- 3rd ed. Roberts & Company Publishers, 2005 | spa |
dc.relation.references | Glòria Casanellas Peñalver. Optimization methods for the design of progressive lenses. Universitat Polit‘ecnica de Catalunya, 2020. | spa |
dc.relation.references | Max Born and Emil Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge, 7th edition, 1999 | spa |
dc.relation.references | N. Otsu. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66, 1979 | spa |
dc.relation.references | William Burger and Mark J. Burge. Principles of Digital Image Processing: Core Algo rithms. Springer, 2009 | spa |
dc.relation.references | Y. Mejía, D.A. Mora, and D.E. Díaz. Power maps and wavefront for progressive addition lenses in eyeglass frames. Optometry and Vision Science, 91(10):1259–1270, 2014 | spa |
dc.relation.references | Sunaina Rajora Kedar Khare, Mansi Butola. Fourier Optics and Computational Ima ging. John Wiley & Sons Ltd, 2016. | spa |
dc.relation.references | Gregory J. Gbur. Mathematical Methods for Optical Physics and Engineering. Cam bridge University Press, 2011. | spa |
dc.relation.references | Leslie Ying. Phase unwrapping. Wiley Encyclopedia of Biomedical Engineering, 2006. | spa |
dc.relation.references | Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice Hall, 2002. | spa |
dc.relation.references | R. Johnson and S. Reid. Adaptive image thresholding based on edge detection. Journal of Image and Vision Computing, 52:15–27, 2017 | spa |
dc.relation.references | Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Prentice Hall, 2nd edition edition, 1999. Chapter 4: Sampling of Continuous Time Signals | spa |
dc.relation.references | Zeiss. Press photos. https://www.zeiss.com/corporate/en/about-zeiss/present/ newsroom/press-photos.html, 2024. | spa |
dc.relation.references | INDO. Manual de Lentes progresivas. Indo Optical, 2020 | spa |
dc.relation.references | S. Cruz Ponce. Lensómetro de autocolimación usando la prueba de ronchi. 2021. https://hdl.handle.net/20.500.12371/14187. | spa |
dc.relation.references | Andrew Young. Digital lensometry: Advances and applications in optometric practice. Journal of Modern Optometry, 2019. | spa |
dc.relation.references | Clifford W. Brooks and Irvin M. Borish. System for Ophthalmic Dispensing. Elsevier, 3rd edition, 2007. | spa |
dc.relation.references | T. W. Raasch, L. Su, and A. Yi. Whole-surface characterization of progressive addition lenses. Optometry and Vision Science, 88:217–226, 2011. | spa |
dc.relation.references | J. T. Winthrop and C. R. Worthington. Theory of fresnel images. i. plane periodic objects in monochromatic light. Journal of the Optical Society of America, 55(4):373– 381, 1965. | spa |
dc.relation.references | Rotlex. Rotlex class plus product information. https://rotlex.com/products/ class-plus/. Consultado: 2023-10. | spa |
dc.relation.references | Visionix. Brochure es vx40. https://www.visionix.com/wp-content/uploads/2023/ 03/BrochureES-VX40-ind10-0322-WEB.pdf. Consultado: 2023-10. | spa |
dc.relation.references | Richard L Burden, J Douglas Faires, and Annette M Burden. Numerical analysis. Cengage learning, 2015. | spa |
dc.relation.references | Jiménez López Andrés Fernando. Diseño de un sistema para la medición de potencia refractiva de lentes progresivas empleando el test de hartmann, 2011. | spa |
dc.relation.references | T.Langer, A.G.Belyaev, and H.P. Seidel. Asymptotic analysis of discrete normals and curvatures of polylines. Spring Conference on Computer Graphics (SCCG 2005), Budmerice, Slovakia, pages 229–232, May 2005. | spa |
dc.relation.references | John E. Greivenkamp. Field Guide to Geometrical Optics. SPIE Press, Bellingham, Washington, 2004. | spa |
dc.relation.references | Edmund Optics. Why use an achromatic lens? https://www.edmundoptics.com/ knowledge-center/application-notes/optics/why-use-an-achromatic-lens/. Consultado: 2024-02. | spa |
dc.relation.references | Edmund Optics. Techspec-achromatic doublet lens. https://www.edmundoptics.com/ p/75mm-dia-x-200mm-fl-mgfsub2sub-coated-achromatic-doublet-lens/5882/. Consultado: 2024-02. | spa |
dc.relation.references | ThorLabs. Does collimated light maintain a constant beam diameter out to infinity? https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=12211& tabname=Collimation. Consultado: 2024-02. | spa |
dc.relation.references | ThorLabs. Dcc1545m - usb 2.0 cmos camera. https://www.thorlabs.com/ thorproduct.cfm?partnumber=DCC1545M. Consultado: 2024-02. | spa |
dc.relation.references | Edmund Optics. Techspec-8mm uc series fixed focal length lens. https://www. edmundoptics.com/p/8mm-uc-series-fixed-focal-length-lens/41864/#. Consultado: 2024-02. | spa |
dc.relation.references | Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Prentice Hall, 2002. | spa |
dc.relation.references | Y. Mejía, D.A. Mora, and D.E. Díaz. Power maps and wavefront for progressive addition lenses in eyeglass frames. Optometry and Vision Science, 91(10):1259–1270, 2014. | spa |
dc.relation.references | Miguel Arevallilo Herráez, David R. Burton, Michael J. Lalor, and Munther A. Gdeisat. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl. Opt., 41(35):7437–7444, Dec 2002 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.bne | Lentes oftálmicas -- Investigación | spa |
dc.subject.bne | Ophthalmic lenses -- Research | eng |
dc.subject.bne | Optometría -- Material y equipo | spa |
dc.subject.bne | Optometry -- Equipment and supplies | eng |
dc.subject.ddc | 535.324 | spa |
dc.subject.ddc | 530 - Física | spa |
dc.subject.ddc | 610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología | spa |
dc.subject.ddc | 610 - Medicina y salud::612 - Fisiología humana | spa |
dc.subject.lemb | Refracción ocular | spa |
dc.subject.lemb | Eye -- Accommodation and refraction | eng |
dc.subject.lemb | Óptica de transformaciones de Fourier | spa |
dc.subject.lemb | Fourier transform optics | eng |
dc.subject.lemb | Análisis espectral -- Aparatos e instrumentos | spa |
dc.subject.lemb | Spectrum analysis -- Instruments | eng |
dc.subject.lemb | Física -- Aparatos e instrumentos | spa |
dc.subject.lemb | Physical instruments | eng |
dc.subject.lemb | Deflectores de luz | spa |
dc.subject.lemb | Light deflectors | eng |
dc.subject.lemb | Análisis de Fourier | spa |
dc.subject.lemb | Fourier analysis | eng |
dc.subject.lemb | Óptica | spa |
dc.subject.lemb | Optics | eng |
dc.subject.other | Instrumentos optométricos | spa |
dc.subject.other | Lentes progresivos | spa |
dc.subject.other | Progressive lenses (Ophthalmology) | eng |
dc.subject.proposal | Potencia refractiva | spa |
dc.subject.proposal | Pantalla de Hartmann | spa |
dc.subject.proposal | Análisis de Fourier | spa |
dc.subject.proposal | Lentes oftálmicas progresivas | spa |
dc.subject.proposal | Refractive power | eng |
dc.subject.proposal | Prototype device | eng |
dc.subject.proposal | Fourier analysis | eng |
dc.subject.proposal | Equipo prototipo | spa |
dc.subject.proposal | Progressive ophthalmic lens | eng |
dc.subject.proposal | Prototype device | eng |
dc.subject.wikidata | Física aplicada | spa |
dc.subject.wikidata | Applied physics | eng |
dc.title | Diseño y fabricación de un equipo prototipo para medir la potencia refractiva de lentes oftálmicas progresivas | spa |
dc.title.translated | Design and assembly of a prototype equipment for measuring the refractive power of progressive ophthalmic lenses | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Diseño y fabricación de un equipo prototipo para medir la potencia refractiva de lentes oftálmicas progresivas | spa |
oaire.fundername | Facultad de Ciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1010138428.2025.pdf
- Tamaño:
- 11.27 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: