Modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructurado

dc.contributor.advisorSánchez Sáenz, Carlos Ignacio
dc.contributor.authorSalazar Hoyos, Luis Daniel
dc.contributor.cvlac0000-0003-2635-028Xspa
dc.contributor.orcidSalazar Hoyos, Lis Daniel [0000-0003-2635-028X]spa
dc.contributor.researchgroupGrupo de Ingenieria Electroquímica Griequispa
dc.date.accessioned2024-01-15T18:09:08Z
dc.date.available2024-01-15T18:09:08Z
dc.date.issued2023
dc.descriptionIlustracionesspa
dc.description.abstractEsta tesis de maestría tuvo como objetivo general desarrollar un modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 (RR239) mediante un semiconductor basado en óxido de zinc decorado con plata ZnO/Ag, para su aplicación en la remediación de efluentes textiles. Se realizó la síntesis de nanobarras de ZnO/Ag con la técnica de electrodeposición y posterior crecimiento químico. Se utilizaron técnicas electroquímicas y espectroscopia UV-Vis de reflectancia difusa para la estimación del ancho de banda prohibido, y la estructura de bandas del semiconductor. Mediante FE-SEM se verifico la morfología del semiconductor corroborando que si se logró la síntesis de nanobarras, con longitudes de $\sim$ 565 y 664 nm para el ZnO y ZnO/Ag respectivamente. Con DRX se estimó el tamaño del cristalito de 22,4 nm para el ZnO prístino y 36,9 nm para el ZnO/Ag}, se estimó también los planos preferenciales (100), (002) y (101) típicos de la fase hexagonal tipo wurtzita del ZnO. Por UPLC-MS/MS-QTOF se evidenció la ruptura del enlace azoico y la degradación a productos más simples, permitiendo elucidar un mecanismo de reacción. Se encontró que la degradación del colorante rojo reactivo 239 (RR239) mediante el semiconductor de ZnO/Ag sigue una cinética de segundo orden, esta cinética desarrollada está en función de la intensidad de luz UV a 365nm y el flujo de oxígeno. Los resultados muestran la eficiencia de la eliminación de COT y sugieren que es factible aplicar la oxidación fotocatalítica de compuestos orgánicos usando fotoelectrocatálisis basados en ZnO/Ag. (texto tomado de la fuente)spa
dc.description.abstractThis master's thesis had as its general objective the development of a kinetic model for the photoelectrocatalytic degradation of reactive red 239 dye (RR239) using a semiconductor based on zinc oxide decorated with silver (ZnO/Ag), for its application in the remediation of textile effluents. The synthesis of ZnO/Ag nanorods was carried out using electrodeposition and subsequent chemical growth techniques. Electrochemical techniques and diffuse reflectance UV-Vis spectroscopy were used to estimate the band gap and band structure of the semiconductor. The morphology of the semiconductor was verified by FE-SEM, confirming the successful synthesis of nanorods with lengths of approximately 565 and 664 nm for ZnO and ZnO/Ag, respectively. The crystallite size was estimated by XRD to be 22.4 nm for pristine ZnO and 36.9 nm for ZnO/Ag, and the preferred planes (100), (002), and (101) typical of the hexagonal wurtzite phase of ZnO were also estimated. UPLC-MS/MS-QTOF was used to demonstrate the cleavage of the azo bond and the degradation to simpler products, allowing for the elucidation of a reaction mechanism. It was found that the degradation of RR239 dye using ZnO/Ag semiconductor follows a second-order kinetics, which is dependent on the UV light intensity at 365 nm and the flow of oxygen. The results demonstrate the efficiency of COD removal and suggest that photodegradation of organic compounds using ZnO/Ag-based photoelectrocatalysis is feasible.eng
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.researchareaElectroquímicaspa
dc.format.extent183 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85284
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.references[1] F. Henao, J. P. Viteri, Y. Rodríguez, J. Gomez, and I. Dyner, “Annual and interannual complementarities of renewable energy sources in Colombia,” Renewable and Sustainable Energy Reviews, vol. 134, p. 110318, 2020.spa
dc.relation.references[2] J. F. Conte, Perfeccionamiento del modelo ionosférico la plata (lpim). PhD thesis, Universidad Nacional de La Plata, 2015.spa
dc.relation.references[3] D. Serrato, R. Nieto-Aguilar, and A. Aguilera-Méndez, “Efectos negativos de la radiación ionizante empleada en diagnóstico odontológico,” Investigación y Ciencia, vol. 26, no. 74, pp. 81–87, 2018.spa
dc.relation.references[4] C. Hu, “Modern semiconductor devices for integrated circuits.[chenming c., hu ],”Chapter, vol. 4, pp. 89–156, 2009.spa
dc.relation.references[5] J. Schneider, D. Bahnemann, J. Ye, G. L. Puma, and D. D. Dionysiou, Photocatalysis: fundamentals and perspectives. Royal Society of Chemistry, 2016.spa
dc.relation.references[6] R. Beranek, “(photo) electrochemical methods for the determination of the band edge positions of tio2-based nanomaterials,” Advances in Physical Chemistry, vol. 2011, 2011.spa
dc.relation.references[7] T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. materials-related aspects,” International journal of hydrogen energy, vol. 27, no. 10, pp. 991–1022, 2002.spa
dc.relation.references[8] R. v. d. Krol, “Principles of photoelectrochemical cells,” in Photoelectrochemical hydrogen production, pp. 13–67, Springer, 2012.spa
dc.relation.references[9] S. Bermúdez, “Degradación fotoelectrocatalítica de colorante azoico rojo reactivo 239, en aguas contaminadas de la industria textil,” 2022.spa
dc.relation.references[10] C. Jiang, S. J. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting–materials and challenges,” Chemical Society Reviews, vol. 46, no. 15, pp. 4645–4660, 2017.spa
dc.relation.references[11] J. Cui, “Zinc oxide nanowires,” Materials Characterization, vol. 64, pp. 43–52, 2012.spa
dc.relation.references[12] S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, and M. E. Orazem, “Electrochemical impedance spectroscopy,” Nature Reviews Methods Primers, vol. 1, no. 1, p. 41, 2021.spa
dc.relation.references[13] A. Hankin, F. E. Bedoya-Lora, J. C. Alexander, A. Regoutz, and G. H. Kelsall, “Flat band potential determination: avoiding the pitfalls,” Journal of Materials Chemistry A, vol. 7, no. 45, pp. 26162–26176, 2019.spa
dc.relation.references[14] Z. Chen, H. Dinh, and E. Miller, “Photoelectrochemical water splitting: standards, experimental methods, and protocols, 2013,” Springer. doi, vol. 10, pp. 978–1.spa
dc.relation.references[15] Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, et al., “Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols,” Journal of Materials Research, vol. 25, no. 1, pp. 3–16, 2010.spa
dc.relation.references[16] I. Cristina, C. Cuéllar, J. Ricardo, V. Cabra, M. Angel González Curbelo, D. Angélica, ´ V. Martínez, and E. R. Valencia, APLICACIONES Y GENERALIDADES DE UN ESPECTROFOTOMETRO UV-VIS UV-1800 DE SHIMADZU ´ .spa
dc.relation.references[17] E. I. Ltd., “Blog fluorescence spectroscopy: Measuring fluorescence from a sample.”spa
dc.relation.references[18] R. López and R. Gómez, “Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial tio 2: a comparative study,” Journal of sol-gel science and technology, vol. 61, pp. 1–7, 2012.spa
dc.relation.references[19] A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Revista mexicana de física, vol. 53, no. 5, pp. 18–22, 2007.spa
dc.relation.references[20] A. A. Bunaciu, E. G. UdriS¸Tioiu, and H. Y. Aboul-Enein, “X-ray diffraction: instrumentation and applications,” Critical reviews in analytical chemistry, vol. 45, no. 4, pp. 289–299, 2015.spa
dc.relation.references[21] N. Das, S. Biswas, and P. E. Sokol, “The photovoltaic performance of zno nanorods in bulk heterojunction solar cells,” Journal of Renewable and Sustainable Energy, vol. 3, no. 3, p. 033105, 2011.spa
dc.relation.references[22] R. C. H. Cik, C. T. Foo, and A. F. O. Nor, “Field emission scanning electron microscope (fesem) facility in bti,” 2015.spa
dc.relation.references[23] R. S. Prabhu, R. Priyanka, M. Vijay, and G. R. K. Vikashini, “Field emission scanning electron microscopy (fesem) with a very big future in pharmaceutical research,” Research Article — Pharmaceutical Sciences — OA Journal — MCI Approved — Index Copernicus, vol. 11, pp. 2321–3272, 2021.spa
dc.relation.references[24] S. Mandizadeh, F. Soofivand, S. Bagheri, and M. Salavati-Niasari, “Srcrxfe12-xo19 nanoceramics as an effective catalyst for desulfurization of liquid fuels: Green sol-gel synthesis, characterization, magnetic and optical properties,” PloS one, vol. 12, no. 5, p. e0162891, 2017.spa
dc.relation.references[25] ThermoScientific, “Data sheet apreo 2 sem,” 2020.spa
dc.relation.references[26] L. R. Snyder, J. J. Kirkland, and J. W. Dolan, Introduction to modern liquid chromatography. John Wiley & Sons, 2011.spa
dc.relation.references[27] R. Sapkal, S. Shinde, M. Mahadik, V. Mohite, T. Waghmode, S. Govindwar, K. Rajpure, and C. Bhosale, “Photoelectrocatalytic decolorization and degradation of textile effluent using zno thin films,” Journal of photochemistry and photobiology B: biology, vol. 114, pp. 102–107, 2012.spa
dc.relation.references[28] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in queous solutions,” Journal of materials chemistry, vol. 12, no. 12, pp. 3773–3778, 2002.spa
dc.relation.references[29] M. Skompska and K. Zarebska, “Electrodeposition of zno nanorod arrays on transparent conducting substrates–a review,” Electrochimica Acta, vol. 127, pp. 467–488, 2014.spa
dc.relation.references[30] D. Franchi and Z. Amara, “Applications of sensitized semiconductors as heterogeneous visible-light photocatalysts in organic synthesis,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 41, pp. 15405–15429, 2020.spa
dc.relation.references[31] H. Karakurt and O. E. Kartal, “Investigation of photocatalytic activity of tio2 nanotubes synthesized by hydrothermal method,” Chemical Engineering Communications, pp. 1–21, 2022.spa
dc.relation.references[32] N. C. Dias, J. P. Bassin, G. L. Sant’Anna Jr, and M. Dezotti, “Ozonation of the dye reactive red 239 and biodegradation of ozonation products in a moving-bed biofilm reactor: revealing reaction products and degradation pathways,” International Biodeterioration & Biodegradation, vol. 144, p. 104742, 2019.spa
dc.relation.references[33] Y. Shen, Q. Xu, R. Wei, J. Ma, and Y. Wang, “Mechanism and dynamic study of reactive red x-3b dye degradation by ultrasonic-assisted ozone oxidation process,” Ultrasonics Sonochemistry, vol. 38, pp. 681–692, 2017.spa
dc.relation.references[34] D. P. Norton, Y. Heo, M. Ivill, K. Ip, S. Pearton, M. F. Chisholm, and T. Steiner, “Zno: growth, doping & processing,” Materials today, vol. 7, no. 6, pp. 34–40, 2004.spa
dc.relation.references[35] V. F. Lvovich, Impedance spectroscopy: applications to electrochemical and dielectric phenomena. John Wiley & Sons, 2012.spa
dc.relation.references[36] C. A. Basha, R. Saravanathamizhan, P. Manokaran, T. Kannadasan, and C. W. Lee, “Photoelectrocatalytic oxidation of textile dye effluent: Modeling using response surface methodology,” Industrial & engineering chemistry research, vol. 51, no. 7, pp. 2846– 2854, 2012.spa
dc.relation.references[37] L. Petersen, M. Heynen, and F. Pellicciotti, “Freshwater resources: Past, present, future,” International Encyclopedia of Geography, pp. 1–12, 2019.spa
dc.relation.references[38] S. De Gisi, G. Lofrano, M. Grassi, and M. Notarnicola, “Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review,” Sustainable Materials and Technologies, vol. 9, pp. 10–40, 2016.spa
dc.relation.references[39] S. De Souza, J. Madellin-Azuara, N. Burley, J. R. Lund, and R. E. Howitt, “Guidelines for preparing economic analysis for water recycling projects,” Center of Watershed Sciences, University of California, Davis, 2011.spa
dc.relation.references[40] S. Sen, S. Raut, P. Bandyopadhyay, and S. Raut, “Fungal decolouration and degradation of azo dyes: a review. fungal biol rev,” 2016.spa
dc.relation.references[41] Z. Aksu and G. Karabayır, “Comparison of biosorption properties of different kinds of fungi for the removal of gryfalan black rl metal-complex dye,” Bioresource Technology, vol. 99, no. 16, pp. 7730–7741, 2008.spa
dc.relation.references[42] C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, “A critical review on textile wastewater treatments: possible approaches,” Journal of environmental management, vol. 182, pp. 351–366, 2016.spa
dc.relation.references[43] P. Zaruma, J. Proal, I. C. Hernández, and H. I. Salas, “Los colorantes textiles industriales y tratamientos óptimos de sus efluentes de agua residual: una breve revisión,” Revista de la Facultad de Ciencias Químicas, no. 19, pp. 38–47, 2018.spa
dc.relation.references[44] R. O. A. de Lima, A. P. Bazo, D. M. F. Salvadori, C. M. Rech, D. de Palma Oliveira, and G. de Aragão Umbuzeiro, “Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 626, no. 1-2, pp. 53– 60, 2007.spa
dc.relation.references[45] C. López, M. Moreira, G. Feijoo, and J. Lema, “Tecnologías para el tratamiento de efluentes de industrias textiles,” Afinidad, vol. 64, no. 531, pp. 561–573, 2007.spa
dc.relation.references[46] J. C. Cardoso, G. G. Bessegato, and M. V. B. Zanoni, “Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization,” Water research, vol. 98, pp. 39–46, 2016.spa
dc.relation.references[47] C. Enric Brillasa, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. an updated review,” Applied Catalysis B: Environmental, pp. 166–167, 2015.spa
dc.relation.references[48] J. Fu, Y. Zhao, X. Xue, W. Li, and A. Babatunde, “Multivariate-parameter optimization of acid blue-7 wastewater treatment by ti/tio2 photoelectrocatalysis via the box–behnken design,” Desalination, vol. 243, no. 1-3, pp. 42–51, 2009.spa
dc.relation.references[49] Y. Xie and X. Li, “Interactive oxidation of photoelectrocatalysis and electro-fenton for azo dye degradation using tio2–ti mesh and reticulated vitreous carbon electrodes,” Materials Chemistry and Physics, vol. 95, no. 1, pp. 39–50, 2006.spa
dc.relation.references[50] C. Byrne, G. Subramanian, and S. C. Pillai, “Recent advances in photocatalysis for environmental applications,” Journal of environmental chemical engineering, vol. 6, no. 3, pp. 3531–3555, 2018.spa
dc.relation.references[51] Y. Hou, X. Li, Q. Zhao, G. Chen, and C. L. Raston, “Role of hydroxyl radicals and mechanism of escherichia coli inactivation on ag/agbr/tio2 nanotube array electrode under visible light irradiation,” Environmental science & technology, vol. 46, no. 7, pp. 4042–4050, 2012.spa
dc.relation.references[52] X. Zheng, D. Li, X. Li, L. Yu, P. Wang, X. Zhang, J. Fang, Y. Shao, and Y. Zheng, “Photoelectrocatalytic degradation of rhodamine b on tio 2 photonic crystals,” Physical Chemistry Chemical Physics, vol. 16, no. 29, pp. 15299–15306, 2014.spa
dc.relation.references[53] J. Wang and H. Chen, “Catalytic ozonation for water and wastewater treatment: recent advances and perspective,” Science of the Total Environment, vol. 704, p. 135249, 2020.spa
dc.relation.references[54] E. Brillas, “A review on the photoelectro-fenton process as efficient electrochemical advanced oxidation for wastewater remediation. treatment with uv light, sunlight, and coupling with conventional and other photo-assisted advanced technologies,” Chemosphere, vol. 250, p. 126198, 2020.spa
dc.relation.references[55] N. Bravo-Yumi, P. Espinoza-Montero, A. Picos-Benítez, R. Navarro-Mendoza, E. Brillas, and J. M. Peralta-Hernández, “Synthesis and characterization of sb2o5-doped ti/sno2-iro2 anodes toward efficient degradation tannery dyes by in situ generated oxidizing species,” Electrochimica Acta, vol. 358, p. 136904, 2020.spa
dc.relation.references[56] S. Shinde, C. Bhosale, and K. Rajpure, “Hydroxyl radical’s role in the remediation of wastewater,” Journal of Photochemistry and Photobiology B: Biology, vol. 116, pp. 66– 74, 2012.spa
dc.relation.references[57] P. Alulema-Pullupaxi, P. J. Espinoza-Montero, C. Sigcha-Pallo, R. Vargas, L. Fernandez, J. M. Peralta-Hernandez, and J. Paz, “Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review,” Chemosphere, vol. 281, p. 130821, 2021.spa
dc.relation.references[58] C. A. Martínez-Huitle and L. S. Andrade, “Electrocatalysis in wastewater treatment: recent mechanism advances,” Quimica Nova, vol. 34, pp. 850–858, 2011.spa
dc.relation.references[59] P. J. Espinoza-Montero, C. Vega-Verduga, P. Alulema-Pullupaxi, L. Fernández, and J. L. Paz, “Technologies employed in the treatment of water contaminated with glyphosate: A review,” Molecules, vol. 25, no. 23, p. 5550, 2020.spa
dc.relation.references[60] F. C. Moreira, R. A. Boaventura, E. Brillas, and V. J. Vilar, “Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters,” Applied Catalysis B: Environmental, vol. 202, pp. 217–261, 2017.spa
dc.relation.references[61] M. Sillanpää and M. Shestakova, “Emerging and combined electrochemical methods,” Electrochemical water treatment methods: Fundamentals, methods and full scale Applications, pp. 131–225, 2017.spa
dc.relation.references[62] S. Garcia-Segura and E. Brillas, “Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 31, pp. 1–35, 2017.spa
dc.relation.references[63] M. G. Peleyeju and O. A. Arotiba, “Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater,” Environmental Science: Water Research & Technology, vol. 4, no. 10, pp. 1389–1411, 2018.spa
dc.relation.references[64] J. Li, Y. Li, Z. Xiong, G. Yao, and B. Lai, “The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review,” Chinese Chemical Letters, vol. 30, no. 12, pp. 2139–2146, 2019.spa
dc.relation.references[65] G. G. Bessegato, J. C. De Souza, J. C. Cardoso, and M. V. B. Zanoni, “Assessment of several advanced oxidation processes applied in the treatment of environmental concern constituents from a real hair dye wastewater,” Journal of Environmental Chemical Engineering, vol. 6, no. 2, pp. 2794–2802, 2018.spa
dc.relation.references[66] P. Alulema-Pullupaxi, L. Fernández, A. Debut, C. P. Santacruz, W. Villacis, C. Fierro, and P. J. Espinoza-Montero, “Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (tio2/bdd) as a photoanode,” Chemosphere, vol. 278, p. 130488, 2021.spa
dc.relation.references[67] M. Pirsaheb, H. Hoseini, and V. Abtin, “Photoelectrocatalytic degradation of humic acid and disinfection over ni tio2-ni/ac-ptfe electrode under natural sunlight irradiation: Modeling, optimization and reaction pathway,” Journal of the Taiwan Institute of Chemical Engineers, vol. 118, pp. 204–214, 2021.spa
dc.relation.references[68] L. Cheng, T. Jiang, K. Yan, J. Gong, and J. Zhang, “A dual-cathode photoelectrocatalysis-electroenzymatic catalysis system by coupling bivo4 photoanode with hemin/cu and carbon cloth cathodes for degradation of tetracycline,” Electrochimica Acta, vol. 298, pp. 561–569, 2019.spa
dc.relation.references[69] A. Huda, P. Suman, L. Torquato, B. F. Silva, C. Handoko, F. Gulo, M. Zanoni, and M. Orlandi, “Visible light-driven photoelectrocatalytic degradation of acid yellow 17 using sn3o4 flower-like thin films supported on ti substrate (sn3o4/tio2/ti),” Journal of Photochemistry and Photobiology A: Chemistry, vol. 376, pp. 196–205, 2019.spa
dc.relation.references[70] P. Mazierski, A. F. Borzyszkowska, P. Wilczewska, A. Bia lk-Bieli´nska, A. ZaleskaMedynska, E. M. Siedlecka, and A. Pieczyńska, “Removal of 5-fluorouracil by solardriven photoelectrocatalytic oxidation using ti/tio2 (nt) photoelectrodes,” Water research, vol. 157, pp. 610–620, 2019.spa
dc.relation.references[71] A. Naseri, M. Samadi, N. M. Mahmoodi, A. Pourjavadi, H. Mehdipour, and A. Z. Moshfegh, “Tuning composition of electrospun zno/cuo nanofibers: toward controllable and efficient solar photocatalytic degradation of organic pollutants,” The Journal of Physical Chemistry C, vol. 121, no. 6, pp. 3327–3338, 2017.spa
dc.relation.references[72] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical reviews, vol. 95, no. 1, pp. 69– 96, 1995.spa
dc.relation.references[73] S.-B. Ghaffari, M.-H. Sarrafzadeh, Z. Fakhroueian, S. Shahriari, and M. R. Khorramizadeh, “Functionalization of zno nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: Synthesis, characterization, and anticancer assessment,” Materials Science and Engineering: C, vol. 79, pp. 465–472, 2017.spa
dc.relation.references[74] M. Sharma, K. Ojha, A. Ganguly, and A. K. Ganguli, “Ag 3 po 4 nanoparticle decorated on sio 2 spheres for efficient visible light photocatalysis,” New Journal of Chemistry, vol. 39, no. 12, pp. 9242–9248, 2015.spa
dc.relation.references[75] S.-L. Chiam, S.-Y. Pung, and F.-Y. Yeoh, “Recent developments in mno2-based photocatalysts for organic dye removal: a review,” Environmental Science and Pollution Research, vol. 27, no. 6, pp. 5759–5778, 2020.spa
dc.relation.references[76] A. Khan, Synthesis, characterization and luminescence properties of zinc oxide nanostructures. Ohio University, 2006.spa
dc.relation.references[77] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and Morkoc, “A comprehensive review of zno materials and devices,” Journal of applied physics, vol. 98, no. 4, p. 11, 2005.spa
dc.relation.references[78] Q. Deng, X. Duan, D. H. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, and G. Wang, “Ag nanoparticle decorated nanoporous zno microrods and their enhanced photocatalytic activities,” ACS Applied Materials & Interfaces, vol. 4, no. 11, pp. 6030–6037, 2012.spa
dc.relation.references[79] T. Welderfael, M. Pattabi, R. M. Pattabi, et al., “Photocatalytic activity of ag-n codoped zno nanorods under visible and solar light irradiations for mb degradation,” Journal of Water Process Engineering, vol. 14, pp. 117–123, 2016.spa
dc.relation.references[80] O. Bechambi, M. Chalbi, W. Najjar, and S. Sayadi, “Photocatalytic activity of zno doped with ag on the degradation of endocrine disrupting under uv irradiation and the investigation of its antibacterial activity,” Applied Surface Science, vol. 347, pp. 414– 420, 2015.spa
dc.relation.references[81] S. Singh, R. Sharma, and B. R. Mehta, “Enhanced surface area, high zn interstitial defects and band gap reduction in n-doped zno nanosheets coupled with bivo4 leads to improved photocatalytic performance,” Applied Surface Science, vol. 411, pp. 321–330, 2017.spa
dc.relation.references[82] W. Ebeling, H. Reinholz, and G. Röpke, “Equation of state of hydrogen, helium, and solar plasmas,” Contributions to Plasma Physics, vol. 61, no. 10, p. e202100085, 2021.spa
dc.relation.references[83] A. H. Smets, K. Jäger, O. Isabella, R. A. Swaaij, and M. Zeman, Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems. UIT Cambridge, 2015.spa
dc.relation.references[84] J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes. Wiley New York, 1980.spa
dc.relation.references[85] F. E. Checa and O. E. De La Cruz, “Potencial natural para el desarrollo fotovoltaico en Colombia,” Libros Editorial UNIMAR, 2015.spa
dc.relation.references[86] “Características de la radiación solar - IDEAM. url = http://www.ideam.gov.co/web/tiempo-y-clima/caracteristicas-de-la-radiacion-solar.”spa
dc.relation.references[87] I. A. Martínez Nicolás ´ et al., “Instrumentación y caracterización de disipadores térmicos,” 2015.spa
dc.relation.references[88] G. L. Miessler and D. A. Tarr, Solutions Manual, Inorganic Chemistry. Prentice Hall, 1999.spa
dc.relation.references[89] D. Shriver and P. Atkins, “Bioinorganic chemistry,” Inorganic Chemistry. 3rd Edition. USA: Oxford University Press, 1999.spa
dc.relation.references[90] S. Tripathi, R. Kaur, and M. Rani, “Oxide nanomaterials and their applications as a memristor,” Solid State Phenomena, vol. 222, pp. 67–97, 2015.spa
dc.relation.references[91] X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chemical reviews, vol. 107, no. 7, pp. 2891–2959, 2007.spa
dc.relation.references[92] R. Asahi, Y. Taga, W. Mannstadt, and A. J. Freeman, “Electronic and optical properties of anatase tio 2,” Physical Review B, vol. 61, no. 11, p. 7459, 2000.spa
dc.relation.references[93] J. Zhang, B. Tian, L. Wang, M. Xing, and J. Lei, Photocatalysis: fundamentals, materials and applications, vol. 100. Springer, 2018.spa
dc.relation.references[94] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chemical reviews, vol. 110, no. 11, pp. 6446–6473, 2010.spa
dc.relation.references[95] L. Peter, “Kinetics and mechanisms of light-driven reactions at semiconductor electrodes: Principles and techniques,” Photoelectrochemical Water Splitting: Materials, Processes and Architectures, vol. 9, pp. 19–51, 2013.spa
dc.relation.references[96] L. M. Peter, “Semiconductor electrochemistry,” in Photoelectrochemical Solar Fuel Production, pp. 3–40, Springer, 2016.spa
dc.relation.references[97] R. Van de Krol, M. Grätzel, et al., Photoelectrochemical hydrogen production, vol. 90. Springer, 2012.spa
dc.relation.references[98] J. Rodriguez, R. J. Candal, J. Solís, W. Estrada, and M. Blesa, “El fotocatalizador: síntesis, propiedades y limitaciones,” Solar Safe Water, vol. 9, pp. 135–152, 2005.spa
dc.relation.references[99] S. R. Morrison and S. Morrison, Electrochemistry at semiconductor and oxidized metal electrodes, vol. 126. Springer, 1980.spa
dc.relation.references[100] L.-J. Guo, J.-W. Luo, T. He, S.-H. Wei, and S.-S. Li, “Photocorrosion-limited maximum efficiency of solar photoelectrochemical water splitting,” Physical Review Applied, vol. 10, no. 6, p. 064059, 2018.spa
dc.relation.references[101] L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” The Journal of chemical physics, vol. 80, no. 9, pp. 4403–4409, 1984.spa
dc.relation.references[102] B. Enright and D. Fitzmaurice, “Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film,” The Journal of Physical Chemistry, vol. 100, no. 3, pp. 1027–1035, 1996.spa
dc.relation.references[103] K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, and W.-F. Hsieh, “Band gap variation of size-controlled zno quantum dots synthesized by sol–gel method,” Chemical Physics Letters, vol. 409, no. 4-6, pp. 208–211, 2005.spa
dc.relation.references[104] F. I. Khan, T. Husain, and R. Hejazi, “An overview and analysis of site remediation technologies,” Journal of environmental management, vol. 71, no. 2, pp. 95–122, 2004.spa
dc.relation.references[105] A. T. Yeung and Y.-Y. Gu, “A review on techniques to enhance electrochemical remediation of contaminated soils,” Journal of hazardous materials, vol. 195, pp. 11–29, 2011.spa
dc.relation.references[106] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” nature, vol. 238, no. 5358, pp. 37–38, 1972.spa
dc.relation.references[107] I. Ganesh, P. C. Sekhar, G. Padmanabham, and G. Sundararajan, “Influence of lidoping on structural characteristics and photocatalytic activity of zno nano-powder formed in a novel solution pyro-hydrolysis route,” Applied surface science, vol. 259, pp. 524–537, 2012.spa
dc.relation.references[108] D. S. Bhatkhande, V. G. Pangarkar, and A. A. C. M. Beenackers, “Photocatalytic degradation for environmental applications–a review,” Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, vol. 77, no. 1, pp. 102–116, 2002.spa
dc.relation.references[109] G. G. Bessegato, T. T. Guaraldo, J. F. de Brito, M. F. Brugnera, and M. V. B. Zanoni, “Achievements and trends in photoelectrocatalysis: from environmental to energy applications,” Electrocatalysis, vol. 6, no. 5, pp. 415–441, 2015.spa
dc.relation.references[110] E. Zarei and R. Ojani, “Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review,” Journal of Solid State Electrochemistry, vol. 21, no. 2, pp. 305–336, 2017.spa
dc.relation.references[111] C. J. Lin, S.-J. Liao, L.-C. Kao, and S. Y. H. Liou, “Photoelectrocatalytic activity of a hydrothermally grown branched zno nanorod-array electrode for paracetamol degradation,” Journal of hazardous materials, vol. 291, pp. 9–17, 2015.spa
dc.relation.references[112] E. A. S. Dimapilis, C.-S. Hsu, R. M. O. Mendoza, and M.-C. Lu, “Zinc oxide nanoparticles for water disinfection,” Sustainable Environment Research, vol. 28, no. 2, pp. 47–56, 2018.spa
dc.relation.references[113] V. Sharma, M. Prasad, P. Ilaiyaraja, C. Sudakar, and S. Jadkar, “Electrodeposition of highly porous zno nanostructures with hydrothermal amination for efficient photoelectrochemical activity,” international journal of hydrogen energy, vol. 44, no. 23, pp. 11459–11471, 2019.spa
dc.relation.references[114] J. Jiang, Z. Mu, H. Xing, Q. Wu, X. Yue, and Y. Lin, “Insights into the synergetic effect for enhanced uv/visible-light activated photodegradation activity via cu-zno photocatalyst,” Applied Surface Science, vol. 478, pp. 1037–1045, 2019.spa
dc.relation.references[115] M. Salem, I. Massoudi, S. Akir, Y. Litaiem, M. Gaidi, and K. Khirouni, “Photoelectrochemical and opto-electronic properties tuning of zno films: Effect of cu doping content,” Journal of Alloys and Compounds, vol. 722, pp. 313–320, 2017.spa
dc.relation.references[116] Y. DU Hongchu, S. HUANG, J. LI, Y. ZHU, L. SHEN, L. GUO, N. BAO, and K. YANAGISAWA, “A new reaction to zno nanoparticles,” J. Appl. Phys, vol. 88, p. 2152, 2000.spa
dc.relation.references[117] V. Oskoei, M. Dehghani, S. Nazmara, B. Heibati, M. Asif, I. Tyagi, S. Agarwal, and V. K. Gupta, “Removal of humic acid from aqueous solution using uv/zno nanophotocatalysis and adsorption,” Journal of Molecular Liquids, vol. 213, pp. 374–380, 2016.spa
dc.relation.references[118] M. B. Ali, F. Barka-Bouaifel, B. Sieber, H. Elhouichet, A. Addad, L. Boussekey, M. Férid, and R. Boukherroub, “Preparation and characterization of ni-doped zno–sno2 nanocomposites: application in photocatalysis,” Superlattices and Microstructures, vol. 91, pp. 225–237, 2016.spa
dc.relation.references[119] R. Mohammed, M. E. M. Ali, E. Gomaa, and M. Mohsen, “Green zno nanorod material for dye degradation and detoxification of pharmaceutical wastes in water,” Journal of Environmental Chemical Engineering, vol. 8, no. 5, p. 104295, 2020.spa
dc.relation.references[120] K. Qi, B. Cheng, J. Yu, and W. Ho, “Review on the improvement of the photocatalytic and antibacterial activities of zno,” Journal of Alloys and Compounds, vol. 727, pp. 792–820, 2017.spa
dc.relation.references[121] M. Mapa and C. S. Gopinath, “Combustion synthesis of triangular and multifunctional zno1- x n x (x ≤ 0.15) materials,” Chemistry of Materials, vol. 21, no. 2, pp. 351–359, 2009.spa
dc.relation.references[122] N. Salah, A. Hameed, M. Aslam, M. S. Abdel-Wahab, S. S. Babkair, and F. Bahabri, “Flow controlled fabrication of n doped zno thin films and estimation of their performance for sunlight photocatalytic decontamination of water,” Chemical Engineering Journal, vol. 291, pp. 115–127, 2016.spa
dc.relation.references[123] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, and A. Z. Moshfegh, “Recent progress on doped zno nanostructures for visible-light photocatalysis,” Thin Solid Films, vol. 605, pp. 2–19, 2016.spa
dc.relation.references[124] V. Mote, Y. Purushotham, and B. Dole, “Structural, morphological, physical and dielectric properties of mn doped zno nanocrystals synthesized by sol–gel method,” Materials & Design, vol. 96, pp. 99–105, 2016.spa
dc.relation.references[125] S¸. S¸. Türkyilmaz, N. Güy, and M. Ozacar, “Photocatalytic efficiencies of ni, mn, fe and ag doped zno nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between zno and metals,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 341, pp. 39–50, 2017.spa
dc.relation.references[126] Y. Yu, “Ag-doped zno nanorods synthesized on porous si electrode using a facile electrochemical approach for removal of methylene blue from wastewater,” INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, vol. 16, no. 2, 2021.spa
dc.relation.references[127] Y. Liu, W. Gao, C. Zhang, L. Zhang, and Y. Zhi, “In situ formation of ag/zno heterostructure arrays during synergistic photocatalytic process for sers and photocatalysis,” Journal of the Taiwan Institute of Chemical Engineers, vol. 88, pp. 277–285, 2018.spa
dc.relation.references[128] G. A. Cerrón-Calle, A. J. Aranda-Aguirre, C. Luyo, S. Garcia-Segura, and H. Alarcón, “Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of zno nanorods decorated with ag nanoparticles,” Chemosphere, vol. 219, pp. 296–304, 2019.spa
dc.relation.references[129] H. H. Mohamed and D. W. Bahnemann, “The role of electron transfer in photocatalysis: Fact and fictions,” Applied Catalysis B: Environmental, vol. 128, pp. 91–104, 2012.spa
dc.relation.references[130] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, and S. C. Pillai, “Visible light activation of tio2 photocatalysts: Advances in theory and experiments,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 25, pp. 1–29, 2015.spa
dc.relation.references[131] C. Jaramillo-Páez, J. A. Navío, M. Hidalgo, and M. Macías, “High uv-photocatalytic activity of zno and ag/zno synthesized by a facile method,” Catalysis Today, vol. 284, pp. 121–128, 2017.spa
dc.relation.references[132] A. A. Ismail, D. W. Bahnemann, and S. A. Al-Sayari, “Synthesis and photocatalytic properties of nanocrystalline au, pd and pt photodeposited onto mesoporous ruo2-tio2 nanocomposites,” Applied Catalysis A: General, vol. 431, pp. 62–68, 2012.spa
dc.relation.references[133] H. O. Tugaoen, S. Garcia-Segura, K. Hristovski, and P. Westerhoff, “Challenges in photocatalytic reduction of nitrate as a water treatment technology,” Science of the total environment, vol. 599, pp. 1524–1551, 2017.spa
dc.relation.references[134] P. Christensen and A. Hamnet, Techniques and mechanisms in electrochemistry. Springer Science & Business Media, 2007.spa
dc.relation.references[135] D. K. Gosser, Cyclic voltammetry: simulation and analysis of reaction mechanisms, vol. 43. VCH New York, 1993.spa
dc.relation.references[136] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A practical beginner’s guide to cyclic voltammetry,” Journal of chemical education, vol. 95, no. 2, pp. 197–206, 2018.spa
dc.relation.references[137] P. T. Kissinger and W. R. Heineman, “Cyclic voltammetry,” Journal of chemical education, vol. 60, no. 9, p. 702, 1983.spa
dc.relation.references[138] A. Lasia, Electrochemical impedance spectroscopy and its applications. Springer, 2002.spa
dc.relation.references[139] M. E. Orazem and B. Tribollet, “Electrochemical impedance spectroscopy,” New Jersey, vol. 1, pp. 383–389, 2008.spa
dc.relation.references[140] K. Uosaki and H. Kita, “Response to¸comment on’effects of the helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the mott-schottky plot’”[j. electrochem. soc., 130, 895],” Journal of The Electrochemical Society, vol. 131, no. 10, pp. 2452–2454, 1984.spa
dc.relation.references[141] R. De Gryse, W. Gomes, F. Cardon, and J. Vennik, “On the interpretation of mottschottky plots determined at semiconductor/electrolyte systems,” Journal of the Electrochemical Society, vol. 122, no. 5, p. 711, 1975.spa
dc.relation.references[142] D. C. Grahame, “The electrical double layer and the theory of electrocapillarity.,” Chemical reviews, vol. 41, no. 3, pp. 441–501, 1947.spa
dc.relation.references[143] N. E. Wisdom and N. Hackerman, “Surface studies on passive iron,” Journal of The Electrochemical Society, vol. 110, no. 4, p. 318, 1963.spa
dc.relation.references[144] H. Gerischer, “Neglected problems in the ph dependence of the flatband potential of semiconducting oxides and semiconductors covered with oxide layers,” Electrochimica acta, vol. 34, no. 8, pp. 1005–1009, 1989.spa
dc.relation.references[145] J. V. Pleskov, Y. Y. Gurevich, and P. Bartlett, Semiconductor photoelectrochemistry. Springer, 1986.spa
dc.relation.references[146] N. Sato, Electrochemistry at metal and semiconductor electrodes. Elsevier, 1998.spa
dc.relation.references[147] H.-H. Perkampus, UV-VIS Spectroscopy and its Applications. Springer Science & Business Media, 2013.spa
dc.relation.references[148] P. Kubelka and F. Munk, “An article on optics of paint layers,” Z. Tech. Phys, vol. 12, no. 593-601, pp. 259–274, 1931.spa
dc.relation.references[149] F. Galindo-Hernández, R. Gómez, G. del Angel, and C. Guzmán, “Hydrolysis catalyst ´ effect on the textural and structural properties of sol-gel mixed oxides tio2-ceo2,” Journal of Ceramic Processing Research, vol. 9, no. 6, pp. 616–623, 2008.spa
dc.relation.references[150] A. Murphy, “Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting,” Solar Energy Materials and Solar Cells, vol. 91, no. 14, pp. 1326–1337, 2007.spa
dc.relation.references[151] L. Yang and B. Kruse, “Revised kubelka–munk theory. i. theory and application,” JOSA A, vol. 21, no. 10, pp. 1933–1941, 2004.spa
dc.relation.references[152] L. Yang, B. Kruse, and S. J. Miklavcic, “Revised kubelka–munk theory. ii. unified framework for homogeneous and inhomogeneous optical media,” JOSA A, vol. 21, no. 10, pp. 1942–1952, 2004.spa
dc.relation.references[153] L. Yang and S. J. Miklavcic, “Revised kubelka–munk theory. iii. a general theory of light propagation in scattering and absorptive media,” JOSA A, vol. 22, no. 9, pp. 1866–1873, 2005.spa
dc.relation.references[154] A. A. Kokhanovsky, “Physical interpretation and accuracy of the kubelka–munk theory,” journal of physics d: applied physics, vol. 40, no. 7, p. 2210, 2007.spa
dc.relation.references[155] P. Edström, “Examination of the revised kubelka-munk theory: considerations of modeling strategies,” JOSA A, vol. 24, no. 2, pp. 548–556, 2007.spa
dc.relation.references[156] L. Yang, S. J. Miklavcic, and B. Kruse, “Qualifying the arguments used in the derivation of the revised kubelka-munk theory: reply,” JOSA A, vol. 24, no. 2, pp. 557–560, 2007.spa
dc.relation.references[157] W. Friedrich, P. Knipping, and M. Laue, “Interferenzerscheinungen bei roentgenstrahlen,” Annalen der Physik, vol. 346, no. 10, pp. 971–988, 1913.spa
dc.relation.references[158] J. R. Connolly, “Introduction to x-ray powder diffraction,” European Physical Society of Journal, vol. 4, p. p400, 2007.spa
dc.relation.references[159] G. Brown, Crystal structures of clay minerals and their X-ray identification, vol. 5. The Mineralogical Society of Great Britain and Ireland, 1982.spa
dc.relation.references[160] A. Broers, “Recent advances in sem with lanthanum hexaboride cathodes,” Scanning Electron Microscopyll974 (Eds. Johari 0, Corvin I). IITRI, Chicago I, pp. 10–18, 1974.spa
dc.relation.references[161] J. Pawley, “The development of field-emission scanning electron microscopy for imaging biological surfaces,” SCANNING-NEW YORK AND BADEN BADEN THEN MAHWAH-, vol. 19, pp. 324–336, 1997.spa
dc.relation.references[162] D. C. Joy and J. B. Pawley, “High-resolution scanning electron microscopy,” Ultramicroscopy, vol. 47, no. 1-3, pp. 80–100, 1992.spa
dc.relation.references[163] V. R. Meyer, Practical high-performance liquid chromatography. John Wiley & Sons, 2013.spa
dc.relation.references[164] A. J. Martin and R. L. Synge, “A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. application to the micro-determination of the higher monoamino-acids in proteins,” Biochemical Journal, vol. 35, no. 12, p. 1358, 1941.spa
dc.relation.references[165] D. Yaseen and M. Scholz, “Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review,” International journal of environmental science and technology, vol. 16, pp. 1193–1226, 2019.spa
dc.relation.references[166] A. Ahmad, S. H. Mohd-Setapar, C. S. Chuong, A. Khatoon, W. A. Wani, R. Kumar, and M. Rafatullah, “Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater,” RSC advances, vol. 5, no. 39, pp. 30801–30818, 2015.spa
dc.relation.references[167] J. Chakraborty, “Waste-water problem in textile industry,” Fundamentals and practices in colouration of textiles, pp. 381–408, 2010.spa
dc.relation.references[168] W. S. Koe, J. W. Lee, W. C. Chong, Y. L. Pang, and L. C. Sim, “An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane,” Environmental Science and Pollution Research, vol. 27, pp. 2522–2565, 2020.spa
dc.relation.references[169] P. Sathishkumar, R. V. Mangalaraja, and S. Anandan, “Review on the recent improvements in sonochemical and combined sonochemical oxidation processes–a powerful tool for destruction of environmental contaminants,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 426–454, 2016.spa
dc.relation.references[170] G. Matafonova and V. Batoev, “Review on low-and high-frequency sonolytic, sonophotolytic and sonophotochemical processes for inactivating pathogenic microorganisms in aqueous media,” Water Research, vol. 166, p. 115085, 2019.spa
dc.relation.references[171] A. Saravanan, V. Deivayanai, P. S. Kumar, G. Rangasamy, R. Hemavathy, T. Harshana, N. Gayathri, and A. Krishnapandi, “A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook,” Chemosphere, p. 136524, 2022.spa
dc.relation.references[172] L. K. Weavers, “Sonolytic ozonation for the remediation of hazardous pollutants,” Advances in Sonochemistry Theme issue–Ultrasound in Environmental Protection. TJ Mason and A. Tiehm (eds), Elsevier, vol. 6, pp. 111–140, 2001.spa
dc.relation.references[173] S. Merouani and O. Hamdaoui, “Sonolytic ozonation for water treatment: efficiency, recent developments, and challenges,” Current opinion in Green and sustainable chemistry, vol. 18, pp. 98–108, 2019.spa
dc.relation.references[174] J. Sanz, J. I. Lombraña, and A. De Luis, “Estado del arte en la oxidación avanzada a efluentes industriales: nuevos desarrollos y futuras tendencias,” Afinidad, vol. 70, no. 561, 2013.spa
dc.relation.references[175] S. Arzate, S. Pfister, C. Oberschelp, and J. A. Sánchez-Pérez, “Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant,” Science of the Total Environment, vol. 694, p. 133572, 2019.spa
dc.relation.references[176] K. Szymánski, A. W. Morawski, and S. Mozia, “Effectiveness of treatment of secondary effluent from a municipal wastewater treatment plant in a photocatalytic membrane reactor and hybrid uv/h2o2–ultrafiltration system,” Chemical Engineering and Processing-Process Intensification, vol. 125, pp. 318–324, 2018.spa
dc.relation.references[177] O. Iglesias, M. J. Rivero, A. M. Urtiaga, and I. Ortiz, “Membrane-based photocatalytic systems for process intensification,” Chemical Engineering Journal, vol. 305, pp. 136– 148, 2016.spa
dc.relation.references[178] T. L. Villarreal, R. Gómez, M. Neumann-Spallart, N. Alonso-Vante, and P. Salvador, “Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer. i. photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination,” The Journal of Physical Chemistry B, vol. 108, no. 39, pp. 15172–15181, 2004.spa
dc.relation.references[179] A. S. Ozen, V. Aviyente, and R. A. Klein, “Modeling the oxidative degradation of ¨ azo dyes: a density functional theory study,” The Journal of Physical Chemistry A, vol. 107, no. 24, pp. 4898–4907, 2003.spa
dc.relation.references[180] R. Shukla and G. Madras, “Cyclic reaction network modeling for the kinetics of photoelectrocatalytic degradation,” Journal of Environmental Chemical Engineering, vol. 2, no. 2, pp. 780–787, 2014.spa
dc.relation.references[181] J. C. Cardoso, N. Lucchiari, and M. V. B. Zanoni, “Bubble annular photoeletrocatalytic reactor with tio2 nanotubes arrays applied in the textile wastewater,” Journal of Environmental Chemical Engineering, vol. 3, no. 2, pp. 1177–1184, 2015.spa
dc.relation.references[182] A. Ait hssi, E. Amaterz, N. Labchir, L. Atourki, I. Y. Bouderbala, A. Elfanaoui, A. Benlhachemi, A. Ihlal, and K. Bouabid, “Electrodeposited zno nanorods as efficient photoanodes for the degradation of rhodamine b,” physica status solidi (a), vol. 217, no. 17, p. 2000349, 2020.spa
dc.relation.references[183] T. J. Park, R. C. Pawar, S. Kang, and C. S. Lee, “Ultra-thin coating of gc 3 n 4 on an aligned zno nanorod film for rapid charge separation and improved photodegradation performance,” RSC advances, vol. 6, no. 92, pp. 89944–89952, 2016.spa
dc.relation.references[184] K. S. Ranjith, R. B. Castillo, M. Sillanpaa, and R. T. R. Kumar, “Effective shell wall thickness of vertically aligned zno-zns core-shell nanorod arrays on visible photocatalytic and photo sensing properties,” Applied Catalysis B: Environmental, vol. 237, pp. 128–139, 2018.spa
dc.relation.references[185] Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, and S. M. Rezaei Darvishi, “Zno photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using s-doped zno nanoparticles under visible light radiation,” Industrial & Engineering Chemistry Research, vol. 59, no. 36, pp. 15894–15911, 2020.spa
dc.relation.references[186] J. Fan, T. Li, and H. Heng, “Hydrothermal growth of zno nanoflowers and their photocatalyst application,” Bulletin of Materials Science, vol. 39, pp. 19–26, 2016.spa
dc.relation.references[187] Q. Zhou, J. Z. Wen, P. Zhao, and W. A. Anderson, “Synthesis of vertically-aligned zinc oxide nanowires and their application as a photocatalyst,” Nanomaterials, vol. 7, no. 1, p. 9, 2017.spa
dc.relation.references[188] P. Samadipakchin, H. R. Mortaheb, and A. Zolfaghari, “Zno nanotubes: Preparation and photocatalytic performance evaluation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 337, pp. 91–99, 2017.spa
dc.relation.references[189] S. M. Saleh, “Zno nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 211, pp. 141–147, 2019.spa
dc.relation.references[190] H. Deng, F. Xu, B. Cheng, J. Yu, and W. Ho, “Photocatalytic co2 reduction of c/zno nanofibers enhanced by an ni-nis cocatalyst,” Nanoscale, vol. 12, no. 13, pp. 7206–7213, 2020.spa
dc.relation.references[191] R. B. Rajput, R. Shaikh, J. Sawant, and R. B. Kale, “Recent developments in zno based heterostructures as photoelectrocatalysts for wastewater treatment: a review,” Environmental Advances, p. 100264, 2022.spa
dc.relation.references[192] N. Shimpi, Y. Rane, D. Shende, S. Gosavi, and P. Ahirrao, “Synthesis of rod-like zno nanostructure: Study of its physical properties and visible-light driven photocatalytic activity,” Optik, vol. 217, p. 164916, 2020.spa
dc.relation.references[193] R. Suryavanshi, S. Mohite, A. Bagade, and K. Rajpure, “Photoelectrocatalytic activity of spray deposited fe2o3/zno photoelectrode for degradation of salicylic acid and methyl orange dye under solar radiation,” Materials Science and Engineering: B, vol. 248, p. 114386, 2019.spa
dc.relation.references[194] M. Pirhashemi, A. Habibi-Yangjeh, and S. R. Pouran, “Review on the criteria anticipated for the fabrication of highly efficient zno-based visible-light-driven photocatalysts,” Journal of industrial and engineering chemistry, vol. 62, pp. 1–25, 2018.spa
dc.relation.references[195] M. A. Mohd Adnan, N. M. Julkapli, and S. B. Abd Hamid, “Review on zno hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation,” Reviews in Inorganic Chemistry, vol. 36, no. 2, pp. 77–104, 2016.spa
dc.relation.references[196] N. Al Abass, T. Qahtan, M. Gondal, R. Moqbel, and A. Bubshait, “Laser-assisted synthesis of zno/znse hybrid nanostructured films for enhanced solar-light induced water splitting and water decontamination,” International Journal of Hydrogen Energy, vol. 45, no. 43, pp. 22938–22949, 2020.spa
dc.relation.references[197] K. A. Adegoke, M. Iqbal, H. Louis, and O. S. Bello, “Synthesis, characterization and application of cds/zno nanorod heterostructure for the photodegradation of rhodamine b dye,” Materials Science for Energy Technologies, vol. 2, no. 2, pp. 329–336, 2019.spa
dc.relation.references[198] R. Suryavanshi, S. Mohite, A. Bagade, S. Shaikh, J. Thorat, and K. Rajpure, “Nanocrystalline immobilised zno photocatalyst for degradation of benzoic acid and methyl blue dye,” Materials Research Bulletin, vol. 101, pp. 324–333, 2018.spa
dc.relation.references[199] J. Zhao, S. Ge, D. Pan, Y. Pan, V. Murugadoss, R. Li, W. Xie, Y. Lu, T. Wu, E. K. Wujcik, et al., “Microwave hydrothermal synthesis of in2o3-zno nanocomposites and their enhanced photoelectrochemical properties,” Journal of the Electrochemical Society, vol. 166, no. 5, pp. H3074–H3083, 2019.spa
dc.relation.references[200] B. O. Orimolade and O. A. Arotiba, “An exfoliated graphite-bismuth vanadate composite photoanode for the photoelectrochemical degradation of acid orange 7 dye,” Electrocatalysis, vol. 10, pp. 429–435, 2019.spa
dc.relation.references[201] B. O. Orimolade, B. A. Koiki, B. N. Zwane, G. M. Peleyeju, N. Mabuba, and O. A. Arotiba, “Interrogating solar photoelectrocatalysis on an exfoliated graphite–bivo 4/zno composite electrode towards water treatment,” RSC advances, vol. 9, no. 29, pp. 16586– 16595, 2019.spa
dc.relation.references[202] J. P. Moura, R. Y. Reis, A. E. Lima, R. S. Santos, and G. E. Luz Jr, “Improved photoelectrocatalytic properties of zno/cuwo4 heterojunction film for rhb degradation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 401, p. 112778, 2020.spa
dc.relation.references[203] A. P. P. d. Rosa, R. P. Cavalcante, T. F. d. Silva, F. Gozzi, C. Byrne, E. McGlynn, G. A. Casagrande, S. C. d. Oliveira, and A. M. Junior, “Photoelectrocatalytic degradation of methylene blue using zno nanorods fabricated on silicon substrates,” Journal of Nanoscience and Nanotechnology, vol. 20, no. 2, pp. 1177–1188, 2020.spa
dc.relation.references[204] R. Y. Reis, A. E. Lima, M. J. Costa, J. F. Cruz-Filho, J. P. Moura, R. S. Santos, and G. E. Luz Jr, “Enhanced photoelectrocatalytic performance of zno films doped with n2 by a facile electrochemical method,” Surfaces and Interfaces, vol. 21, p. 100675, 2020.spa
dc.relation.references[205] Y. Shao, K. Feng, J. Guo, R. Zhang, S. He, X. Wei, Y. Lin, Z. Ye, and K. Chen, “Study on the electronic structure and enhanced photoelectrocatalytic performance of ruxzn1-xo/ti electrodes,” 2021.spa
dc.relation.references[206] A. Chennah, E. Amaterz, A. Taoufyq, B. Bakiz, Y. Kadmi, L. Bazzi, F. Guinneton, J. Gavarri, and A. Benlhachemi, “Photoelectrocatalytic degradation of rhodamine b pollutant with a novel zinc phosphate photoanode,” Process Safety and Environmental Protection, vol. 148, pp. 200–209, 2021.spa
dc.relation.references[207] J. Zheng, Y. Zhang, C. Jing, H. Zhang, Q. Shao, and R. Ge, “A visible-light active pn heterojunction zno/co3o4 composites supported on ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue,” Advanced Composites and Hybrid Materials, vol. 5, no. 3, pp. 2406–2420, 2022.spa
dc.relation.references[208] Y.-C. Liang and C.-H. Huang, “Microstructure-dependent photoelectrocatalytic activity of heterogeneous zno–zns nanosheets,” Nanotechnology Reviews, vol. 11, no. 1, pp. 1248–1262, 2022.spa
dc.relation.references[209] A. Aziz, Z. Memon, and A. Bhutto, “Efficient photocatalytic degradation of industrial wastewater dye by grewia asiatica mediated zinc oxide nanoparticles,” Optik, vol. 272, p. 170352, 2023.spa
dc.relation.references[210] Y. Zhang, X. Xiong, Y. Han, X. Zhang, F. Shen, S. Deng, H. Xiao, X. Yang, G. Yang, and H. Peng, “Photoelectrocatalytic degradation of recalcitrant organic pollutants using tio2 film electrodes: an overview,” Chemosphere, vol. 88, no. 2, pp. 145–154, 2012.spa
dc.relation.references[211] M. N. Chong, B. Jin, C. W. Chow, and C. Saint, “Recent developments in photocatalytic water treatment technology: a review,” Water research, vol. 44, no. 10, pp. 2997– 3027, 2010.spa
dc.relation.references[212] T. An, Y. Xiong, G. Li, C. Zha, and X. Zhu, “Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 152, no. 1-3, pp. 155–165, 2002.spa
dc.relation.references[213] H. Selcuk, J. J. Sene, and M. A. Anderson, “Photoelectrocatalytic humic acid degradation kinetics and effect of ph, applied potential and inorganic ions,” Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, vol. 78, no. 9, pp. 979–984, 2003.spa
dc.relation.references[214] A. Assabane, Y. A. Ichou, H. Tahiri, C. Guillard, and J.-M. Herrmann, “Photocatalytic degradation of polycarboxylic benzoic acids in uv-irradiated aqueous suspensions of titania.: Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1, 2, 4-benzene tricarboxylic acid),” Applied Catalysis B: Environmental, vol. 24, no. 2, pp. 71–87, 2000.spa
dc.relation.references[215] J. Harper, P. Christensen, T. Egerton, and K. Scott, “Mass transport characterization of a novel gas sparged photoelectrochemical reactor,” Journal of applied electrochemistry, vol. 31, pp. 267–273, 2001.spa
dc.relation.references[216] K. Mehrotra, G. S. Yablonsky, and A. K. Ray, “Macro kinetic studies for photocatalytic degradation of benzoic acid in immobilized systems,” Chemosphere, vol. 60, no. 10, pp. 1427–1436, 2005.spa
dc.relation.references[217] Y. Wang, M. Zu, X. Zhou, H. Lin, F. Peng, and S. Zhang, “Designing efficient tio2- based photoelectrocatalysis systems for chemical engineering and sensing,” Chemical Engineering Journal, vol. 381, p. 122605, 2020.spa
dc.relation.references[218] S. M. Jacobm and J. S. Dranoff, “Light intensity profiles in a perfectly mixed photoreactor,” AIChE Journal, vol. 16, no. 3, pp. 359–363, 1970.spa
dc.relation.references[219] I. T. Cameron and K. Hangos, Process modelling and model analysis. Elsevier, 2001.spa
dc.relation.references[220] H. Alvarez, L. Gómez, and H. Botero, “Abstracciones macroscópicas de la fenomenología para el modelado de procesos,” in XXVII Congreso Interamericano y colombiano de Ingeniería Química, pp. 6–8, 2014.spa
dc.relation.references[221] M. Tian, G. Wu, B. Adams, J. Wen, and A. Chen, “Kinetics of photoelectrocatalytic degradation of nitrophenols on nanostructured tio2 electrodes,” The Journal of Physical Chemistry C, vol. 112, no. 3, pp. 825–831, 2008.spa
dc.relation.references[222] D. Monllor-Satoca, “Fotoelectroquímica de electrodos semiconductores nanocristalinos: proceso de transferencia de carga y estrategias de mejora de la fotoactividad,” 2010.spa
dc.relation.references[223] I. Mora-Sero, T. L. Villarreal, J. Bisquert, A. Pitarch, R. Gomez, and P. Salvador, ´ “Photoelectrochemical behavior of nanostructured tio2 thin-film electrodes in contact with aqueous electrolytes containing dissolved pollutants: A model for distinguishing between direct and indirect interfacial hole transfer from photocurrent measurements,” The Journal of Physical Chemistry B, vol. 109, no. 8, pp. 3371–3380, 2005.spa
dc.relation.references[224] M. Hepel and S. Hazelton, “Photoelectrocatalytic degradation of diazo dyes on nanostructured wo3 electrodes,” Electrochimica Acta, vol. 50, no. 25-26, pp. 5278–5291, 2005.spa
dc.relation.references[225] N. San, A. Hatipoğlu, G. Koçtürk, and Z. Çınar, “Photocatalytic degradation of 4-nitrophenol in aqueous tio2 suspensions: theoretical prediction of the intermediates,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 146, no. 3, pp. 189–197, 2002.spa
dc.relation.references[226] M. Tian, B. Adams, J. Wen, R. M. Asmussen, and A. Chen, “Photoelectrochemical oxidation of salicylic acid and salicylaldehyde on titanium dioxide nanotube arrays,” Electrochimica Acta, vol. 54, no. 14, pp. 3799–3805, 2009.spa
dc.relation.references[227] S. Liu, X. Jiang, G. I. Waterhouse, Z.-M. Zhang, and L.-m. Yu, “Efficient photoelectrocatalytic degradation of azo-dyes over polypyrrole/titanium oxide/reduced graphene oxide electrodes under visible light: Performance evaluation and mechanism insights,” Chemosphere, vol. 288, p. 132509, 2022.spa
dc.relation.references[228] H. Chen, J. Ye, Z. Chao, K. Zhu, H. Yang, Z. Xu, et al., “Oxygen-doped protonated c3n4 nanosheet as particle electrode and photocatalyst to degrade dye by photoelectrocatalytic oxidation process,” Separation and Purification Technology, p. 123405, 2023.spa
dc.relation.references[229] O. M. Alfano, M. I. Cabrera, and A. E. Cassano, “Photocatalytic reactions involving hydroxyl radical attack,” Journal of Catalysis, vol. 172, no. 2, pp. 370–379, 1997.spa
dc.relation.references[230] A. E. Cassano and O. M. Alfano, “Reaction engineering of heterogeneous photocatalytic reactors,” Zeitschrift für Physikalische Chemie, vol. 1, no. 1, pp. 237–252, 1998.spa
dc.relation.references[231] N. J. Peill and M. R. Hoffmann, “Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis,” Environmental science & technology, vol. 32, no. 3, pp. 398–404, 1998.spa
dc.relation.references[232] X. Li, F. Li, C. Fan, and Y. Sun, “Photoelectrocatalytic degradation of humic acid in aqueous solution using a ti/tio2 mesh photoelectrode,” Water Research, vol. 36, no. 9, pp. 2215–2224, 2002.spa
dc.relation.references[233] V. Goetz, J. Cambon, D. Sacco, and G. Plantard, “Modeling aqueous heterogeneous photocatalytic degradation of organic pollutants with immobilized tio2,” Chemical Engineering and Processing: Process Intensification, vol. 48, no. 1, pp. 532–537, 2009.spa
dc.relation.references[234] H.-L. Liu and Y.-R. Chiou, “Optimal decolorization efficiency of reactive red 239 by uv/tio2 photocatalytic process coupled with response surface methodology,” Chemical Engineering Journal, vol. 112, no. 1-3, pp. 173–179, 2005.spa
dc.relation.references[235] H.-L. Liu and Y.-R. Chiou, “Optimal decolorization efficiency of reactive red 239 by uv/zno photocatalytic process,” Journal of the Chinese Institute of Chemical Engineers, vol. 37, no. 3, pp. 289–298, 2006.spa
dc.relation.references[236] L. Atourki, M. Ouafi, K. Abouabassi, A. Elfanaoui, A. Ihlal, K. Bouabid, et al., “Electrodeposition of oriented zno nanorods by two-steps potentiostatic electrolysis: Effect of seed layer time,” Solid State Sciences, vol. 104, p. 106207, 2020.spa
dc.relation.references[237] M. Wang, Y. Zhou, Y. Zhang, S. H. Hahn, and E. J. Kim, “From zn (oh) 2 to zno: a study on the mechanism of phase transformation,” CrystEngComm, vol. 13, no. 20, pp. 6024–6026, 2011.spa
dc.relation.references[238] A. Aranda, R. Landers, P. Carnelli, R. Candal, H. Alarcon, and J. Rodríguez, “Influence of silver electrochemically deposited onto zinc oxide seed nanoparticles on the photoelectrochemical performance of zinc oxide nanorod films,” Nanomaterials and Nanotechnology, vol. 9, p. 1847980419844363, 2019.spa
dc.relation.references[239] T. S. Tlemcani, C. Justeau, K. Nadaud, G. Poulin-Vittrant, and D. Alquier, “Deposition time and annealing effects of zno seed layer on enhancing vertical alignment of piezoelectric zno nanowires,” Chemosensors, vol. 7, no. 1, p. 7, 2019.spa
dc.relation.references[240] W.-Y. Kim, S.-W. Kim, D.-H. Yoo, E. J. Kim, and S. H. Hahn, “Annealing effect of zno seed layer on enhancing photocatalytic activity of zno/tio2 nanostructure,” International Journal of Photoenergy, vol. 2013, 2013.spa
dc.relation.references[241] J. Chung, J. Lee, and S. Lim, “Annealing effects of zno nanorods on dye-sensitized solar cell efficiency,” Physica B: Condensed Matter, vol. 405, no. 11, pp. 2593–2598, 2010.spa
dc.relation.references[242] R. Gottesman, I. Peracchi, J. L. Gerke, R. Irani, F. F. Abdi, and R. van de Krol, “Shining a hot light on emerging photoabsorber materials: The power of rapid radiative heating in developing oxide thin-film photoelectrodes,” ACS Energy Letters, vol. 7, no. 1, pp. 514–522, 2022.spa
dc.relation.references[243] G. He, B. Huang, Z. Lin, W. Yang, Q. He, and L. Li, “Morphology transition of zno nanorod arrays synthesized by a two-step aqueous solution method,” Crystals, vol. 8, no. 4, p. 152, 2018.spa
dc.relation.references[244] J. Xie, P. Li, Y. Li, Y. Wang, and Y. Wei, “Morphology control of zno particles via aqueous solution route at low temperature,” Materials Chemistry and Physics, vol. 114, no. 2-3, pp. 943–947, 2009.spa
dc.relation.references[245] W. Feng, B. Wang, P. Huang, X. Wang, J. Yu, and C. Wang, “Wet chemistry synthesis of zno crystals with hexamethylenetetramine (hmta): Understanding the role of hmta in the formation of zno crystals,” Materials Science in Semiconductor Processing, vol. 41, pp. 462–469, 2016.spa
dc.relation.references[246] R. A. Reichle, K. G. McCurdy, and L. G. Hepler, “Zinc hydroxide: solubility product and hydroxy-complex stability constants from 12.5–75 c,” Canadian Journal of Chemistry, vol. 53, no. 24, pp. 3841–3845, 1975.spa
dc.relation.references[247] A. F. Abdulrahman, S. M. Ahmed, and M. A. Almessiere, “Effect of the growth time on the optical properties of zno nanorods grown by low temperature method.,” Digest Journal of Nanomaterials & Biostructures (DJNB), vol. 12, no. 4, 2017.spa
dc.relation.references[248] Y. Yang, S. Ciampi, M. H. Choudhury, and J. J. Gooding, “Light activated electrochemistry: light intensity and ph dependence on electrochemical performance of anthraquinone derivatized silicon,” The Journal of Physical Chemistry C, vol. 120, no. 5, pp. 2874–2882, 2016.spa
dc.relation.references[249] J. E. L. Santos, D. C. de Moura, D. R. da Silva, M. Panizza, and C. A. Martínez-Huitle, “Application of tio 2-nanotubes/pbo 2 as an anode for the electrochemical elimination of acid red 1 dye,” Journal of Solid State Electrochemistry, vol. 23, pp. 351–360, 2019.spa
dc.relation.references[250] L. Labiadh, A. Barbucci, G. Cerisola, A. Gadri, S. Ammar, and M. Panizza, “Role of anode material on the electrochemical oxidation of methyl orange,” Journal of Solid State Electrochemistry, vol. 19, pp. 3177–3183, 2015.spa
dc.relation.references[251] M. Panizza and G. Cerisola, “Electrocatalytic materials for the electrochemical oxidation of synthetic dyes,” Applied Catalysis B: Environmental, vol. 75, no. 1-2, pp. 95– 101, 2007.spa
dc.relation.references[252] C. Comninellis, “Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment,” Electrochimica Acta, vol. 39, no. 11-12, pp. 1857–1862, 1994.spa
dc.relation.references[253] K. Wang, Y. Liu, K. Kawashima, X. Yang, X. Yin, F. Zhan, M. Liu, X. Qiu, W. Li, C. B. Mullins, et al., “Modulating charge transfer efficiency of hematite photoanode with hybrid dual-metal–organic frameworks for boosting photoelectrochemical water oxidation,” Advanced Science, vol. 7, no. 23, p. 2002563, 2020.spa
dc.relation.references[254] S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of zno nanostructures by an electrochemically active biofilm,” Nanoscale, vol. 5, no. 19, pp. 9238–9246, 2013.spa
dc.relation.references[255] H. Pan, S. Zhu, X. Lou, L. Mao, J. Lin, F. Tian, and D. Zhang, “Graphene-based photocatalysts for oxygen evolution from water,” RSC advances, vol. 5, no. 9, pp. 6543– 6552, 2015.spa
dc.relation.references[256] D. Kaur, A. Bharti, T. Sharma, and C. Madhu, “Dielectric properties of zno-based nanocomposites and their potential applications,” International Journal of Optics, vol. 2021, pp. 1–20, 2021.spa
dc.relation.references[257] S. Sagadevan, K. Pal, Z. Z. Chowdhury, and M. E. Hoque, “Structural, dielectric and optical investigation of chemically synthesized ag-doped zno nanoparticles composites,” Journal of Sol-Gel Science and Technology, vol. 83, pp. 394–404, 2017.spa
dc.relation.references[258] S. Marković, I. S. Simatović, S. Ahmetović, L. Veselinović, S. Stojadinović, V. Rac, S. D. Skapin, D. B. Bogdanović, I. J. ˇ Castvan, and D. Uskoković, “Surfactant-assisted ˇ microwave processing of zno particles: a simple way for designing the surface-to-bulk defect ratio and improving photo (electro) catalytic properties,” RSC advances, vol. 9, no. 30, pp. 17165–17178, 2019.spa
dc.relation.references[259] L. Xu, Q. Chen, and D. Xu, “Hierarchical zno nanostructures obtained by electrodeposition,” The Journal of Physical Chemistry C, vol. 111, no. 31, pp. 11560–11565, 2007spa
dc.relation.references[260] M. Sima, E. Vasile, and M. Sima, “Preparation of nanostructured zno nanorods in a hydrothermal–electrochemical process,” Thin Solid Films, vol. 520, no. 14, pp. 4632– 4636, 2012.spa
dc.relation.references[261] D.-H. Lee, K.-H. Park, S. Kim, and S. Y. Lee, “Effect of ag doping on the performance of zno thin film transistor,” Thin Solid Films, vol. 520, no. 3, pp. 1160–1164, 2011.spa
dc.relation.references[262] C. Karunakaran, V. Rajeswari, and P. Gomathisankar, “Combustion synthesis of zno and ag-doped zno and their bactericidal and photocatalytic activities,” Superlattices and Microstructures, vol. 50, no. 3, pp. 234–241, 2011.spa
dc.relation.references[263] Y. Jin, Q. Cui, K. Wang, J. Hao, Q. Wang, and J. Zhang, “Investigation of photoluminescence in undoped and ag-doped zno flowerlike nanocrystals,” Journal of Applied Physics, vol. 109, no. 5, p. 053521, 2011.spa
dc.relation.references[264] Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, and W. Yu, “Ag nanoparticle embedded-zno nanorods synthesized via a photochemical method and its gas-sensing properties,” Sensors and Actuators B: Chemical, vol. 143, no. 2, pp. 635–640, 2010.spa
dc.relation.references[265] W. Y. Teoh, J. A. Scott, and R. Amal, “Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors,” The Journal of Physical Chemistry Letters, vol. 3, no. 5, pp. 629–639, 2012.spa
dc.relation.references[266] M. Karyaoui, A. Mhamdi, H. Kaouach, A. Labidi, A. Boukhachem, K. Boubaker, M. Amlouk, and R. Chtourou, “Some physical investigations on silver-doped zno sprayed thin films,” Materials Science in Semiconductor Processing, vol. 30, pp. 255–262, 2015.spa
dc.relation.references[267] V. Khomchenko, T. Kryshtab, A. Savin, L. Zavyalova, N. Roshchina, V. Rodionov, O. Lytvyn, V. Kushnirenko, V. Khachatryan, and J. Andraca-Adame, “Fabrication and properties of zno: Cu and zno: Ag thin films,” Superlattices and Microstructures, vol. 42, no. 1-6, pp. 94–98, 2007.spa
dc.relation.references[268] U. Seetawan, S. Jugsujinda, T. Seetawan, C. Euvananont, C. Junin, C. Thanachayanont, P. Chainaronk, and V. Amornkitbamrung, “Effect of annealing temperature on the crystallography, particle size and thermopower of bulk zno,” Solid state sciences, vol. 13, no. 8, pp. 1599–1603, 2011.spa
dc.relation.references[269] B. Jing, C. Chow, C. Saint, et al., “Recent developments in photocatalytic water treatment technology.,” Water Research, vol. 44, no. 10, pp. 2997–3027, 2010.spa
dc.relation.references[270] Y. Yang, I. Wyatt, D. Travis, and M. Bahorsky, “Decolorization of dyes using uv/h2 o2 photochemical oxidation.,” Textile Chemist & Colorist, vol. 30, no. 4, 1998.spa
dc.relation.references[271] K. Vasanth Kumar, K. Porkodi, and A. Selvaganapathi, “Constrain in solving langmuir–hinshelwood kinetic expression for the photocatalytic degradation of auramine o aqueous solutions by zno catalyst,” Dyes and Pigments, vol. 75, no. 1, pp. 246–249, 2007.spa
dc.relation.references[272] H. Fogler, Essentials of Chemical Reaction Engineering. Prentice-Hall international series in the physical and chemical engineering sciences, Prentice Hall, 2011.spa
dc.relation.references[273] S. Horikoshi and H. Hidaka, “Non-degradable triazine substrates of atrazine and cyanuric acid hydrothermally and in supercritical water under the uv-illuminated photocatalytic cooperation,” Chemosphere, vol. 51, no. 2, pp. 139–142, 2003.spa
dc.relation.references[274] G. Zhang, E. M. Wurtzler, X. He, M. N. Nadagouda, K. O’Shea, S. M. El-Sheikh, A. A. Ismail, D. Wendell, and D. D. Dionysiou, “Identification of tio2 photocatalytic destruction byproducts and reaction pathway of cylindrospermopsin,” Applied Catalysis B: Environmental, vol. 163, pp. 591–598, 2015.spa
dc.relation.references[275] K. Zhou, X.-Y. Hu, B.-Y. Chen, C.-C. Hsueh, Q. Zhang, J. Wang, Y.-J. Lin, and C.-T. Chang, “Synthesized tio2/zsm-5 composites used for the photocatalytic degradation of azo dye: intermediates, reaction pathway, mechanism and bio-toxicity,” Applied Surface Science, vol. 383, pp. 300–309, 2016.spa
dc.relation.references[276] D. Shahidi, R. Roy, and A. Azzouz, “Advances in catalytic oxidation of organic pollutants–prospects for thorough mineralization by natural clay catalysts,” Applied Catalysis B: Environmental, vol. 174, pp. 277–292, 2015.spa
dc.relation.references[277] P. A. Soares, R. Souza, J. Soler, T. F. Silva, S. M. G. U. Souza, R. A. Boaventura, and V. J. Vilar, “Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes,” Separation and Purification Technology, vol. 172, pp. 450–462, 2017.spa
dc.relation.references[278] J. A. Oliveira, A. E. Nogueira, M. C. Gonçalves, E. C. Paris, C. Ribeiro, G. Y. Poirier, and T. R. Giraldi, “Photoactivity of n-doped zno nanoparticles in oxidative and reductive reactions,” Applied Surface Science, vol. 433, pp. 879–886, 2018.spa
dc.relation.references[279] P. Gu, X. Wang, T. Li, and H. Meng, “Investigation of defects in n-doped zno powders prepared by a facile solvothermal method and their uv photocatalytic properties,” Materials Research Bulletin, vol. 48, no. 11, pp. 4699–4703, 2013.spa
dc.relation.references[280] D. Chakraborty, S. Kaleemulla, N. M. Rao, K. Subbaravamma, and G. V. Rao, “Structural and optical properties of ito and cu doped ito thin films,” in AIP Conference Proceedings, vol. 1942, p. 120002, AIP Publishing LLC, 2018.spa
dc.relation.references[281] D. Zhang, J. Gong, J. Ma, G. Han, and Z. Tong, “A facile method for synthesis of n-doped zno mesoporous nanospheres and enhanced photocatalytic activity,” Dalton Transactions, vol. 42, no. 47, pp. 16556–16561, 2013.spa
dc.relation.references[282] W.-M. Cho, Y.-J. Lin, C.-J. Liu, L.-R. Chen, Y.-T. Shih, and P. Chen, “Luminescence behavior and compensation effect of n-doped zno films deposited by rf magnetron sputtering under various gas-flow ratios of o2/n2,” Journal of luminescence, vol. 145, pp. 884–887, 2014.spa
dc.relation.references[283] H. Gutiérrez, R. De La Vara, et al., “Análisis y diseño de experimentos,” México DF: McGraw-Hill Interamericana, 2008.spa
dc.relation.references[284] M. O’Kane and Ossila, “What is a solar simulator?,” 2023.spa
dc.relation.references[285] I. Dincer and Y. Bicer, “3.17 photonic energy production,” 2018.spa
dc.relation.references[286] E. López-Fraguas, J. M. Sánchez-Pena, and R. Vergaz, “A low-cost led-based solar simulator,” IEEE transactions on instrumentation and measurement, vol. 68, no. 12, pp. 4913–4923, 2019.spa
dc.relation.references[287] S.-Y. Chan, T.-H. Yang, and Y.-N. Chang, “Design of electronic ballast for shortarc xenon lamp with interleaved half-wave rectifier,” IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5102–5112, 2015.spa
dc.relation.references[288] M. Rehmet, “Xenon lamps,” in Technisch-wissenschaftliche Abhandlungen der OsramGesellschaft, pp. 113–123, Springer, 1986.spa
dc.relation.references[289] R. R. D. Center, “Reference solar spectral irradiance: Astm g-173,” National Renewable Energy Laboratory, Golden, CO, accessed July, vol. 21, p. 2018, 2009.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionadosspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc660 - Ingeniería química::667 - Tecnología de la limpieza, del color, del revestimiento y relacionadasspa
dc.subject.lembElectroquímica
dc.subject.proposalFotoelectrocatálisisspa
dc.subject.proposalNanobarras de ZnOspa
dc.subject.proposalRojo reactivo 239spa
dc.subject.proposalCinéticaspa
dc.subject.proposalVía y mecanismos de degradaciónspa
dc.subject.proposalPhotoelectrocatalysiseng
dc.subject.proposalZnO nanorodseng
dc.subject.proposalReactive Red 239eng
dc.subject.proposalKineticseng
dc.subject.proposalDegradation pathway and mechanismseng
dc.subject.wikidataTeoría cinética
dc.titleModelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructuradospa
dc.title.translatedKinetic model for the photoelectrocatalytic degradation of reactive red dye 239 in textile waters using nanostructured zinc oxideeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleProyecto 467C-03/19-24 de la Universidad Pontificia Bolivariana - Medellín y la Universidad Nacional de Colombia – Medellín - MINCIENCIAS (Proyecto 64478) - Optimización de una celda fotoelectrocatalítica para la degradación de contaminantes persistentes basado en modelos fisicoquímicos: aplicación a colorantes en aguas residualesspa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación de Colombia – MINCIENCIASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
98773905.2023.pdf
Tamaño:
36.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: