Coupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basins

dc.contributor.advisorVélez Upegui, Jaime Ignacio
dc.contributor.authorCataño Álvarez, Santiago
dc.date.accessioned2022-06-01T19:45:04Z
dc.date.available2022-06-01T19:45:04Z
dc.date.issued2022
dc.descriptionIlustraciones, mapasspa
dc.description.abstractMountain basins are open dynamic systems which organize at multiple scales to transform hillslope sediment supply to fluvial sediment transport. In a given river reach, its form and sediment regime depend on basin processes and are contingent to geomorphic history. Lack of such information makes modelling the way to estimate this spatiotemporal context. However, there is a gap of combining spatiotemporal variability of hydrology and landslides sediment supply with its effect: the feedback between channel form and sediment transport. Hillslope and fluvial modules of a new model called Fluvial Hydro- Geomorphology Model (FHGM) are produced which, in hollows and river reaches that are deformable, encapsulates complexity via parameterization or random forcing. FHGM solves responses to every major rain event, and accumulate them in decadal timescale, to include occurrence of channel forming floods as well as landslides with varied sizes and source zones. FHGM landslides module reproduces power law spatial distribution of landslide volumes, as well as magnitud and frecuency of sediment supply. FHGM fluvial module, calibrated with a new gravel flume experiment, reproduces a broad range of morphologic conditions, from incised to clogged, and produces mean bankfull capacity consistent to mean maximum annual flood and with empirical dimensionless hydraulic geometry patterns for channel depth and width. This work shows how mountain basins organize to minimize the duration of formative events, by editing channels capacity and deforming sediment storages to recover stability and structure; a resilience akin to living beings.eng
dc.description.abstractLas cuencas monta˜ nosas son sistemas din´amicos abiertos que se organizan en m´ ultiples escalas para transformar el suministro de sedimentos de las laderas en transporte fluvial de sedimentos. En un tramo de r´ıo determinado, su forma y el r´egimen de sedimentos dependen de los procesos de la cuenca y de la historia geom´orfica. La falta de dicha informaci ´on hace que la modelaci´on sea la forma de estimar este contexto espaciotemporal. Sin embargo, existe una brecha en la combinaci´on de la variabilidad espaciotemporal de la hidrolog´ıa y el suministro de sedimentos por deslizamientos de tierra con su efecto: la retroalimentaci´on entre la forma del canal y el transporte de sedimentos. Se producen m´odulos de ladera y fluviales de un nuevo modelo denominado Fluvial HydroGeomorphology Model (FHGM) que, en vaguadas y tramos de r´ıo deformables, encapsula la complejidad mediante parametrizaci´on o forzamiento aleatorio. FHGM resuelve las respuestas a cada evento de lluvia importante y las acumula en una escala de tiempo devi cenal, para incluir la ocurrencia de inundaciones que forman canales, as´ı como deslizamientos de tierra con diversos tama˜nos y zonas de origen. El m´odulo de deslizamientos de FHGM reproduce la distribuci ´on espacial de la ley potencial de vol ´umenes de deslizamientos, as´ı como la magnitud y frecuencia del suministro de sedimentos. El m´odulo fluvial FHGM, calibrado con un nuevo experimento de canal de grava, reproduce una amplia gama de condiciones morfol´ogicas, desde incisamiento hasta colmataci´on, y produce una capacidad media de banca llena consistente con la inundaci´on anual m´axima media y con patrones de geometr´ıa hidr´aulica adimensionales emp´ıricos para la profundidad y el ancho del canal. Este trabajo muestra c´omo las cuencas de monta˜na se organizan para minimizar la duraci´on de los eventos formadores, modificando la capacidad de los canales y deformando los dep´ositos de sedimentos para recuperar la estabilidad y la estructura; una resiliencia similar a la de los seres vivos.
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctorado en Ingeniería - Recursos Hidráulicosspa
dc.format.extentix, 160 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81480
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesSidle, R. C. [Roy C.], Gomi, T., & Tsukamoto, Y. (2018). Discovery of zero-order basins as an important link for progress in hydrogeomorphology. Hydrological Processes, 32(19), 3059–3065.spa
dc.relation.referencesRickenmann, D.&Recking, A. [Alain]. (2011, July). Evaluation of flow resistance in gravel bed rivers through a large field data set.Water Resources Research, 47(7).spa
dc.relation.referencesAddy, S. & Wilkinson, M. E. (2021). Embankment lowering and natural self-recovery improves river-floodplain hydro-geomorphic connectivity of a gravel bed river. Science of The Total Environment, 770, 144626.spa
dc.relation.referencesAllen, P. A. & Hovius, N. (1998, March). Sediment supply from landslide-dominated catchments: implications for basin-margin fans. Basin Research, 10(1), 19–35. doi:10. 1046/j.1365-2117.1998.00060.xspa
dc.relation.referencesBasile, P., Riccardi, G.,&Rodrıguez, J. (2016). Modelaci´on matem´atica hidro-morfodin´amica a escala de cuenca en rıos con lechos de sedimentos no-uniformes. Cuadernos del CURIHAM, 22, 1–25.spa
dc.relation.referencesBathurst, J. C., Burton, A., Clarke, B. G., & Gallart, F. (2006). Application of the SHETRAN basin-scale, landslide sediment yield model to the llobregat basin, spanish pyrenees. Hydrological Processes, 20(14), 3119–3138. doi:10.1002/hyp.6151spa
dc.relation.referencesBrayshaw, D. & Hassan, M. A. [Marwan A.]. (2009, August). Debris flow initiation and sediment recharge in gullies. Geomorphology, 109(3-4), 122–131. doi:10.1016/j.geomorph. 2009.02.021spa
dc.relation.referencesBrunetti, M. T., Guzzetti, F., & Rossi, M. (2009, March). Probability distributions of landslide volumes. Nonlinear Processes in Geophysics, 16(2), 179–188. doi:10.5194/npg-16- 179-2009spa
dc.relation.referencesComiti, F. & Mao, L. (2012). Recent advances in the dynamics of steep channels. Gravel-Bed Rivers: Processes, Tools, Environments, 351–377.spa
dc.relation.referencesCordoba, J. P., Mergili, M.,&Aristiz´abal, E. (2020, March). Probabilistic landslide susceptibility analysis in tropical mountainous terrain using the physically based r.slope.stability model. Natural Hazards and Earth System Sciences, 20(3), 815–829. doi:10.5194/nhess- 20-815-2020spa
dc.relation.referencesDietrich, W. E. [William E.], Wilson, C. J., & Reneau, S. L. (1986, May). Hollows, colluvium, and landslides in soil-mantled landscapes. In Hillslope processes (pp. 362–388). Routledge. doi:10.4324/9781003028840-17spa
dc.relation.referencesDietrich, W., Reiss, R., Hsu, M.-L., & Montgomery, D. R. (1995). A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological processes, 9(3-4), 383–400.spa
dc.relation.referencesGarcia, M. H. (2008, May). Sediment transport and morphodynamics. In Sedimentation engineering (pp. 21–163). American Society of Civil Engineers. doi:10.1061/9780784408148. ch02spa
dc.relation.referencesGasparini, N. M., Tucker, G. E., & Bras, R. L. (2004). Network-scale dynamics of grain-size sorting: implications for downstream fining, stream-profile concavity, and drainage basin morphology. Earth Surface Processes and Landforms, 29(4), 401–421. doi:10.1002/ esp.1031. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/esp.1031spa
dc.relation.referencesHardy, R. J. (n.d.). The potential of using high-resolution process models to inform parameterizations of morphodynamic models. In Gravelbed rivers (Chap. 10, pp. 116– 122). John Wiley Sons, Ltd. doi:https ://doi.org/10.1002/9781119952497. ch10.spa
dc.relation.referencesHassan, M. A. [Marwan A], Bird, S., Reid, D., Ferrer-Boix, C., Hogan, D., Brardinoni, F., & Chartrand, S. (2019). Variable hillslope-channel coupling and channel characteristics of forested mountain streams in glaciated landscapes. Earth Surface Processes and Landforms, 44(3), 736–751.spa
dc.relation.referencesHoyos, E. M. (2019, September). Soil moisture dynamics in water- and energy-limited ecosystems. application to slope stability (Doctoral dissertation, Universidad Nacional de Colombia - Sede Medell´ın). Retrieved from http://bdigital.unal.edu.co/73824/spa
dc.relation.referencesHu, C., Ji, Z., & Guo, Q. (2010). Flow movement and sediment transport in compound channels. Journal of Hydraulic Research, 48(1), 23–32.spa
dc.relation.referencesKorup, O. (2005, April). Geomorphic imprint of landslides on alpine river systems, southwest new zealand. Earth Surface Processes and Landforms, 30(7), 783–800. doi:10.1002/ esp.1171spa
dc.relation.referencesKorup, O., Densmore, A. L., & Schlunegger, F. (2010). The role of landslides in mountain range evolution. Geomorphology, 120(1-2), 77–90.spa
dc.relation.referencesLoritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H., & Zehe, E. (2019, March). A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. doi:10.5194/hess-2019-68spa
dc.relation.referencesLuxon, N., Christopher, M., & Pius, C. (2013). Validating the soil conservation service triangular unit hydrograph (scs-tuh) model in estimating runoff peak discharge of a catchment in masvingo, zimbabwe. International Journal of Water Resources and Environmental Engineering, 5(3), 157–162.spa
dc.relation.referencesMontgomery, D. R. [David R.] & Foufoula-Georgiou, E. [Efi]. (1993). Channel network source representation using digital elevation models.Water Resources Research, 29(12), 3925–3934. doi:10.1029/93WR02463. eprint: https://agupubs.onlinelibrary.wiley. com/doi/pdf/10.1029/93WR02463spa
dc.relation.referencesMorgan, J. A., Brogan, D. J., & Nelson, P. A. (2017). Application of structure-from-motion photogrammetry in laboratory flumes. Geomorphology, 276, 125–143.spa
dc.relation.referencesOwczarek, P. (2008). Hillslope deposits in gravel-bed rivers and their effects on the evolution of alluvial channel forms: a case study from the sudetes and carpathian mountains. Geomorphology, 98(1-2), 111–125.spa
dc.relation.referencesPaine, A. D. (1985). ’ergodic’ reasoning in geomorphology: time for a review of the term? Progress in Physical Geography: Earth and Environment, 9(1), 1–15.spa
dc.relation.referencesPhillips, C. B. & Jerolmack, D. J. [Douglas J.]. (2016). Self-organization of river channels as a critical filter on climate signals. Science, 352(6286), 694–697. doi:10.1126/science. aad3348.spa
dc.relation.referencesPoveda, G., Espinoza, J. C., Zuluaga, M. D., Solman, S. A., Garreaud, R., & van Oevelen, P. J. (2020, May). High impact weather events in the andes. Frontiers in Earth Science, 8. doi:10.3389/feart.2020.00162spa
dc.relation.referencesRestrepo, J. & Kjerfve, B. (2004). The pacific and caribbean rivers of colombia: water discharge, sediment transport and dissolved loads. In Environmental geochemistry in tropical and subtropical environments (pp. 169–187). Springer.spa
dc.relation.referencesSals´on, S. & Garcia-Bartual, R. (2003, April). A space-time rainfall generator for highly convective mediterranean rainstorms. Natural Hazards and Earth System Sciences, 3(1/2), 103–114. doi:10.5194/nhess-3-103-2003spa
dc.relation.referencesTakahashi, T. (2018). Debris flow: mechanics, prediction and countermeasures, 2nd edition. CRC Press.spa
dc.relation.referencesVan De Wiel, M. J. [Marco J.] & Coulthard, T. J. [Tom J.]. (2010). Self-organized criticality in river basins: Challenging sedimentary records of environmental change. Geology, 38(1), 87–90. doi:10.1130/G30490.1spa
dc.relation.referencesWohl, E., Lane, S. N., &Wilcox, A. C. (2015). The science and practice of river restoration. Water Resources Research, 51(8), 5974–5997.spa
dc.relation.referencesZuluaga, M. D. & Houze, R. A. (2015). Extreme convection of the near-equatorial americas, africa, and adjoining oceans as seen by trmm. Monthly Weather Review, 143(1), 298–316.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembTransporte de sedimentos
dc.subject.lembBalance hídrico (Hidrología)
dc.subject.proposalHidrogeomorfologíaspa
dc.subject.proposalDeslizamientosspa
dc.subject.proposalLandslideseng
dc.subject.proposalGeometría hidráulicaspa
dc.subject.proposalHydraulic geometryeng
dc.titleCoupling sediment supply from hillslope hydrology and fluvial morphodynamics at tropical mountain basinseng
dc.title.translatedAcople del suministro de sedimentos desde la hidrología de ladera con la morfodinámica fluvial en cuencas tropicales de montañaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020427238_2022.pdf
Tamaño:
9.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctorado en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: