Implementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automático

dc.contributor.advisorNiño Vásquez, Luis Fernando
dc.contributor.advisorIzquierdo Borrero, Ledys María
dc.contributor.authorBaquero Tibocha, Diego Andrés
dc.contributor.researchgrouplaboratorio de Investigación en Sistemas Inteligentes Lisispa
dc.date.accessioned2023-05-25T19:48:30Z
dc.date.available2023-05-25T19:48:30Z
dc.date.issued2023
dc.descriptionilustraciones, graficasspa
dc.description.abstractLos cuidadores de pacientes en estado crítico no siempre tienen las habilidades o la experiencia para tratar este tipo de pacientes (Wheatley, 2006). Además, el deterioro fisiológico se puede detectar a partir de cambios sutiles en los signos vitales dentro de una Unidad de Cuidados Intensivos Pediátricos (UCIP) (Izquierdo, 2021). Esto conlleva dificultades para el personal médico al realizar un pronóstico sobre una futura complicación. De acuerdo con lo anterior, este estudio tiene como objetivo implementar un prototipo de software capaz de predecir estados fisiológicos a través de los signos vitales, siguiendo como metodología el Proceso de Aprendizaje Automático (Machine Learning Process, MLP) sobre el conjunto de datos seleccionado. El prototipo se implementó de forma exitosa y se obtuvieron resultados prometedores en cuanto al uso de técnicas de aprendizaje automático para representar el estado actual y futuro de los pacientes en UCIP. Por lo tanto, se debe seguir trabajando en el esfuerzo de complementar el conjunto de datos e implementar nuevas propuestas del uso de las técnicas de aprendizaje automático, y así lograr una monitorización constante sobre los pacientes (Texto tomado de la fuente)spa
dc.description.abstractCaregivers of critically ill patients do not always have the skills or experience to treat these types of patients (Wheatley, 2006). Furthermore, physiological deterioration can be detected from subtle changes in vital signs within a Pediatric Intensive Care Unit (PICU) (Izquierdo, 2021). This leads to difficulties for medical personnel when making a prognosis about a future complication. Accordingly, this study aims to implement a software prototype capable of predicting physiological states through vital signs, following the Machine Learning Process (MLP) methodology on the selected data set. The prototype was successfully implemented, and promising results were obtained regarding the use of machine learning techniques to represent the current and future state of PICU patients. Therefore, work must continue in the effort to complement the data set and implement new methods for the use of machine learning techniques, and thus achieve constant monitoring of patients.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.description.researchareaSistemas inteligentesspa
dc.description.technicalinfoPara la implementación de esta aplicación del aprendizaje automático a la medicina y su interacción con el personal médico, se diseñó una plataforma que se divide en tres aplicaciones llamadas: Frontend (JavaScript/ReactJS), Backend (.NET Ciore 5), y Model API (Python/Keras/Scikit-learn). Las aplicaciones interoperan entre sí para recibir las entradas del usuario, leer los datos, y generar las clasificaciones y predicciones, respectivamente. Las aplicaciones fueron desplegadas en la nube a través de los servicios de Azure y fue necesaria la implementación de Docker para el despliegue del módulo Model API.spa
dc.format.extentxiv, 87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83874
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónspa
dc.relation.referencesAbromavičius, V. y Serackis, A. (2019). Sepsis Prediction Model Based on Vital Signs Related Features.spa
dc.relation.referencesAmer, A.Y.A., Vranken, J., Wouters, F., Mesotten, D., Vandervoort, P., Storms, V., Luca, S., Vanrumste, B. y Aerts, J.-M. (2019). Feature engineering for ICU mortality prediction based on hourly to bi-hourly measurements. Applied Sciences (Switzerland), 9.spa
dc.relation.referencesAnalystPrep (s. f.). Machine Learning Process. [Ilustración]. https://analystprep.com/study-notes/wpcontent/uploads/2020/04/MachineLearingApproaches_img1.jpgspa
dc.relation.referencesAtashi, A., Ahmadian, L., Rahmatinezhad, Z., Miri, M., Nazeri, N. y Eslami, S. (2018). Development of a national core dataset for the Iranian ICU patients outcome prediction: A comprehensive approach. Journal of Innovation in Health Informatics, 25, 71-76.spa
dc.relation.referencesAwad, A., Bader-El-Den, M., McNicholas, J. y Briggs, J. (2017). Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. International Journal of Medical Informatics, 108, 185-195.spa
dc.relation.referencesBarnes, R., Clarke, D., Farina, Z., Sartorius, B., Brysiewicz, P., Laing, G., Bruce, J. y Kong, V. (2018). Vital sign based shock scores are poor at triaging South African trauma patients. American Journal of Surgery, 216, 235-239.spa
dc.relation.referencesBedoya, A.D., Clement, M.E., Phelan, M., Steorts, R.C., O'Brien, C. y Goldstein, B.A. (2019). Minimal Impact of Implemented Early Warning Score and Best Practice Alert for Patient Deterioration. Critical Care Medicine, 47, 49-55.spa
dc.relation.referencesBellew, S.D., Cabrera, D., Lohse, C.M. y Bellolio, M.F. (2017). Predicting Early Rapid Response Team Activation in Patients Admitted From the Emergency Department: The PeRRT Score. Academic Emergency Medicine, 24, 216-225.spa
dc.relation.referencesBrilej, D., Stropnik, D., Lefering, R. y Komadina, R. (2017). Algorithm for activation of coagulation support treatment in multiple injured patients––cohort study. European Journal of Trauma and Emergency Surgery, 43, 423-430.spa
dc.relation.referencesBrown, A., Ballal, A. y Al-Haddad, M. (2019). Recognition of the critically ill patient and escalation of therapy. Anaesthesia and Intensive Care Medicine, 20, 1-5.spa
dc.relation.referencesCarlin, C.S., Ho, L.V., Ledbetter, D.R., Aczon, M.D. y Wetzel, R.C. (2018). Predicting individual physiologically acceptable states at discharge from a pediatric intensive care unit. Journal of the American Medical Informatics Association, 25, 1600-1607.spa
dc.relation.referencesChen, T., Xu, J., Ying, H., Chen, X., Feng, R., Fang, X., Gao, H. y Wu, J. (2019). Prediction of Extubation Failure for Intensive Care Unit Patients Using Light Gradient Boosting Machine. IEEE Access, 7, 150960-150968.spa
dc.relation.referencesDe Pasquale, M., Moss, T.J., Cerutti, S., Calland, J.F., Lake, D.E., Moorman, J.R. y Ferrario, M. (2017). Hemorrhage prediction models in surgical intensive care: Bedside monitoring data adds information to lab values. IEEE Journal of Biomedical and Health Informatics, 21, 1703-1710.spa
dc.relation.referencesDing, Y., Ma, X. y Wang, Y. (2018). Health status monitoring for ICU patients based on locally weighted principal component analysis. Computer Methods and Programs in Biomedicine, 156, 61-71.spa
dc.relation.referencesFagerström, J., Bång, M., Wilhelms, D. y Chew, M.S. (2019). LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock. Scientific Reports, 9.spa
dc.relation.referencesGéron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Techniques and Tools to Build Learning Machines. Van Duuren Media.spa
dc.relation.referencesGe, W., Huh, J.-W., Park, Y.R., Lee, J.-H., Kim, Y.-H. y A. Turchin (2018). An Interpretable ICU Mortality Prediction Model Based on Logistic Regression and Recurrent Neural Networks with LSTM units. AMIA Annual Symposium proceedings. AMIA Symposium, 2018, 460-469.spa
dc.relation.referencesHaider, A., Con, J., Prabhakaran, K., Anderson, P., Policastro, A., Feeney, J. y Latifi, R. (2019). Developing a simple clinical score for predicting mortality and need for ICU in trauma patients. American Surgeon, 85, 733-737.spa
dc.relation.referencesHever, G. , Cohen, L., O’Connor, M.F., Matot, I., Lerner, B. y Bitan, Y. (2020). Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU. Journal of Clinical Monitoring and Computing, 34, 339-352.spa
dc.relation.referencesHever, G., Cohen, L., O’Connor, M. F., Matot, I., Lerner, B., & Bitan, Y. (2019). Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU. Journal of Clinical Monitoring and Computing, 34(2), 339–352. https://doi.org/10.1007/s10877-019-00307-xspa
dc.relation.referencesHirano, Y., Kondo, Y., Hifumi, T., Yokobori, S., Kanda, J., Shimazaki, J., Hayashida, K., Moriya, T., Yagi, M., Takauji, S., Tanaka, H. y Yaguchi, A. (2021). Machine learningbased mortality prediction model for heat-related illness. Scientific Reports, 11.spa
dc.relation.referencesIBM Cloud Education. (2020, 15 julio). Machine Learning. IBM. https://www.ibm.com/cloud/learn/machine-learningspa
dc.relation.referencesIzquierdo, L. M., Nino, L. F., & Prieto Rojas, J. (2020). Modeling the vital sign space to detect the deterioration of patients in a pediatric intensive care unit. 16th International Symposium on Medical Information Processing and Analysis. Published. https://doi.org/10.1117/12.2579629spa
dc.relation.referencesIzquierdo, L. M., Nino, L. F. (2021). Modelamiento del espacio de signos vitales para detectar el deterioro de los pacientes en una unidad de cuidados intensivos. Universidad Nacional de Colombia.spa
dc.relation.referencesKarimi Moridani, M. y Haghighi Bardineh, Y. (2018). Presenting an efficient approach based on novel mapping for mortality prediction in intensive care unit cardiovascular patients. MethodsX, 5, 1291-1298.spa
dc.relation.referencesKefi, Z., Aloui, K. y Naceur, M.S. (2019). The early prediction of neonates mortality in Intensive Care Unit. (pp. 304-306).spa
dc.relation.referencesKoyner, J.L., Carey, K.A., Edelson, D.P. y Churpek, M.M. (2018). The development of a machine learning inpatient acute kidney injury prediction model. Critical Care Medicine, 46, 1070-1077.spa
dc.relation.referencesLi, X., Ge, P., Zhu, J., Li, H., Graham, J., Singer, A., Richman, P.S. y Duong, T.Q. (2020). Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables. PeerJ, 8.spa
dc.relation.referencesMalycha, J., Farajidavar, N., Pimentel, M.A.F., Redfern, O., Clifton, D.A., Tarassenko, L., Meredith, P., Prytherch, D., Ludbrook, G., Young, J.D. y Watkinson, P.J. (2019). The effect of fractional inspired oxygen concentration on early warning score performance: A database analysis. Resuscitation, 139, 192-199.spa
dc.relation.referencesMarafino, B.J., Park, M., Davies, J.M., Thombley, R., Luft, H.S., Sing, D.C., Kazi, D.S. Dejong, C., Boscardin, W.J., Dean, M.L. y Dudley, R.A. (2018). Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data. JAMA Network Open, 1.spa
dc.relation.referencesMasud, M.M., Cheratta, M. y Harahsheh, A.R.A. (2018). Survival prediction of ICU patients using knowledge intensive data grouping and selection.spa
dc.relation.referencesMatrices de confusión - Training. (s. f.). Microsoft Learn. https://learn.microsoft.com/eses/training/modules/machine-learning-confusion-matrix/2-confusion-matricesspa
dc.relation.referencesMayampurath, A., Jani, P., Dai, Y., Gibbons, R., Edelson, D. y Churpek, M.M. (2020). A vital sign-based model to predict clinical deterioration in hospitalized children. Pediatric Critical Care Medicine, 820-826.spa
dc.relation.referencesMelinosky, C., Yang, S., Hu, P., Li, H., Miller, C.H.T., Khan, I., Mackenzie, C., Chang, W.- T., Parikh, G., Stein, D., Stein, D. y Badjatia, N. (2018). Continuous vital sign analysis to predict secondary neurological decline after traumatic brain injury. Frontiers in Neurology, 9.spa
dc.relation.referencesMessinger, A.I., Bui, N., Wagner, B.D., Szefler, S.J., Vu, T. y Deterding, R.R. (2019). Novel pediatric-automated respiratory score using physiologic data and machine learning in asthma. Pediatric Pulmonology, 54, 1149-1155.spa
dc.relation.referencesMonteiro, F., Meloni, F., Baranauskas, J.A. y Macedo, A.A. (2020). Prediction of mortality in Intensive Care Units: a multivariate feature selection. Journal of Biomedical Informatics, 107.spa
dc.relation.referencesNielsen, A.B., Thorsen-Meyer, H.-C., Belling, K., Nielsen, A.P., Thomas, C.E., Chmura, P.J., Lademann, M., Moseley, P.L., Heimann, M., Dybdahl, L., Perner, A. y Brunak, S. (2019). Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records. The Lancet Digital Health, 1, e78e89.spa
dc.relation.referencesParreco, J., Soe-Lin, H., Parks, J.J., Byerly, S., Chatoor, M., Buicko, J.L., Namias, N. y Rattan, R. (2019). Comparing machine learning algorithms for predicting acute kidney injury. American Surgeon, 85, 725-729.spa
dc.relation.referencesPlatzi: Cursos online profesionales de tecnología. (2018). Platzi. https://platzi.com/tutoriales/1269-probabilidad-estadistica/2308-coeficiente-decorrelacion-que-es-y-para-que-sirve/?utm_source=googlespa
dc.relation.referencesPollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G. y Badawi, O. (2018). The eICU collaborative research database, a freely available multi-center database for critical care research. Scientific Data, 5.spa
dc.relation.referencesR.G. Barry, T.T. Wolbert, F.B. Mozaffari, P.D. Ray, E.C. Thompson, T.W. Gress, & D.A. Denning (2019). Comparison of geriatric trauma outcomes when admitted to a medical or surgical service after a fall. Journal of Surgical Research, 233, 391-396.spa
dc.relation.referencesRadhachandran, A., Garikipati, A., Zelin, N.S., Pellegrini, E., Ghandian, S., Calvert, J., Hoffman, J., Mao, Q. y Das, R. (2021). Prediction of short-term mortality in acute heart failure patients using minimal electronic health record data. BioData Mining, 14.spa
dc.relation.referencesRubin, J., Potes, C., Xu-Wilson, M., Dong, J., Rahman, A., Nguyen, H. y Moromisato, D. (2018). An ensemble boosting model for predicting transfer to the pediatric intensive care unit. International Journal of Medical Informatics, 112, 15-20.spa
dc.relation.referencesSalahuddin, N., Shafquat, A., Marashly, Q., Zaza, K.J., Sharshir, M., Khurshid, M., Ali, Z., Malgapo, M., Jamil, M.G., Shoukri, M., Hijazi, M. y Al-Ghamdi, B. (2018). Increases in Heart Rate Variability Signal Improved Outcomes in Rapid Response Team Consultations: A Cohort Study. Cardiology Research and Practice, 2018.spa
dc.relation.referencesSatchidanand, N., Servoss, T.J., Singh, R., Bosinski, A.M., Tirpak, P., Horton, L.L. y Naughton, B.J. (2018). Development of a Risk Tool to Support Discussions of Care for Older Adults Admitted to the ICU With Pneumonia. American Journal of Hospice and Palliative Medicine, 35, 1201-1206.spa
dc.relation.referencesShamout, F.E., Zhu, T., Sharma, P., Watkinson, P.J. y Clifton, D.A. (2020). Deep Interpretable Early Warning System for the Detection of Clinical Deterioration. IEEE Journal of Biomedical and Health Informatics, 24, 437-446.spa
dc.relation.referencesTamir, M. (2021, 29 enero). What Is Machine Learning? UCB-UMT. https://ischoolonline.berkeley.edu/blog/what-is-machine-learning/spa
dc.relation.referencesTimm, F.P., Zaremba, S., Grabitz, S.D., Farhan, H.N., Zaremba, S., Siliski, E., Shin, C.H., Muse, S., Friedrich, S., Mojica, J.E., Ramachandran, S.-K. y Eikermann, M. (2018). Effects of opioids given to facilitate mechanical ventilation on sleep apnea after extubation in the intensive care unit. Sleep, 41.spa
dc.relation.referencesTsur, E., Last, M., Garcia, V.F., Udassin, R., Klein, M. y Brotfain, E. (2019). Hypotensive episode prediction in icus via observation window splitting. LNAI, Vol. 11053.spa
dc.relation.referencesViegas, R., Salgado, C.M., Curto, S., Carvalho, J.P., Vieira, S.M. y Finkelstein, S.N. (2017). Daily prediction of ICU readmissions using feature engineering and ensemble fuzzy modeling. Expert Systems with Applications, 79, 244-253.spa
dc.relation.referencesWang, Y., Wei, Y., Yang, H., Li, J., Zhou, Y. y Wu, Q. (2020). Utilizing imbalanced electronic health records to predict acute kidney injury by ensemble learning and time series model. BMC Medical Informatics and Decision Making, 20.spa
dc.relation.referencesWellner, B., Grand, J., Canzone, E., Coarr, M., Brady, P.W., Simmons, J., Kirkendall, E., Dean, N. Kleinman, M. y Sylvester, P. (2017). Predicting unplanned transfers to the intensive care unit: A machine learning approach leveraging diverse clinical elements. JMIR Medical Informatics, 5.spa
dc.relation.referencesYoon, J.H., Jeanselme, V., Dubrawski, A., Hravnak, M., Pinsky, M.R. y Clermont, G. (2020). Prediction of hypotension events with physiologic vital sign signatures in the intensive care unit. Critical Care, 24.spa
dc.relation.referencesZachariasse J.M., Van Der Lee, D., Seiger, N., De Vos-Kerkhof, E., Oostenbrink, R. y Moll, H.A. (2017). The role of nurses' clinical impression in the first assessment of children at the emergency department. Archives of Disease in Childhood, 102, 1052- 1056.spa
dc.relation.referencesZimmerman, L.P., Reyfman, P.A., Smith, A.D.R., Zeng, Z., Kho, A., Sanchez-Pinto, L.N. y Luo, Y. (2019). Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Medical Informatics and Decision Making, 19.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembAPRENDIZAJEspa
dc.subject.lembLearningeng
dc.subject.lembAPRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)spa
dc.subject.lembMachine learningeng
dc.subject.proposalSignos vitalesspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalPredicciónspa
dc.subject.proposalEstado clínicospa
dc.subject.proposalCuidado intensivo pediátricospa
dc.subject.proposalVital signseng
dc.subject.proposalPredictioneng
dc.subject.proposalClinical statuseng
dc.subject.proposalPediatric intensive careeng
dc.titleImplementación de un prototipo de software para predecir complicaciones en pacientes en unidad de cuidados intensivos pediátricos (UCIP), a través de modelos de aprendizaje automáticospa
dc.title.translatedImplementation of a software prototype to predict complications in patients in a pediatric intensive care unit (PICU), through machine learning modelseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016036337.2023.pdf
Tamaño:
1.9 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería de Sistemas y Computación

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: