Arquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploide

dc.contributor.advisorMosquera Vásquez, Teresa de Jesússpa
dc.contributor.advisorSoto Sedano, Johana Carolinaspa
dc.contributor.authorLópez Contreras, Lina Maríaspa
dc.contributor.researchgroupGenética de Rasgos de Interés Agronómicospa
dc.date.accessioned2021-02-05T13:44:46Zspa
dc.date.available2021-02-05T13:44:46Zspa
dc.date.issued2020-11-20spa
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl objetivo de la presente investigación fue identificar variantes alélicas relacionadas con la tolerancia al estrés por déficit hídrico en papa, por medio de la metodología de mapeo por asociación a través de los enfoques de gen candidato y asociación amplia del genoma. La investigación empleó un panel de asociación que constó de 109 genotipos de papa diploide del Grupo Phureja, correspondiente a la Colección de Trabajo del Programa de Fitomejoramiento de la Universidad Nacional. En esta colección se han realizado diversos estudios, pero no se ha explorado su respuesta a condiciones de estrés por déficit hídrico a nivel fisiológico, genético y molecular, lo cual es de interés teniendo en cuenta la importancia de este alimento, un escenario a nivel mundial de cambio climático como consecuencia del calentamiento global y variabilidad climática a causa del fenómeno El Niño Oscilación del Sur. Este documento se organiza en dos capítulos. El primer capítulo presenta la caracterización de la colección de papa por su respuesta a estrés hídrico, a partir de variables fisiológicas y bioquímicas. El segundo capítulo presenta el análisis genético realizado con el fin de identificar, variantes alélicas asociadas al déficit hídrico tanto en los genes candidatos que codifican para acuaporinas como a lo largo del genoma. Así mismo, se hace una introducción general y unas conclusiones y perspectivas finales. (Texto tomado de la fuente).spa
dc.description.abstractThe objective of the present investigation was to identify allelic variants related to tolerance to stress due to water deficit in potatoes, through the association mapping methodology through the candidate gene and genome wide association approaches. The research used an association panel that consisted of 109 diploid potato genotypes from the Phureja Group, corresponding to the Working Collection of the Plant Breeding Program of the National University. Various studies have been carried out in this collection, but its response to stress conditions due to water deficit at a physiological, genetic and molecular level has not been explored, which is of interest taking into account the importance of this food, a worldwide scenario of climate change as a consequence of global warming and climate variability due to the El Niño Southern Oscillation phenomenon. This document is organized into two chapters. The first chapter presents the characterization of the potato collection by its response to water stress, based on physiological and biochemical variables. The second chapter presents the genetic analysis carried out to identify allelic variants associated with water deficit both in the candidate genes that code for aquaporins and throughout the genome. Likewise, a general introduction and some conclusions and perspectives are made.eng
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.notesIncluye anexosspa
dc.description.researchareaGenética y fitomejoramientospa
dc.format.extent112 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79086
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAchuo, E.A., Prinsen, E., Hofte, M. (2006). Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici, Plant Pathology, 55:178-186.spa
dc.relation.referencesAhmadi, S.H., Andersen, M.N., Plauborg, F., Poulsen, R.T., Jensen, C.R., Sepaskhah, A.L., Hansen, S. (2010). Effects of irrigation strategies and soils on field-grown potatoes: Gas Exchange and xylem [ABA]. Agr Water Manage 97: 1486-1494.spa
dc.relation.referencesAliche, E. B., Oortwijn, M., Theeuwen, T. P. J. M., Bachem, C. W. B., Visser, R. G. F., & van der Linden, C. G. (2018). Drought response in field grown potatoes and the interactions between canopy growth and yield. Agricultural Water Management, 206(February), 20–30. https://doi.org/10.1016/j.agwat.2018.04.013.spa
dc.relation.referencesÁlvarez. MF., Angarita, M., Delgado, MC., García, C., Jiménez-Gómez, J., Gebhardt, C., Mosquera T. (2017). Identification of Novel Associations of Candidate Genes with Resistance to Late Blight in Solanum tuberosum Group Phureja. Front Plant Sci. 15: 8:1090.spa
dc.relation.referencesAnithakumari, A. M., Nataraja, K. N., Visser, R. G. F., & Van Der Linden, C. G. (2012). Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding, 30(3), 1413–1429. https://doi.org/10.1007/s11032-012-9728-5.spa
dc.relation.referencesAriza, W., Moreno-Echeverry, D., Guerrero, C. A., & Moreno, L. P. (2020). Effect of water deficit on some physiological and biochemical responses of the yellow diploid potato (Solanum tuberosum L. Group Phureja. Agron. Colomb. 38(1). https://doi.org/10.15446/agron.colomb.v38n1.78982.spa
dc.relation.referencesArvin, M. J., & Donnelly, D. J. (2008). Screening potato cultivars and wild species to abiotic stresses using an electrolyte leakage bioassay. Journal of Agricultural Science and Technology, 10(1), 33-42.spa
dc.relation.referencesAtkinson, N. J., Dew, T. P., Orfila, C., & Urwin, P. E. (2011). Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 59(17), 9673–9682. https://doi.org/10.1021/jf202081tspa
dc.relation.referencesBinod, P.L., Bhim, B.K., Duryodhan, C., Bishnu, P.P., Sung, J.S., On-Sook, H., Yul, R.K., (2015). Growth and yield characters of potato genotypes grown in drought and irrigated conditions of Nepal. Int. J. Appl. Sci. Biotechnol. 3, 513–519. http://dx.doi. org/10.3126/ijasbt.v3i3.13347.spa
dc.relation.referencesBray, E.A., J. Bailey-Serres, & Weetilnyk, E. (2000). Responses to abiotic stresses. pp. 1158-1249. In: Gruissem, W., Buchannan,B. and R. Jones, (eds.). Biochemistry and Molecular Biology of Plants, American Society of Plant Physiologists, New York, pp. 1158e1203.spa
dc.relation.referencesCabañero, F. & Carvajar, M. (2007). Different cation stresses affect specifically osmotic root hydraulic conductance, involving aquaporins, ATPase and xylem loading of ions in Capsicum annuum L. plants. Journal of Plant Physiology. 164: 1300-1310.spa
dc.relation.referencesCabello, R., Monneveux, P., De Mendiburu, F. (2013). Comparación de los índices de tolerancia a la sequía basados en el rendimiento en variedades mejoradas, stocks genéticos y variedades locales de papa (Solanum tuberosum L.). Euphytica 193, 147-156. https://doi.org/10.1007/s10681-013-0887-1spa
dc.relation.referencesCao, Y.Y., Duan, H., Yang, L.N., Wang, Z.Q., Zhou, S.C., Yang, J.C. (2008). Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agronomica Sinica 34, 2134-2142.spa
dc.relation.referencesCattivelli, L., Rizza, F., Badeck, F.W. (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105:1–14.spa
dc.relation.referencesChaumont F., Barrieu F., Wojcik E., Chrispeels M. J., Jung R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol. 125: 1206–1215.spa
dc.relation.referencesChaumont, F., S. D. Tyerman. (2014). Aquaporins: Highly Regulated Channels Controlling Plant Water Relations. Plant Physiology. 164: 1600-1618.spa
dc.relation.referencesCheng, Y. J., Deng, X. P., Kwak, S. S., Chen, W., & Eneji, A. E. (2013). Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress. Botanical Studies, 54(1), 1–9. https://doi.org/10.1186/1999-3110-54-30spa
dc.relation.referencesDahal, K., Li, X. Q., Tai, H., Creelman, A., & Bizimungu, B. (2019). Improving potato stress tolerance and tuber yield under a climate change scenario – a current overview. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00563.spa
dc.relation.referencesDe Mendiburu. (2017). Agricolae: Statistical procedures for agricultural research. R package version 1.3-3. https://cran.r-project.org/web/packages/agricolae/agricolae.pdf.spa
dc.relation.referencesDean, R. M., Rivers, R. L., Zeidel, M. L., & Roberts, D. M. (1999). Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry, 38(1), 347–353. https://doi.org/10.1021/bi982110c.spa
dc.relation.referencesDeshmukh, R. K., Sonah, H., & Bélanger, R. R. (2016). Plant aquaporins: Genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Frontiers in Plant Science, 7 (Dec) 1–14. https://doi.org/10.3389/fpls.2016.01896.spa
dc.relation.referencesDíaz, PA. (2016). Evaluación de la tolerancia al estrés hídrico en genotipos de papa criolla (Solanum phureja Juz et Buk). Tesis de Maestría. Universidad Nacional de Colombia, Sede Medellín.spa
dc.relation.referencesDong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK. (2006). The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad, Sci USA103:8281–8286.spa
dc.relation.referencesDuarte-Delgado, Narváez-Cuenca, Restrepo-Sánchez, L., Kushalappa, C & Mosquera-Vásquez, T. (2016). Natural variation of sucrose, glucose and fructose contents in Colombian genotypes of Solanum tuberosum Group Phureja at harvest. J Sci Food Agric. 96: 4288-4294.spa
dc.relation.referencesEraso-Grisales, S., Mejía-España, D., & Hurtado-Benavides, A. (2019). Extracción de glicoalcaloides de papa nativa (Solanum phureja) variedad ratona morada con líquidos presurizados. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(1), 181–197. https://doi.org/10.15446/rcciquifa.v48n1.80074.spa
dc.relation.referencesEscallón, R., M. Ramírez y C.E. Ñústez. (2005). Evaluación del potencial de rendimiento y de la resistencia a Phytophthora infestans (Mont. de Bary) en la colección de papas redondas amarillas de la especie Solanum phureja (Juz. et Buk.). Agron. Colomb. 23(1), 35-41.spa
dc.relation.referencesEveritt B., Landau S., Leese M., Stahl D. (2011). Cluster Analysis. Chichester: Wiley.spa
dc.relation.referencesEvers, D., Lefevre, I., Legay, S., Lamoureux, D., Hausman, J.-F., Rosales, R. O. G. (2010). Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. J. Exp. Bot. 61, 2327–2343. doi: 10.1093/jxb/erq060.spa
dc.relation.referencesEziz, A., Yan, Z., Tian, D., Han, W., Tang, Z., & Fang, J. (2017). Drought effect on plant biomass allocation: A meta-analysis. Ecology and Evolution, 7(24), 11002–11010. https://doi.org/10.1002/ece3.3630.spa
dc.relation.referencesFAOSTAT. (2018). Food and Agriculture Organization of the United Nations Statistics Division. En: http://faostat.fao.org/site/339/default.aspx. Consulta: Marzo 12 de 2019.spa
dc.relation.referencesFarmer, E.E,, Mueller, M.J. (2013). ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol. 2013;64: 429-450. doi:10.1146/annurev-arplant-050312-120132.spa
dc.relation.referencesFeller, C., Favre, P., Janka, A., Zeeman, S. C., Gabriel, J.-P. & Reinhardt, D. (2015). Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth. PLoS One, 10. WOS:000358159700007, e0127905.spa
dc.relation.referencesFlexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3), 269–279. https://doi.org/10.1055/s-2004-820867.spa
dc.relation.referencesGabriëls, S. H. E. J., Vossen, J. H., Ekengren, S. K., Ooijen, G. Van, Abd-El-Haliem, A. M., Berg, G. C. M. V. Den, Joosten, M. H. A. J. (2007). An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant Journal, 50(1), 14–28. https://doi.org/10.1111/j.1365-313X.2007.03027.spa
dc.relation.referencesGardner, F.P.; Pearce, R.B.; Mitchel, R.L. (1985). Physiology of crop plants. Iowa State University Press. pp. 66.spa
dc.relation.referencesGebhardt, C., L. Li, K. Pajerowska-Mukthar, U. Achenbach, A. Sattarzadeh, C. Bormann, E. Ilarionova, and A. Ballvora. (2007). Candidate gene approach to identify genes underlying quantitative traits and develop diagnostic markers in potato. Crop Science 47, 106-111.spa
dc.relation.referencesGolldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5(APR), 1–10. https://doi.org/10.3389/fpls.2014.00151.spa
dc.relation.referencesGomes, D., Agasse, A., Thiébaud, P., Delrot, S., Gerós, H., & Chaumont, F. (2009). Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta - Biomembranes, 1788(6), 1213–1228. https://doi.org/10.1016/j.bbamem.2009.03.009.spa
dc.relation.referencesGong, L., Zhang, H., Gan, X., Zhang, L., Chen, Y., Nie, F., & Song, Y. (2015). Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions. PloS One, 10(5), e0128041.spa
dc.relation.referencesGonzález-Martínez, S.C.; Ersoz, E.; Brown, G.R.; Wheeler, N.C. and Neale, D.B. (2006). DNA Sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172 (3), 1915-1926.spa
dc.relation.referencesHeath RL, Packer L. (1968). Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys; 125:189–198.spa
dc.relation.referencesHou, S., Zhu, G., Li, Y., Li, W., Fu, J., Niu, E. Guo, W. (2018). Genome-wide association studies reveal genetic variation and candidate genes of drought stress related traits in cotton (Gossypium hirsutum l.). Frontiers in Plant Science, 9(September), 1–15. https://doi.org/10.3389/fpls.2018.01276.spa
dc.relation.referencesJefferies, R. A., & Mackerron, D. K. L. (1989). Radiation interception and growth of irrigated and droughted potato (Solanum tuberosum). Field Crops Research, 22(2), 101–112. https://doi.org/10.1016/0378-4290(89)90061-0.spa
dc.relation.referencesJérez, E., & Martin, R. (2012). Comportamiento del crecimiento y el rendimiento de la variedad de papa (Solanum tuberosum L.) SPUNTA Behavior of growth and yield of the potato (Solanum tuberosum L.) variety Spunta. Cultivos Tropicales, 33(4), 53–58.spa
dc.relation.referencesJi, L., Yogendra, K. N., Mosa, K. A., Kushalappa, A. C., Piñeros-Niño, C., Mosquera, T., & Narvez-Cuenca, C.-E. (2016). Hydroxycinnamic acid functional ingredients and their biosynthetic genes in tubers of Solanum tuberosum Group Phureja. Cogent Food & Agriculture, 2(1), 1–42. https://doi.org/10.1080/23311932.2016.1138595.spa
dc.relation.referencesJohnson, R.C.; Nelson, G.W.; Troyer, J.L.; Lautenberger, J.A.; Kessing, B.D.; Winkler, C.A.; O’Brien, S.J. (2010). Accounting for multiple comparisons in a genome-wide association study (GWAS). BMC Genom. 11, 724.spa
dc.relation.referencesJuyó Rojas DK, Soto Sedano JC, Ballvora A, Léon J, Mosquera Vásquez, T. (2019). Novel organ-specific genetic factors for quantitative resistance to late blight in potato. PLoS ONE 14(7): e0213818. https://doi.org/10.1371/journal.pone.0213818.spa
dc.relation.referencesJuyó, D.; Sarmiento, F.; Álvarez, M.; Brochero, H.; Gebhardt, C.; Mosquera, T. (2015). Genetic diversity and population structure in diploid potatoes of Solanum tuberosum group phureja. CropSci. 2015, 55, 760–769.spa
dc.relation.referencesKassambara, A. (2020). Factoextra: Extract and visualize the results of multivariate data analyses. R package versión 1.0.7. https://cran.r-project.org/web/packages/factoextra/factoextra.spa
dc.relation.referencesKhaleghi, A., Naderi, R., Brunetti, C. (2019). Respuestas morfológicas, fisicoquímicas y antioxidantes de Maclura pomifera al estrés por sequía. Sci Rep 9, 19250 https://doi.org/10.1038/s41598-019-55889-y.spa
dc.relation.referencesKosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not So Different After All: A Comparison of Methods for Detecting Amino Acid Sites Under Selection. Mol Biol Evol 22:1208-1222.spa
dc.relation.referencesKovács-Bogdán, E., Soll, J., & Bölter, B. (2010). Protein import into chloroplasts: The Tic complex and its regulation. Biochimica et Biophysica Acta - Molecular Cell Research, 1803(6), 740–747. https://doi.org/10.1016/j.bbamcr.2010.01.015.spa
dc.relation.referencesKryazhimskiy, S., & Plotkin, J. B. (2008). The population genetics of dN/dS. PLoS Genetics, 4(12). https://doi.org/10.1371/journal.pgen.1000304.spa
dc.relation.referencesKulkarni, M. & Phalke, S. (2009). Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Sci Hortic- Amsterdam 120:159-166.spa
dc.relation.referencesLawlor D.G. & Cornic. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25: 275–294.spa
dc.relation.referencesLegendre, P., & Legendre, L. (1998). Numerical Ecology. Elsevier Science, APSTerdam.spa
dc.relation.referencesLemey, P., Salemi, M., Vandamme A. (2009). The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. 2nd Edition. Cambridge University. UK.spa
dc.relation.referencesLevitt J (1980). Responses of plants to environmental stresses. Ed.Academic Press.479 p.spa
dc.relation.referencesLian H., Yu, X., Ye, Q., Ding, X., Kitagawa, Y., Kwa, S., Su, W., Tang, Z. (2004). The role of aquaporin RWC3 in drought acoidance in rice. Plant Cell Physiology 45(4):481-489.spa
dc.relation.referencesLiang, C., Sun, L., Yao, Z., Liao, H., Tian, J. (2012). Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean. PLoS One 7, 65–65.spa
dc.relation.referencesLiu F, Jensen CR, Shahanzari A, Andersen MN, Jacobsen S-E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Sci 168:831–836.spa
dc.relation.referencesLiu, F., & Stützel, H. (2004). Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Scientia Horticulturae, 102(1), 15–27. https://doi.org/10.1016/j.scienta.2003.11.014.spa
dc.relation.referencesLiu, F., Shahnazari A, Andersen M.N., Jacobsen, S.E., Jensen, C.R. (2006). Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci Hortic-Amsterdam 109: 113-117.spa
dc.relation.referencesLiu, M., Gong, X., Alluri, R. K., Wu, J., Sablo, T., & Li, Z. (2012). Characterization of RNA damage under oxidative stress in Escherichia coli. Biological Chemistry, 393(3): 123–132. https://doi.org/10.1515/hsz-2011-0247.spa
dc.relation.referencesLiu, P. D., Xue, Y. Bin, Chen, Z. J., Liu, G. D., & Tian, J. (2016). Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes. Journal of Experimental Botany, 67(14), 4141–4154. https://doi.org/10.1093/jxb/erw190.spa
dc.relation.referencesLuu, D. T., & Maurel, C. (2005). Aquaporins in a challenging environment: molecular gears for adjusting plant water status. (Special Issue: The Yearly Review of Environmental Plant Physiology). Plant, Cell and Environment, 28(1), 85–96.spa
dc.relation.referencesLynch, D. R., Tai, G.C. (1989): Yield and yield component response of eight potato genotypes to water stress. Crop science 29: 1207-1211.spa
dc.relation.referencesLynch, D.R & G.C. Kozub. (1990). The association between potato tuber yield and the components of yield in irrigated and dryland environments in the pairies. Can. J. Plant Sci (71) :279-287.spa
dc.relation.referencesMackay, I. & W. Powell. (2006). Methods for linkage disequilibrium mapping in crops. Trends in Plant Science 12 (2): 57-63.spa
dc.relation.referencesMacKay, T. F. (2009). Q & A: Genetic analysis of quantitative traits. Journal of Biology, 8(3). https://doi.org/10.1186/jbiol133.spa
dc.relation.referencesMathew, I., Shimelis, H., Shayanowako, A. I. T., Laing, M., & Chaplot, V. (2019). Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS ONE, 14(12), 1–21. https://doi.org/10.1371/journal.pone.0225383.spa
dc.relation.referencesMazzucotelli, E., Tartari, A., Cattivelli, L., and Forlani, G. (2006). Metabolism of γ-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J. Exp. Bot. 57, 3755–3766. doi: 10.1093/jxb/erl141.spa
dc.relation.referencesMcCue, K. F., Allen, P. V., Shepherd, L. V. T., Blake, A., Whitworth, J., Maccree, M. M., Belknap, W. R. (2006). The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry, 67(15), 1590–1597. https://doi.org/10.1016/j.phytochem.2005.09.037.spa
dc.relation.referencesMendelsohn, R. (2008). The impact of climate change on agriculture in developing countries. Journal of Natural Resources Policy Research 1(1): 5–19. https://doi.org/10.1080/19390450802495882.spa
dc.relation.referencesMitani-Ueno, N., Yamaji, N., Zhao, F., & Ma, J. F. (2011). The aromatic / arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. Journal of Experimental Botany,62(12), 4391–4398. https://doi.org/10.1093/jxb/err158.spa
dc.relation.referencesMittler R, Blumwald E. (2015). The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell 27, 64–70.spa
dc.relation.referencesMonneveux, P., Ramírez, D. A., & Pino, M.T. (2013). Drought tolerance in potato (S. tuberosum L.) Can we learn from drought tolerance research in cereals?. Plant Science, 205-206, 76-86. https://doi.org/10.1016/j.plantsci.2013.01.011.spa
dc.relation.referencesMoorby, J. R. Munns, y J. Walcott. (1975). Effect of water deficit on photosynthesis and tuber metabolism in potatoes. Australian Journal of Plant Physiology, 2:323-333.spa
dc.relation.referencesMoreno F, L. P. (2009). Respuesta de las plantas al estrés por déficit hídrico. Una revisión Plant responses to water deficit stress. A review. Agronomía Colombiana, 27(2), 179-191.spa
dc.relation.referencesMosquera T., Álvarez M. F., Jiménez-Gómez J. M., Muktar M. S., Paulo M. J., Sebastian S. (2016). Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNP for quantitative resistance of the potato (Solanum tuberosum L.) to Phytophthora infestans causing the late blight disease. PLoS ONE 11: e0156254spa
dc.relation.referencesMosquera, T., Alvarez, M. F., Jiménez-Gómez, J. M., Muktar, M. S., Paulo, M. J., Steinemann, S., Gebhardt, C. (2016). Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNP for quantitative resistance of the potato (Solanum tuberosum L.) to Phytophthora infestans causing the late blight disease. PLoS ONE, 11(6), 1–36. https://doi.org/10.1371/journal.pone.0156254.spa
dc.relation.referencesMurata, K., Mitsuoka, K., Hiral, T., Walz, T., Agre, P., Heymann, J. B., … Fujiyoshi, Y. (2000). Structural determinants of water permeation through aquaporin-1. Nature, 407(6804), 599–605. https://doi.org/10.1038/35036519.spa
dc.relation.referencesNavarre, R., & Pavek, M. (2014). The Potato Botany, production and uses. CABI. NISR. Seasonal Agricultural survey.spa
dc.relation.referencesNazarian-Firouzabadi, F., and Visser, R.G.F. (2017). Potato starch synthases: Functions and relationships. Biochem. Biophys. Reports 10: 7–16. doi:10.1016/j.bbrep.2017.02.004.spa
dc.relation.referencesNiklas, K. J. (2008). Carbon / Nitrogen / Phosphorus Allometric Relations Across Species and N : P-Stoichiometry. The Ecophysiology of Plant-Phosphorus Interactions, 9–30.spa
dc.relation.referencesObidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6(JULY), 1–23. https://doi.org/10.3389/fpls.2015.00542.spa
dc.relation.referencesPandey B, Sharma P, Pandey DM, Sharma I, Chatrath R. (2013). Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat. Evol Bioinform Online. 9:437-52.spa
dc.relation.referencesPark, W., Scheffler, B. E., Bauer, P. J., & Campbell, B. T. (2010). Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biology, 10. https://doi.org/10.1186/1471-2229-10-142.spa
dc.relation.referencesParra-Galindo, M. A., Piñeros-Niño, C., Soto-Sedano, J. C., & Mosquera-Vasquez, T. (2019). Chromosomes I and X harbor consistent genetic factors associated with the anthocyanin variation in potato. Agronomy, 9(7), 11–13. https://doi.org/10.3390/agronomy9070366.spa
dc.relation.referencesPeña, C; Restrepo-Sánchez, L.P; Kushalappa, A; Rodríguez-Molano, L.E; Mosquera, T; Narváez-Cuenca, C.E. (2015). Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT Food Science and Technology 62:76-86.spa
dc.relation.referencesPhang, T. H., Shao, G., & Lam, H. M. (2008). Salt tolerance in soybean. Journal of Integrative Plant Biology, 50(10), 1196–1212. https://doi.org/10.1111/j.1744-7909.2008.00760.x.spa
dc.relation.referencesPinheiro, C. M. Chaves. (2011). Photosynthesis and drought: can we make metabolic connections from available data? J. Exp. Bot.,62 (3): 869-882.spa
dc.relation.referencesPino, T. (2016). Estrés hídrico y térmico en papas, avances y protocolos. Santiago, Chile. Instituto de Investigaciones Agropecuarias. Boletín INIA Nº 331. 148p.spa
dc.relation.referencesPoland, J.A.& Rife, T.W. (2012). Genotyping-by-sequencing for plant breeding and genetics. Plant Genome. 5, 92–102.spa
dc.relation.referencesPorter, G.A., G.B. Opena, W.B. Bradbury, J.C. McBurnie, and J.A. Sisson. (1999). Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agron. J. 91, 416-425.spa
dc.relation.referencesRakshit, A., Bahadur, H., Kumar, A., Shankar, U., Fraceto, L. (2020). Chapter 4: Impact of Salinity Stress in Crop Plants and Mitigation Strategies. New Frontiers in Stress Management for Durable Agriculture. Ed. Springer Nature Singapore Pte Ltd. Singapore. https://doi.org/10.1007/978-981-15-1322-0.spa
dc.relation.referencesRamírez D, Yactayo W, Gutiérrez R, Mares V, Mendiburu F, Posadas A, Quiroz R. (2014). Chlorophyll concentration in leaves is an indicator of potato tuber yield in water shortage conditions. Sci Hort 168: 202-209.spa
dc.relation.referencesRaymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R. (2018). Climate change impact on global potato production. European Journal of Agronomy, 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008.spa
dc.relation.referencesRobinson, W.D., Park, J., Tran, H.T, Del Vecchio, H.A., Ying, S., Zins, J.L., Patel, K., McKnight, T.D., Plaxton, W.C. (2012). The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. Journal of Experimental Botany 63, 6531–6542.spa
dc.relation.referencesRodrigues, S.M, Andrade, M.O., Gomes, A., Damatta, F.M., Baracat-Pereira, M.C, Fontes, E. (2006). Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot 57 1909–1918.spa
dc.relation.referencesRodríguez, L. E., Eduardo, C., & Estrada, N. (2009). Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana, 27(3), 289–303.spa
dc.relation.referencesRodríguez-Pérez, L., Ñústez L., C. E., & Moreno F., L. P. (2017). El estrés por sequía afecta los parámetros fisiológicos, pero no el rendimiento de los tubérculos en tres cultivares andinos de papa (Solanum tuberosum L.). Agronomia Colombiana, 35(2), 158–170. https://doi.org/10.15446/agron.colomb.v35n2.65901.spa
dc.relation.referencesRodríguez-Pérez, Ñústez L., y Moreno F. (2017). Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agron. Colomb. 35(2).spa
dc.relation.referencesRomero, A. P., Alarcón, A., Valbuena, R. I., & Galeano, C. H. (2017). Physiological assessment of water stress in potato using spectral information. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01608.spa
dc.relation.referencesRouam S. (2013). False Discovery Rate (FDR). In: Dubitzky W., Wolkenhauer O., Cho KH., Yokota H. (eds) Encyclopedia of Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9863-7_223.spa
dc.relation.referencesSade, N., Vinocur, B.J., Diber, A., Shatil, A., Ronen, G., Nissan, H. (2009).Improving plant stress tolerance and yield production: is the tonoplast aquaporin TIP2; 2a key to is o hydric to a nis o hydric conversion? NewPhytol. 181,651–661.doi:10.1111/j.1469-8137.2008.02689.xspa
dc.relation.referencesSakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 46(9), 1568–1577. https://doi.org/10.1093/pcp/pci172.spa
dc.relation.referencesSánchez-Reinoso, A. D., G. Garcés-Varón and H. Restrepo-Díaz. (2014). Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions. Chilean journal of agricultural research, 74(4), 373-379.spa
dc.relation.referencesSánchez-Rodríguez, E., M. Rubio-Wilhelmi, L.M., Cervilla, J.J. Blasco, J.J. Rios, M.A. Rosales, L. Romero and J.M. Ruiz. (2010). Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 178(1), 30-40.spa
dc.relation.referencesSchafleitner, R., Gutierrez Rosales, R. O., Gaudin, A., Alvarado Aliaga, C. A., Martinez, G. N., Tincopa Marca, L. R., Bonierbale, M. (2007). Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiology and Biochemistry, 45(9), 673–690. https://doi.org/10.1016/j.plaphy.2007.06.003.spa
dc.relation.referencesSchenk., G, Boutchard, C.L., Carrington, L.E., Noble, C.J., Moubaraki, B., Murray, K.S., Jersey, J., Hanson, G.R., Hamilton, S. (2001). A purple acid phosphatase from sweet potato contains an antiferromagnetically coupled binuclear Fe-Mn center. J Biol Chem. 276:19084–19088. doi: 10.1074/jbc.M009778200.spa
dc.relation.referencesSchreiber L, Nader-Nieto AC, Schönhals EM, Walkemeier B, Gebhardt C. (2014). SNP in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). G3 Genes Genom. Genet. 4:1797–811.spa
dc.relation.referencesSchroeder, J. I., Allen, G. J., Hugouvieux, V., Kwak, J. M., & Waner, D. (2001). G Uard C Ell S Ignal T Ransduction. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1), 627–658. https://doi.org/10.1146/annurev.arplant.52.1.627.spa
dc.relation.referencesShabala, S. (2017). Drought tolerance in crops. Plant stress physiology. University of Tasmania, Australia. 2nd Edition. 4-5.spa
dc.relation.referencesShinozaki, K., Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J Exp Bot 58 (2): 221–227.spa
dc.relation.referencesSkansi, M., Brunet, M., Sigró, J., Aguilar, E., Arevalo, J., Betancur, O., Castellón, Y., Correa, R., Jácome, H., Ramos, A., Rojas, C., Max, A., Sallons, S., Villaroel, C., Martínez, R., Alexander, L. y Jones, P. (2013). Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change. 100: 295-307.spa
dc.relation.referencesSteel M. (2010). The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. Edited by Lemey P, Salemi M,Vandamme AM. Biometrics, 66 (1) 324–325.spa
dc.relation.referencesSukumaran, S., Xiang, W., Bean, S.R., Pedersen, J.F., Kresovich, S., Tuinstra, M.R., Tesso, T.T., Hamblin, M.T., Yu, J. (2012). Association Mapping for Grain Quality in a Diverse Sorghum Collection. Plant Genome J. 5, 126–135.spa
dc.relation.referencesTekalign, T. y Hammes, P. S. (2005). Growth and productivity of potato as influenced by cultivar and reproductive growth. II. Growth analysis, tuber yield and quality. Scientia Horticulturae. 105: 29-44.spa
dc.relation.referencesThornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20(11), 3313–3328. https://doi.org/10.1111/gcb.12581.spa
dc.relation.referencesTopbjerg, H., Kaminski, K., Markussen, B., Korup, K., Nielsen, K., Kirk, H., Andersen, M. and Liu, F. (2014). Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions. Sci. Hort. 178: 61-69.spa
dc.relation.referencesTourneux, C., Devaux, A., Camacho, M.R., Mamani, P., Ledent, J.F. (2003). Effects of water shortage on six potato genotypes in the highlands of Bolivia (I): morphological parameters, growth and yield. Agronomie 23: 169-179.spa
dc.relation.referencesTsai, H. Y., Janss, L. L., Andersen, J. R., Orabi, J., Jensen, J. D., Jahoor, A., & Jensen, J. (2020). Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-60203-2.spa
dc.relation.referencesTuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 3:347. doi: 10.3389/fphys.2012.00347spa
dc.relation.referencesTurner, S.D. (2014). qqman: An R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv, 005165.spa
dc.relation.referencesValbuena, B.I. (2000). Aspectos básicos sobre el crecimiento y desarrollo en el cultivo de la papa. Manejo integrado del cultivo de la papa en Colombia. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Bogotá. 49 p.spa
dc.relation.referencesVenkatesh, J., Yu, J., Park, W. (2013). Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant physiology and Biochemistry. 73: 392-404.spa
dc.relation.referencesVerma, V., Foulkes, M.J., Worland, A.J., Sylvester-Bradley, R., Caligari, P.D., Snape, J.W. (2004). Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263.spa
dc.relation.referencesWald, FA, Kissen, R., du Jardin, P. y Moreno, S. (2003). Plant Molecular Biology, 52 (4), 705–714. doi: 10.1023 / a: 1025061324856.spa
dc.relation.referencesWang, Y., Bao, Z., Zhu, Y. & Hua, J. (2009). Analysis of temperature modulation of plant defense against biotrophic microbes. Mol. Plant Microbe Interact. 22, 498–506.spa
dc.relation.referencesWiese, J., Kranz, T., Schubert S. (2004). Induction of pathogen resistance in barley by abiotic stress. Plant Biol (Stuttg). 6: 529–536.spa
dc.relation.referencesYang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088.spa
dc.relation.referencesYin, Y., Mohnen, D., Gelineo-Albersheim, I., Xu, Y., & Hahn, M. G. (2019). (010. Glycosyltransferases of the GT8 Family. Annual Plant Reviews, 167–211. doi: 10.1002/9781444391015.ch6.spa
dc.relation.referencesYogendra, K. N., Dhokane, Kushalappa, A., Sarmiento, F.,Rodríguez, E. Mosquera, T. (2017). StWRKY8 transcription factor regulates benzylisoquinoline alkaloid pathway in potato conferring resistance to late blight. Plant Science 256: 208–216. http://dx.doi.org/10.1016/j.plantsci.2016.12.014.spa
dc.relation.referencesYu, X., Bai, G., Liu, S., Luo, N., Wang, Y., Richmond, D., Pijut, P., Jackson, S., Yu, J., Jiang, Y. (2013). Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. Journal of Experimental Botany 64 (6), 1537–1551.spa
dc.relation.referencesYu, X.S., Yin, X.Y., Lafer, E.M., Jiang, J.X. (2005). Development regulation of the direct interaction between the intracellular loop of connexin 45.6 and the C terminus of major intrinsic protein (aquaporin-0). J Biol Chem. 280:22081–22090.spa
dc.relation.referencesZhang D. Y., Ali Z., Wang C. B., Xu L., Yi J. X., Xu Z. L. (2013). Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). Plos One 8: e56312.spa
dc.relation.referencesZhang, Z.; Ersoz, E.; Lai, C.Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.; Arnett, D.K.; Ordovas, J.M. (2010). Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360.spa
dc.relation.referencesZhu, C., Gore, M., Buckler, ES., Yu. J. (2008). Status and prospects of association mapping in plants. Plant Gen. 1(1):5–20.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocEstrés de sequiaspa
dc.subject.agrovocdrought stresseng
dc.subject.agrovocGenotiposspa
dc.subject.agrovocgenotypeseng
dc.subject.agrovocTolerancia a la sequiaspa
dc.subject.agrovocdrought toleranceeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalPapa-tolerancia estrés abióticospa
dc.subject.proposalPotato-tolerance abiotic stresseng
dc.subject.proposalMalondialdehído-estrés hídricospa
dc.subject.proposalMalondialdehyde-water stresseng
dc.subject.proposalAquaporin NIP 1-1spa
dc.subject.proposalAquaporin NIP 1-1eng
dc.subject.proposalAquaporin TIPeng
dc.subject.proposalAquaporin TIPspa
dc.subject.proposalQTL-estrés por déficit hídricospa
dc.subject.proposalQTL-stress due to water deficiteng
dc.subject.proposalAaquaporin allelic variantseng
dc.subject.proposalPapas amarillas-estrés abióticospa
dc.subject.proposalVariantes alélicas acuaporinasspa
dc.subject.proposalYellow potatoes-abiotic stresseng
dc.titleArquitectura genética de la tolerancia al estrés por déficit hídrico en papa diploidespa
dc.title.translatedGenetic architecture of tolerance to water deficit stress in diploid potatoeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1031133282.2020.pdf
Tamaño:
1.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: