Estructura electrónica y molecular de complejos de amiloide Beta (Aβ)con Fe2+/3+ (Fe2+/3+-Aβ) asociados a la enfermedad de Alzheimer

dc.contributor.advisorAlí Torres, Jorge Isaacspa
dc.contributor.authorPuello Silva, Jorge Raúlspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=Bhdwu_YAAAAJ&hl=esspa
dc.contributor.orcidPuello Silva, Jorge Raúl [0009000029794009]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Jorge-Puello-2?ev=hdr_xprfspa
dc.contributor.researchgroupQuímica Cuántica y Computacionalspa
dc.date.accessioned2025-03-28T12:34:01Z
dc.date.available2025-03-28T12:34:01Z
dc.date.issued2024
dc.descriptionilustraciones a color, diagramas, tablasspa
dc.description.abstractLa interacción entre el hierro y el péptido amiloide β (Aβ) ha sido objeto de gran atención en la investigación de la enfermedad de Alzheimer (EA) debido a sus posibles implicaciones en el desarrollo de esta patología. Mientras que los estudios previos han investigado las preferencias de coordinación del hierro y el péptido Aβ1−42, no se ha estudiado la contribución de la parte peptídica dentro de la estabilización de estos sistemas. En este trabajo se utilizó una serie de herramientas computacionales que combinan técnicas de modelado por homología con cálculos de mecánica cuántica (DTF-xTB) para construir y evaluar los modelos 3D plausibles de Fe2+/3+-Aβ1−42. Además, se evaluó un conjunto de ligandos tipo salen como potenciales agentes farmacológicos con afinidad por los iones de hierro que puedan competir para coordinar el hierro con el Aβ1−42. Nuestros resultados revelaron la formación de complejos Fe2+/3+-Aβ1−42 bien definidos, tanto en la fracción metálica como en la peptídica, y se caracterizaron las interacciones moleculares que estabilizan estos complejos al elucidar los entornos de coordinación y las preferencias de unión de los mismos, destacando la importancia de la parte peptídica para estabilizar los complejos. En cuanto a los ligandos, se han identificado tres mecanismos de acción, de acuerdo con los valores de potencial estándar de reducción y las afinidades obtenidas para los complejos metal-ligando: antioxidante, distribuidor y regulador, este ´ultimo propuesto en este trabajo. Finalmente, los modelos propuestos junto con los ligandos evaluados ofrecen valiosa información sobre el papel del hierro en la patología de la EA y en futuras estrategias para interferir en las reacciones redox promovidas por los complejos Fe2+/3+-Aβ1−42 (Texto tomado de la fuente).spa
dc.description.abstractInteraction between iron and amyloid β peptide (Aβ) has been the subject of much attention in Alzheimer’s disease (AD) research because of its possible implications in the development of this patology.While prior studies have examined the coordination preferences of iron and Aβ1−42 peptide, the contribution of the peptidic moeity in stabilising these systems remains uninvestigated. In this work, a set of computational tools combining homology modeling techniques with quantum mechanical calculations (DTF-xTB) were used to built and evaluate several 3D models of Fe2+/3+-Aβ1−42. In addition, a set of salen-like ligands were evaluated as potential pharmacological agents with affinity for iron ions that can compete to coordinate iron with Aβ1−42 peptide. Our results revealed the formation of well-defined Fe2+/3+-Aβ1−42 complexes in both the metal and peptide moieties, and the molecular interactions that stabilize these complexes were characterized by elucidating the coordination environments and binding preferences of the complexes, emphasizing the importance of the peptide moiety in stabilizing the complexes. As for the ligands, three mechanisms of action have been identified, according to the standard reduction potential values and affinities obtained for the metal-ligand complexes, antioxidant, distributor and regulator, the latter proposed in this work. Finally, the proposed models together with the ligands evaluated provide valuable insights into the role of iron in the pathogenesis of AD and future strategies to interfere with the redox reactions promoted by Fe2+/3+-Aβ1−42 complexeseng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.format.extentxvi, 168 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87771
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.references(1) Gale, S. A.; Acar, D. y Daffner, K. R. The American journal of medicine 2018, 131 10, 1161-1169.spa
dc.relation.references(2) Kim, D. H.; Lee, S. B. y Young, L. D. Dementia and neurocognitive disorders 2016, 15, 115-121.spa
dc.relation.references(3) Sellal, F. Neurophysiologie Clinique / Clinical Neurophysiology 1993, 8310, 3-136.spa
dc.relation.references(4) Yang, H. D.; Lee, S. B.; Young, L. D. et al. Dementia and neurocognitive disorders 2016, 15, 115-121.spa
dc.relation.references(5) Pearce, J. European Neurology 2013, 70, 106-112.spa
dc.relation.references(6) Albert, M. L. y Mildworf, B. Journal of Neurolinguistics 1989, 4, 301-308.spa
dc.relation.references(7) Roman, G. International Psychogeriatrics 2003, 15, 11-13.spa
dc.relation.references(8) Villanueva-Meyer, M. Galenus 2023.spa
dc.relation.references(9) Riley, M. Bernard Becker Medical Library, Agosto, 2024, 2021.spa
dc.relation.references(10) Torack, R. y Reisberg, B., Alzheimer’s Disease: The Standard Reference; Free Press: 1983.spa
dc.relation.references(11) McKhann, G. M.; Knopman, D. S.; Chertkow, H.; Hyman, B. T.; Jack Jr, C. R.; Kawas, C. H.; Klunk, W. E.; Koroshetz, W. J.; Manly, J. J.; Mayeux, R. et al. Alzheimer’s & dementia 2011, 7, 263-269.spa
dc.relation.references(12) Cipriani, G.; Dolciotti, C.; Picchi, L. y Bonuccelli, U. Neurological Sciences 2011, 32, 275-279.spa
dc.relation.references(13) CDC Alzheimer´s Disease Program, Agosto, 2024, 2024.spa
dc.relation.references(14) Alzheimer’s dementia: The Journal of the Alzheimer’s Association 2023, 19, 1598-1695.spa
dc.relation.references(15) Folch, J.; Ettcheto, M.; Petrov, D.; Abad, S.; Pedr´os, I.; Marin, M.; Olloquequi, J. y Camins, A. Neurologia 2018, 33, 47-58.spa
dc.relation.references(16) Selkoe, D. J. Neuron 1991, 6, 487-498.spa
dc.relation.references(17) Bonda, D. J.; Lee, H.-g.; Blair, J. A.; Zhu, X.; Perry, G. y Smith, M. A. Metallomics 2011, 3, 267-270.spa
dc.relation.references(18) Wilquet, V. y De Strooper, B. Current opinion in neurobiology 2004, 14, 582-588.spa
dc.relation.references(19) Selkoe, D. J. y Schenk, D. Annual review of pharmacology and toxicology 2003, 43, 545-584.spa
dc.relation.references(20) Selkoe, D. J. nature 2003, 426, 900-904.spa
dc.relation.references(21) Rauk, A. Chemical Society Reviews 2009, 38, 2698-2715.spa
dc.relation.references(22) Sanders, H. M.; Lust, R. y Teller, J. K. Peptides 2009, 30, 849-854.spa
dc.relation.references(23) Hou, L. y Zagorski, M. G. Journal of the American Chemical Society 2006, 128, 9260-9261.spa
dc.relation.references(24) Talmard, C.; Guilloreau, L.; Coppel, Y.; Mazarguil, H. y Faller, P. ChemBioChem 2007, 8, 163-165.spa
dc.relation.references(25) Nair, N. G.; Perry, G.; Smith, M. A. y Reddy, V. P. Journal of Alzheimer’s Disease 2010, 20, 57-66.spa
dc.relation.references(26) Faller, P. y Hureau, C. Dalton Transactions 2009, 1080-1094.spa
dc.relation.references(27) Jiang, D.; Li, X.; Williams, R.; Patel, S.; Men, L.; Wang, Y. y Zhou, F. Biochemistry 2009, 48, 7939-7947.spa
dc.relation.references(28) Syme, C. D. y Viles, J. H. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics .2006, 1764, 246-256.spa
dc.relation.references(29) Strodel, B. y Coskuner-Weber, O. Journal of Chemical Information and Modeling 2019, 59, 1782-1805.spa
dc.relation.references(30) Boopathi, S. y Kolandaivel, P. Proteins: Structure, Function, and Bioinformatics 2016, 84, 1257-1274.spa
dc.relation.references(31) Rodríguez, A. E. E. y Signoret, V. C. Z. Revista de Educación Bioquímica 2017, 36, 2-11.spa
dc.relation.references(32) Crescenzi, O.; Tomaselli, S.; Guerrini, R.; Salvadori, S.; D’Ursi, A. M.; Temussi, P. A. y Picone, D. European Journal of Biochemistry 2002, 269, 5642-5648.spa
dc.relation.references(33) Vivekanandan, S.; Brender, J. R.; Lee, S. Y. y Ramamoorthy, A. Biochemical and Biophysical Research Communications 2011, 411, 312-316.spa
dc.relation.references(34) Atwood, C. S.; Obrenovich, M. E.; Liu, T.; Chan, H.; Perry, G.; Smith, M. A. y Martins, R. N. Brain Research Reviews 2003, 43, 1-16.spa
dc.relation.references(35) Zou, K.; Gong, J.-S.; Yanagisawa, K. y Michikawa, M. Journal of Neuroscience 2002, 22, 4833-4841.spa
dc.relation.references(36) Aizenstein, H. J.; Nebes, R. D.; Saxton, J. A.; Price, J. C.; Mathis, C. A.; Tsopelas, N. D.; Ziolko, S. K.; James, J. A.; Snitz, B. E.; Houck, P. R. et al. Archives of Neurology 2008, 65, 1509-1517.spa
dc.relation.references(37) Mezzaroba, L.; Alfieri, D. F.; Sim˜ao, A. N. C. y Reiche, E. M. V. Neurotoxicology 2019, 74, 230-241.spa
dc.relation.references(38) Faller, P.; Hureau, C. y Berthoumieu, O. Inorganic Chemistry 2013, 52, 12193-12206.spa
dc.relation.references(39) Puentes-Díaz, N.; Chaparro, D.; Morales-Morales, D.; Flores-Gaspar, A. y Alí-Torres, J. ACS omega 2023, 8, 4508-4526.spa
dc.relation.references(40) Adlard, P. A. y Bush, A. I. Journal of Alzheimer’s Disease 2018, 62, 1369-1379.spa
dc.relation.references(41) Bush, A. I. y Curtain, C. C. European Biophysics Journal 2008, 37, 241-245.spa
dc.relation.references(42) Bush, A. I. Journal of Alzheimer’s Disease 2013, 33, S277-S281.spa
dc.relation.references(43) Lovell, M.; Robertson, J.; Teesdale, W.; Campbell, J. y Markesbery, W. Journal of the Neurological Sciences 1998, 158, 47-52.spa
dc.relation.references(44) Gomes, L. M.; Bataglioli, J. C. y Storr, T. Coordination Chemistry Reviews 2020, 412, 213255.spa
dc.relation.references(45) Viles, J. H. Coordination Chemistry Reviews 2012, 256, 2271-2284.spa
dc.relation.references(46) Kozlowski, H.; Luczkowski, M.; Remelli, M. y Valensin, D. Coordination Chemistry Reviews 2012, 256, 2129-2141.spa
dc.relation.references(47) Liu, Y.; Nguyen, M.; Robert, A. y Meunier, B. Accounts of chemical research 2019, 52, 2026-2035.spa
dc.relation.references(48) Everett, J.; C´espedes, E.; Shelford, L. R.; Exley, C.; Collingwood, J. F.; Dobson, J.; van der Laan, G.; Jenkins, C. A.; Arenholz, E. y Telling, N. D. Journal of The Royal Society Interface 2014, 11, 20140165.spa
dc.relation.references(49) Chasteen, N. D. y Harrison, P. M. Journal of Structural Biology 1999, 126, 182-194.spa
dc.relation.references(50) Schrag, M.; Mueller, C.; Oyoyo, U.; Smith, M. A. y Kirsch, W. M. Progress in Neurobiology 2011, 94, 296-306.spa
dc.relation.references(51) Pankhurst, Q.; Hautot, D.; Khan, N. y Dobson, J. Journal of Alzheimer’s Disease 2008, 13, 49-52.spa
dc.relation.references(52) Huang, X.; Atwood, C. S.; Moir, R. D.; Hartshorn, M. A.; Tanzi, R. E. y Bush, A. I. JBIC Journal of Biological Inorganic Chemistry 2004, 9, 954-960.spa
dc.relation.references(53) Greenough, M. A.; Camakaris, J. y Bush, A. I. Neurochemistry international 2013, 62, 540-555.spa
dc.relation.references(54) Liu, B.; Moloney, A.; Meehan, S.; Morris, K.; Thomas, S. E.; Serpell, L. C.; Hider, R.; Marciniak, S. J.; Lomas, D. A. y Crowther, D. C. Journal of Biological Chemistry 2011, 286, 4248-4256.spa
dc.relation.references(55) Wang, D.; Li, Y.-Y.; Luo, J.-H. y Li, Y.-H. Archives of Gerontology and Geriatrics 2014, 59, 439-449.spa
dc.relation.references(56) Miura, T.; Suzuki, K. y Takeuchi, H. Journal of Molecular Structure 2001, 598, 79-84.spa
dc.relation.references(57) Ali-Torres, J.; Rodriguez-Santiago, L.; Sodupe, M. y Rauk, A. The Journal of Physical Chemistry A 2011, 115, 12523-12530.spa
dc.relation.references(58) Orjuela, A. L.; Nuñez-Zarur, F. y Alí-Torres, J. RSC Advances 2022, 12, 24077-24087.spa
dc.relation.references(59) Bousejra-ElGarah, F.; Bijani, C.; Coppel, Y.; Faller, P. y Hureau, C. Inorganic Chemistry 2011, 50, 9024-9030.spa
dc.relation.references(60) Lermyte, F.; Everett, J.; Lam, Y. P.; Wootton, C. A.; Brooks, J.; Barrow, M. P.; Telling, N. D.; Sadler, P. J.; O’Connor, P. B. y Collingwood, J. F. Journal of the American Society for Mass Spectrometry 2019, 30, 2123-2134.spa
dc.relation.references(61) Szabo, A. y Ostlund, N., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Dover Books on Chemistry; Dover Publications: 1996.spa
dc.relation.references(62) Cuevas, G. y Cortés, F., Introducción a la Química Computacional; Ciencia en el nuevo milenio : monografías de las redes latinoamericanas de ciencias; Fondo de Cultura Económica: 2003.spa
dc.relation.references(63) McQuarrie, D. A., Quantum chemistry; University Science Books: 2008.spa
dc.relation.references(64) Roothaan, C. Hall GG (1951) Proc Roy Soc A 1951, 205, 541.spa
dc.relation.references(65) Hall, G. G. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1951, 205, 541-552.spa
dc.relation.references(66) Zener, C. Physical Review 1930, 36, 51.spa
dc.relation.references(67) Slater, J. C. Physical review 1930, 36, 57.spa
dc.relation.references(68) Boys, S. F. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1950, 200, 542-554.spa
dc.relation.references(69) McWeeny, R. Nature 1950, 166, 21-22.spa
dc.relation.references(70) Majumdar, D.; Samanta, P. N.; Roszak, S. y Leszczynski, J. en Basis Sets in Computational Chemistry, Perlt, E., ed.; Springer International Publishing: Cham, 2021, pags. 17-40.spa
dc.relation.references(71) Simons, J. Journal of the American Chemical Society 2023, 145, 4343-4354.spa
dc.relation.references(72) Ramos, S. F.; Fernandez, P. A. y Ramos, M. J. The Journal of Physical Chemistry A 2007, 111, 10439-10452.spa
dc.relation.references(73) Jensen, F., Introduction to Computational Chemistry; John Wiley Sons, Ltd.: 2017.spa
dc.relation.references(74) Hohenberg, P. y Kohn, W. Phys. Rev. 1964, 136, B864-B871.spa
dc.relation.references(75) Kohn, W. y Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138.spa
dc.relation.references(76) Koch, W. y Holthausen, M., A Chemist’s Guide to Density Functional Theory; Wiley- VCH: 2001.spa
dc.relation.references(77) Dirac, P. A. M. Mathematical Proceedings of the Cambridge Philosophical Society 1930, 26, 376-385.spa
dc.relation.references(78) Weizsacker, C. F. v. Zeitschrift f¨ur Physik 1935, 96, 431-458.spa
dc.relation.references(79) Vosko, S. H.; Wilk, L. y Nusair, M. Canadian Journal of Physics 1980, 58, 1200-1211.spa
dc.relation.references(80) Perdew, J. P. y Zunger, A. Phys. Rev. B 1981, 23, 5048-5079.spa
dc.relation.references(81) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.spa
dc.relation.references(82) Wang, Y. y Perdew, J. P. Phys. Rev. B 1991, 44, 13298-13307.spa
dc.relation.references(83) Perdew, J. P. y Yue, W. Phys. Rev. B 1986, 33, 8800-8802.spa
dc.relation.references(84) Perdew, J. P.; Burke, K. y Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.spa
dc.relation.references(85) Becke, A. D. The Journal of Chemical Physics 1988, 88, 1053-1062.spa
dc.relation.references(86) Perdew, J. P. en Electronic Structure of Solids ’91, ed. por Ziesche, P. y Eschrig, H., Akademie Verlag: Berlin, 1991; vol. 17, pags. 11-20.spa
dc.relation.references(87) Lee, C.; Yang, W. y Parr, R. G. Phys. Rev. B 1988, 37, 785-789.spa
dc.relation.references(88) Becke, A. D. The Journal of Chemical Physics 1993, 98, 5648-5652.spa
dc.relation.references(89) Perdew, J. P. Phys. Rev. B 1986, 34, 7406-7406.spa
dc.relation.references(90) Adamo, C. y Barone, V. The Journal of Chemical Physics 1998, 108, 664-675.spa
dc.relation.references(91) Becke, A. D. The Journal of Chemical Physics 1992, 96, 2155-2160.spa
dc.relation.references(92) Han, W.-G.; Liu, T.; Lovell, T. y Noodleman, L. Journal of computational chemistry 2006, 27, 1292-1306.spa
dc.relation.references(93) Han, W.-G. y Noodleman, L. Inorganic chemistry 2008, 47, 2975-2986.spa
dc.relation.references(94) Han, W.-G. y Noodleman, L. Inorganica chimica acta 2008, 361, 973-986.spa
dc.relation.references(95) Mitic, N.; Clay, M. D.; Saleh, L.; Bollinger, J. M. y Solomon, E. I. Journal of the American Chemical Society 2007, 129, 9049-9065.spa
dc.relation.references(96) Winget, P.;Weber, E. J.; Cramer, C. J. y Truhlar, D. G. Physical Chemistry Chemical Physics 2000, 2, 1231-1239.spa
dc.relation.references(97) Skyner, R. E.; McDonagh, J. L.; Groom, C. R.; van Mourik, T. y Mitchell, J. B. O. Phys. Chem. Chem. Phys. 2015, 17, 6174-6191.spa
dc.relation.references(98) Wang, Z. y Sargent, E. H. Matter 2021, 4, 12-14.spa
dc.relation.references(99) Tapia, O. y Goscinski, O. Molecular Physics 1975, 29, 1653-1661.spa
dc.relation.references(100) Tomasi, J.; Mennucci, B. y Cammi, R. Chemical reviews 2005, 105, 2999-3094.spa
dc.relation.references(101) Still, W. C.; Tempczyk, A.; Hawley, R. C. y Hendrickson, T. Journal of the American Chemical Society 1990, 112, 6127-6129.spa
dc.relation.references(102) Marenich, A. V.; Cramer, C. J. y Truhlar, D. G. The Journal of Physical Chemistry B 2009, 113, 6378-6396.spa
dc.relation.references(103) Onufriev, A. V. y Case, D. A. Annual review of biophysics 2019, 48, 275-296.spa
dc.relation.references(104) Hubbard, T. y Blundell, T. Protein Engineering, Design and Selection 1987, 1, 159-171.spa
dc.relation.references(105) Bank, P. D. Nature New Biol 1971, 233, 10-1038.spa
dc.relation.references(106) Kennard, O.; Watson, D. y Town, W. Journal of Chemical Documentation 1972, 12, 14-19.spa
dc.relation.references(107) Bhagwat, M. y Aravind, L. Comparative genomics 2008, 177-186.spa
dc.relation.references(108) ˇSali, A. y Blundell, T. L. Journal of Molecular Biology 1993, 234, 779-815.spa
dc.relation.references(109) Shen, M.-y. y Sali, A. Protein science 2006, 15, 2507-2524.spa
dc.relation.references(110) Harris, J. Phys. Rev. B 1985, 31, 1770-1779.spa
dc.relation.references(111) Vydrov, O. A. y Van Voorhis, T. The Journal of chemical physics 2010, 133.spa
dc.relation.references(112) Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S. y Grimme, S. Wiley Interdisciplinary Reviews: Computational Molecular Science 2021, 11, e1493.spa
dc.relation.references(113) Grimme, S.; Bannwarth, C. y Shushkov, P. Journal of chemical theory and computation 2017, 13, 1989-2009.spa
dc.relation.references(114) Bannwarth, C.; Ehlert, S. y Grimme, S. Journal of chemical theory and computation 2019, 15, 1652-1671.spa
dc.relation.references(115) Nakamura, M.; Shishido, N.; Nunomura, A.; Smith, M. A.; Perry, G.; Hayashi, Y.; Nakayama, K. y Hayashi, T. Biochemistry 2007, 46, 12737-12743.spa
dc.relation.references(116) Frisch, M. J. et al. Gaussian˜16 Revision C.01, Gaussian Inc. Wallingford CT, 2016.spa
dc.relation.references(117) Hehre, W. J. y Lathan, W. A. The Journal of Chemical Physics 1972, 56, 5255-5257.spa
dc.relation.references(118) Dunning Jr, T. H. The Journal of chemical physics 1989, 90, 1007-1023.spa
dc.relation.references(119) Mujika, J. I.; Pedregal, J. R.-G.; López, X.; Ugalde, J. M.; Rodríguez-Santiago, L.; Sodupe, M. y Maréchal, J.-D. Chemical science 2017, 8, 5041-5049.spa
dc.relation.references(120) Puello-Silva, J. y Alí-Torres, J. The Journal of Physical Chemistry B 2024, 128, 7022-7032.spa
dc.relation.references(121) Webb, B. y Sali, A. Current protocols in bioinformatics 2016, 54, 5-6.spa
dc.relation.references(122) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C. y Ferrin, T. E. Journal of computational chemistry 2004, 25, 1605-1612.spa
dc.relation.references(123) Spicher, S. y Grimme, S. Journal of Chemical Theory and Computation 2021, 17, 1701-1714.spa
dc.relation.references(124) Kruse, H. y Grimme, S. The Journal of Chemical Physics 2012, 136.spa
dc.relation.references(125) Rimola, A.; Alí-Torres, J.; Rodríguez-Rodríguez, C.; Poater, J.; Matito, E.; Solá, M. y Sodupe, M. The Journal of Physical Chemistry A 2011, 115, PMID: 21699142, 12659-12666.spa
dc.relation.references(126) Ali-Torres, J.; Mirats, A.; Marechal, J.-D.; Rodriguez-Santiago, L. y Sodupe, M. The Journal of Physical Chemistry B 2014, 118, 4840-4850.spa
dc.relation.references(127) Puentes-Díaz, N.; Chaparro, D.; Reyes-Marquez, V.; Morales-Morales, D.; Flores- Gaspar, A. y Alí-Torres, J. Journal of Alzheimer’s Disease 2024, 99, S383-S396.spa
dc.relation.references(128) Etaiw, S. E. H.; Abd El-Aziz, D. M.; Abd El-Zaher, E. H. y Ali, E. A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2011, 79, 1331-1337.spa
dc.relation.references(129) Fallah-Mehrjardi, M.; Kargar, H.; Behjatmanesh-Ardakani, R.; Ashfaq, M.; Munawar, K. S. y Tahir, M. N. Journal of Molecular Structure 2022, 1251, 132037.spa
dc.relation.references(130) Malik, M. A.; Dar, O. A.; Gull, P.; Wani, M. Y. y Hashmi, A. A. MedChemComm 2018, 9, 409-436.spa
dc.relation.references(131) Juyal, V. K.; Pathak, A.; Panwar, M.; Thakuri, S. C.; Prakash, O.; Agrwal, A. y Nand, V. Journal of Organometallic Chemistry 2023, 999, 122825.spa
dc.relation.references(132) Bertini, S.; Coletti, A.; Floris, B.; Conte, V. y Galloni, P. Journal of Inorganic Biochemistry 2015, 147, Celebrating contributions in vanadium science in 2014 adaptedspa
dc.relation.references(133) En Principles of Biochemistry, 6.a ed.; W. H. Freeman & Company: 2009; cap. 13, p´ag. 531.spa
dc.relation.references(134) Chaparro, D.; Flores-Gaspar, A. y Al´ı-Torres, J. Journal of Alzheimer’s Disease 2021, 82, S179-S193.spa
dc.relation.references(135) Hider, R. C. y Zhou, T. Annals of the New York Academy of Sciences 2005, 1054, 141-154.spa
dc.relation.references(136) Kelly, C. P.; Cramer, C. J. y Truhlar, D. G. The Journal of Physical Chemistry B 2006, 110, 16066-16081.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.ddc540 - Química y ciencias afines::541 - Química físicaspa
dc.subject.lembENFERMEDAD DE ALZHEIMERspa
dc.subject.lembAlzheimer's diseaseeng
dc.subject.lembESTRUCTURA ELECTRONICAspa
dc.subject.lembElectronic structureeng
dc.subject.lembNEUROPEPTIDOSspa
dc.subject.lembNeuropeptideseng
dc.subject.lembNEUROTRANSMISORESspa
dc.subject.lembNeurotransmitterseng
dc.subject.lembPRECURSOR DE PROTEINA BETA AMILOIDEspa
dc.subject.lembAmyloid beta-protein precursoreng
dc.subject.lembPROTEINA BETA AMILOIDEspa
dc.subject.lembAmyloid beta-proteineng
dc.subject.proposalEnfermedad de Alzheimerspa
dc.subject.proposalIones de hierrospa
dc.subject.proposalEstrés oxidativospa
dc.subject.proposalAgentes multifuncionalesspa
dc.subject.proposalDFTeng
dc.subject.proposalxTB-GFN2spa
dc.subject.proposalAlzheimer’s diseaseeng
dc.subject.proposalIron ionseng
dc.subject.proposalOxidative stresseng
dc.subject.proposalMultifunctional agentseng
dc.titleEstructura electrónica y molecular de complejos de amiloide Beta (Aβ)con Fe2+/3+ (Fe2+/3+-Aβ) asociados a la enfermedad de Alzheimerspa
dc.title.translatedElectronic and molecular structure of Beta-Amyloid (Aβ) complexes with Fe2+/3+ (Fe2+/3+-Aβ) associated to Alzheimer’s diseaseeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
9297709.2025.pdf
Tamaño:
12.82 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: