Estructura electrónica y molecular de complejos de amiloide Beta (Aβ)con Fe2+/3+ (Fe2+/3+-Aβ) asociados a la enfermedad de Alzheimer
dc.contributor.advisor | Alí Torres, Jorge Isaac | spa |
dc.contributor.author | Puello Silva, Jorge Raúl | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=Bhdwu_YAAAAJ&hl=es | spa |
dc.contributor.orcid | Puello Silva, Jorge Raúl [0009000029794009] | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Jorge-Puello-2?ev=hdr_xprf | spa |
dc.contributor.researchgroup | Química Cuántica y Computacional | spa |
dc.date.accessioned | 2025-03-28T12:34:01Z | |
dc.date.available | 2025-03-28T12:34:01Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones a color, diagramas, tablas | spa |
dc.description.abstract | La interacción entre el hierro y el péptido amiloide β (Aβ) ha sido objeto de gran atención en la investigación de la enfermedad de Alzheimer (EA) debido a sus posibles implicaciones en el desarrollo de esta patología. Mientras que los estudios previos han investigado las preferencias de coordinación del hierro y el péptido Aβ1−42, no se ha estudiado la contribución de la parte peptídica dentro de la estabilización de estos sistemas. En este trabajo se utilizó una serie de herramientas computacionales que combinan técnicas de modelado por homología con cálculos de mecánica cuántica (DTF-xTB) para construir y evaluar los modelos 3D plausibles de Fe2+/3+-Aβ1−42. Además, se evaluó un conjunto de ligandos tipo salen como potenciales agentes farmacológicos con afinidad por los iones de hierro que puedan competir para coordinar el hierro con el Aβ1−42. Nuestros resultados revelaron la formación de complejos Fe2+/3+-Aβ1−42 bien definidos, tanto en la fracción metálica como en la peptídica, y se caracterizaron las interacciones moleculares que estabilizan estos complejos al elucidar los entornos de coordinación y las preferencias de unión de los mismos, destacando la importancia de la parte peptídica para estabilizar los complejos. En cuanto a los ligandos, se han identificado tres mecanismos de acción, de acuerdo con los valores de potencial estándar de reducción y las afinidades obtenidas para los complejos metal-ligando: antioxidante, distribuidor y regulador, este ´ultimo propuesto en este trabajo. Finalmente, los modelos propuestos junto con los ligandos evaluados ofrecen valiosa información sobre el papel del hierro en la patología de la EA y en futuras estrategias para interferir en las reacciones redox promovidas por los complejos Fe2+/3+-Aβ1−42 (Texto tomado de la fuente). | spa |
dc.description.abstract | Interaction between iron and amyloid β peptide (Aβ) has been the subject of much attention in Alzheimer’s disease (AD) research because of its possible implications in the development of this patology.While prior studies have examined the coordination preferences of iron and Aβ1−42 peptide, the contribution of the peptidic moeity in stabilising these systems remains uninvestigated. In this work, a set of computational tools combining homology modeling techniques with quantum mechanical calculations (DTF-xTB) were used to built and evaluate several 3D models of Fe2+/3+-Aβ1−42. In addition, a set of salen-like ligands were evaluated as potential pharmacological agents with affinity for iron ions that can compete to coordinate iron with Aβ1−42 peptide. Our results revealed the formation of well-defined Fe2+/3+-Aβ1−42 complexes in both the metal and peptide moieties, and the molecular interactions that stabilize these complexes were characterized by elucidating the coordination environments and binding preferences of the complexes, emphasizing the importance of the peptide moiety in stabilizing the complexes. As for the ligands, three mechanisms of action have been identified, according to the standard reduction potential values and affinities obtained for the metal-ligand complexes, antioxidant, distributor and regulator, the latter proposed in this work. Finally, the proposed models together with the ligands evaluated provide valuable insights into the role of iron in the pathogenesis of AD and future strategies to interfere with the redox reactions promoted by Fe2+/3+-Aβ1−42 complexes | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Química | spa |
dc.format.extent | xvi, 168 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87771 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Química | spa |
dc.relation.references | (1) Gale, S. A.; Acar, D. y Daffner, K. R. The American journal of medicine 2018, 131 10, 1161-1169. | spa |
dc.relation.references | (2) Kim, D. H.; Lee, S. B. y Young, L. D. Dementia and neurocognitive disorders 2016, 15, 115-121. | spa |
dc.relation.references | (3) Sellal, F. Neurophysiologie Clinique / Clinical Neurophysiology 1993, 8310, 3-136. | spa |
dc.relation.references | (4) Yang, H. D.; Lee, S. B.; Young, L. D. et al. Dementia and neurocognitive disorders 2016, 15, 115-121. | spa |
dc.relation.references | (5) Pearce, J. European Neurology 2013, 70, 106-112. | spa |
dc.relation.references | (6) Albert, M. L. y Mildworf, B. Journal of Neurolinguistics 1989, 4, 301-308. | spa |
dc.relation.references | (7) Roman, G. International Psychogeriatrics 2003, 15, 11-13. | spa |
dc.relation.references | (8) Villanueva-Meyer, M. Galenus 2023. | spa |
dc.relation.references | (9) Riley, M. Bernard Becker Medical Library, Agosto, 2024, 2021. | spa |
dc.relation.references | (10) Torack, R. y Reisberg, B., Alzheimer’s Disease: The Standard Reference; Free Press: 1983. | spa |
dc.relation.references | (11) McKhann, G. M.; Knopman, D. S.; Chertkow, H.; Hyman, B. T.; Jack Jr, C. R.; Kawas, C. H.; Klunk, W. E.; Koroshetz, W. J.; Manly, J. J.; Mayeux, R. et al. Alzheimer’s & dementia 2011, 7, 263-269. | spa |
dc.relation.references | (12) Cipriani, G.; Dolciotti, C.; Picchi, L. y Bonuccelli, U. Neurological Sciences 2011, 32, 275-279. | spa |
dc.relation.references | (13) CDC Alzheimer´s Disease Program, Agosto, 2024, 2024. | spa |
dc.relation.references | (14) Alzheimer’s dementia: The Journal of the Alzheimer’s Association 2023, 19, 1598-1695. | spa |
dc.relation.references | (15) Folch, J.; Ettcheto, M.; Petrov, D.; Abad, S.; Pedr´os, I.; Marin, M.; Olloquequi, J. y Camins, A. Neurologia 2018, 33, 47-58. | spa |
dc.relation.references | (16) Selkoe, D. J. Neuron 1991, 6, 487-498. | spa |
dc.relation.references | (17) Bonda, D. J.; Lee, H.-g.; Blair, J. A.; Zhu, X.; Perry, G. y Smith, M. A. Metallomics 2011, 3, 267-270. | spa |
dc.relation.references | (18) Wilquet, V. y De Strooper, B. Current opinion in neurobiology 2004, 14, 582-588. | spa |
dc.relation.references | (19) Selkoe, D. J. y Schenk, D. Annual review of pharmacology and toxicology 2003, 43, 545-584. | spa |
dc.relation.references | (20) Selkoe, D. J. nature 2003, 426, 900-904. | spa |
dc.relation.references | (21) Rauk, A. Chemical Society Reviews 2009, 38, 2698-2715. | spa |
dc.relation.references | (22) Sanders, H. M.; Lust, R. y Teller, J. K. Peptides 2009, 30, 849-854. | spa |
dc.relation.references | (23) Hou, L. y Zagorski, M. G. Journal of the American Chemical Society 2006, 128, 9260-9261. | spa |
dc.relation.references | (24) Talmard, C.; Guilloreau, L.; Coppel, Y.; Mazarguil, H. y Faller, P. ChemBioChem 2007, 8, 163-165. | spa |
dc.relation.references | (25) Nair, N. G.; Perry, G.; Smith, M. A. y Reddy, V. P. Journal of Alzheimer’s Disease 2010, 20, 57-66. | spa |
dc.relation.references | (26) Faller, P. y Hureau, C. Dalton Transactions 2009, 1080-1094. | spa |
dc.relation.references | (27) Jiang, D.; Li, X.; Williams, R.; Patel, S.; Men, L.; Wang, Y. y Zhou, F. Biochemistry 2009, 48, 7939-7947. | spa |
dc.relation.references | (28) Syme, C. D. y Viles, J. H. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics .2006, 1764, 246-256. | spa |
dc.relation.references | (29) Strodel, B. y Coskuner-Weber, O. Journal of Chemical Information and Modeling 2019, 59, 1782-1805. | spa |
dc.relation.references | (30) Boopathi, S. y Kolandaivel, P. Proteins: Structure, Function, and Bioinformatics 2016, 84, 1257-1274. | spa |
dc.relation.references | (31) Rodríguez, A. E. E. y Signoret, V. C. Z. Revista de Educación Bioquímica 2017, 36, 2-11. | spa |
dc.relation.references | (32) Crescenzi, O.; Tomaselli, S.; Guerrini, R.; Salvadori, S.; D’Ursi, A. M.; Temussi, P. A. y Picone, D. European Journal of Biochemistry 2002, 269, 5642-5648. | spa |
dc.relation.references | (33) Vivekanandan, S.; Brender, J. R.; Lee, S. Y. y Ramamoorthy, A. Biochemical and Biophysical Research Communications 2011, 411, 312-316. | spa |
dc.relation.references | (34) Atwood, C. S.; Obrenovich, M. E.; Liu, T.; Chan, H.; Perry, G.; Smith, M. A. y Martins, R. N. Brain Research Reviews 2003, 43, 1-16. | spa |
dc.relation.references | (35) Zou, K.; Gong, J.-S.; Yanagisawa, K. y Michikawa, M. Journal of Neuroscience 2002, 22, 4833-4841. | spa |
dc.relation.references | (36) Aizenstein, H. J.; Nebes, R. D.; Saxton, J. A.; Price, J. C.; Mathis, C. A.; Tsopelas, N. D.; Ziolko, S. K.; James, J. A.; Snitz, B. E.; Houck, P. R. et al. Archives of Neurology 2008, 65, 1509-1517. | spa |
dc.relation.references | (37) Mezzaroba, L.; Alfieri, D. F.; Sim˜ao, A. N. C. y Reiche, E. M. V. Neurotoxicology 2019, 74, 230-241. | spa |
dc.relation.references | (38) Faller, P.; Hureau, C. y Berthoumieu, O. Inorganic Chemistry 2013, 52, 12193-12206. | spa |
dc.relation.references | (39) Puentes-Díaz, N.; Chaparro, D.; Morales-Morales, D.; Flores-Gaspar, A. y Alí-Torres, J. ACS omega 2023, 8, 4508-4526. | spa |
dc.relation.references | (40) Adlard, P. A. y Bush, A. I. Journal of Alzheimer’s Disease 2018, 62, 1369-1379. | spa |
dc.relation.references | (41) Bush, A. I. y Curtain, C. C. European Biophysics Journal 2008, 37, 241-245. | spa |
dc.relation.references | (42) Bush, A. I. Journal of Alzheimer’s Disease 2013, 33, S277-S281. | spa |
dc.relation.references | (43) Lovell, M.; Robertson, J.; Teesdale, W.; Campbell, J. y Markesbery, W. Journal of the Neurological Sciences 1998, 158, 47-52. | spa |
dc.relation.references | (44) Gomes, L. M.; Bataglioli, J. C. y Storr, T. Coordination Chemistry Reviews 2020, 412, 213255. | spa |
dc.relation.references | (45) Viles, J. H. Coordination Chemistry Reviews 2012, 256, 2271-2284. | spa |
dc.relation.references | (46) Kozlowski, H.; Luczkowski, M.; Remelli, M. y Valensin, D. Coordination Chemistry Reviews 2012, 256, 2129-2141. | spa |
dc.relation.references | (47) Liu, Y.; Nguyen, M.; Robert, A. y Meunier, B. Accounts of chemical research 2019, 52, 2026-2035. | spa |
dc.relation.references | (48) Everett, J.; C´espedes, E.; Shelford, L. R.; Exley, C.; Collingwood, J. F.; Dobson, J.; van der Laan, G.; Jenkins, C. A.; Arenholz, E. y Telling, N. D. Journal of The Royal Society Interface 2014, 11, 20140165. | spa |
dc.relation.references | (49) Chasteen, N. D. y Harrison, P. M. Journal of Structural Biology 1999, 126, 182-194. | spa |
dc.relation.references | (50) Schrag, M.; Mueller, C.; Oyoyo, U.; Smith, M. A. y Kirsch, W. M. Progress in Neurobiology 2011, 94, 296-306. | spa |
dc.relation.references | (51) Pankhurst, Q.; Hautot, D.; Khan, N. y Dobson, J. Journal of Alzheimer’s Disease 2008, 13, 49-52. | spa |
dc.relation.references | (52) Huang, X.; Atwood, C. S.; Moir, R. D.; Hartshorn, M. A.; Tanzi, R. E. y Bush, A. I. JBIC Journal of Biological Inorganic Chemistry 2004, 9, 954-960. | spa |
dc.relation.references | (53) Greenough, M. A.; Camakaris, J. y Bush, A. I. Neurochemistry international 2013, 62, 540-555. | spa |
dc.relation.references | (54) Liu, B.; Moloney, A.; Meehan, S.; Morris, K.; Thomas, S. E.; Serpell, L. C.; Hider, R.; Marciniak, S. J.; Lomas, D. A. y Crowther, D. C. Journal of Biological Chemistry 2011, 286, 4248-4256. | spa |
dc.relation.references | (55) Wang, D.; Li, Y.-Y.; Luo, J.-H. y Li, Y.-H. Archives of Gerontology and Geriatrics 2014, 59, 439-449. | spa |
dc.relation.references | (56) Miura, T.; Suzuki, K. y Takeuchi, H. Journal of Molecular Structure 2001, 598, 79-84. | spa |
dc.relation.references | (57) Ali-Torres, J.; Rodriguez-Santiago, L.; Sodupe, M. y Rauk, A. The Journal of Physical Chemistry A 2011, 115, 12523-12530. | spa |
dc.relation.references | (58) Orjuela, A. L.; Nuñez-Zarur, F. y Alí-Torres, J. RSC Advances 2022, 12, 24077-24087. | spa |
dc.relation.references | (59) Bousejra-ElGarah, F.; Bijani, C.; Coppel, Y.; Faller, P. y Hureau, C. Inorganic Chemistry 2011, 50, 9024-9030. | spa |
dc.relation.references | (60) Lermyte, F.; Everett, J.; Lam, Y. P.; Wootton, C. A.; Brooks, J.; Barrow, M. P.; Telling, N. D.; Sadler, P. J.; O’Connor, P. B. y Collingwood, J. F. Journal of the American Society for Mass Spectrometry 2019, 30, 2123-2134. | spa |
dc.relation.references | (61) Szabo, A. y Ostlund, N., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Dover Books on Chemistry; Dover Publications: 1996. | spa |
dc.relation.references | (62) Cuevas, G. y Cortés, F., Introducción a la Química Computacional; Ciencia en el nuevo milenio : monografías de las redes latinoamericanas de ciencias; Fondo de Cultura Económica: 2003. | spa |
dc.relation.references | (63) McQuarrie, D. A., Quantum chemistry; University Science Books: 2008. | spa |
dc.relation.references | (64) Roothaan, C. Hall GG (1951) Proc Roy Soc A 1951, 205, 541. | spa |
dc.relation.references | (65) Hall, G. G. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1951, 205, 541-552. | spa |
dc.relation.references | (66) Zener, C. Physical Review 1930, 36, 51. | spa |
dc.relation.references | (67) Slater, J. C. Physical review 1930, 36, 57. | spa |
dc.relation.references | (68) Boys, S. F. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1950, 200, 542-554. | spa |
dc.relation.references | (69) McWeeny, R. Nature 1950, 166, 21-22. | spa |
dc.relation.references | (70) Majumdar, D.; Samanta, P. N.; Roszak, S. y Leszczynski, J. en Basis Sets in Computational Chemistry, Perlt, E., ed.; Springer International Publishing: Cham, 2021, pags. 17-40. | spa |
dc.relation.references | (71) Simons, J. Journal of the American Chemical Society 2023, 145, 4343-4354. | spa |
dc.relation.references | (72) Ramos, S. F.; Fernandez, P. A. y Ramos, M. J. The Journal of Physical Chemistry A 2007, 111, 10439-10452. | spa |
dc.relation.references | (73) Jensen, F., Introduction to Computational Chemistry; John Wiley Sons, Ltd.: 2017. | spa |
dc.relation.references | (74) Hohenberg, P. y Kohn, W. Phys. Rev. 1964, 136, B864-B871. | spa |
dc.relation.references | (75) Kohn, W. y Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138. | spa |
dc.relation.references | (76) Koch, W. y Holthausen, M., A Chemist’s Guide to Density Functional Theory; Wiley- VCH: 2001. | spa |
dc.relation.references | (77) Dirac, P. A. M. Mathematical Proceedings of the Cambridge Philosophical Society 1930, 26, 376-385. | spa |
dc.relation.references | (78) Weizsacker, C. F. v. Zeitschrift f¨ur Physik 1935, 96, 431-458. | spa |
dc.relation.references | (79) Vosko, S. H.; Wilk, L. y Nusair, M. Canadian Journal of Physics 1980, 58, 1200-1211. | spa |
dc.relation.references | (80) Perdew, J. P. y Zunger, A. Phys. Rev. B 1981, 23, 5048-5079. | spa |
dc.relation.references | (81) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. | spa |
dc.relation.references | (82) Wang, Y. y Perdew, J. P. Phys. Rev. B 1991, 44, 13298-13307. | spa |
dc.relation.references | (83) Perdew, J. P. y Yue, W. Phys. Rev. B 1986, 33, 8800-8802. | spa |
dc.relation.references | (84) Perdew, J. P.; Burke, K. y Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868. | spa |
dc.relation.references | (85) Becke, A. D. The Journal of Chemical Physics 1988, 88, 1053-1062. | spa |
dc.relation.references | (86) Perdew, J. P. en Electronic Structure of Solids ’91, ed. por Ziesche, P. y Eschrig, H., Akademie Verlag: Berlin, 1991; vol. 17, pags. 11-20. | spa |
dc.relation.references | (87) Lee, C.; Yang, W. y Parr, R. G. Phys. Rev. B 1988, 37, 785-789. | spa |
dc.relation.references | (88) Becke, A. D. The Journal of Chemical Physics 1993, 98, 5648-5652. | spa |
dc.relation.references | (89) Perdew, J. P. Phys. Rev. B 1986, 34, 7406-7406. | spa |
dc.relation.references | (90) Adamo, C. y Barone, V. The Journal of Chemical Physics 1998, 108, 664-675. | spa |
dc.relation.references | (91) Becke, A. D. The Journal of Chemical Physics 1992, 96, 2155-2160. | spa |
dc.relation.references | (92) Han, W.-G.; Liu, T.; Lovell, T. y Noodleman, L. Journal of computational chemistry 2006, 27, 1292-1306. | spa |
dc.relation.references | (93) Han, W.-G. y Noodleman, L. Inorganic chemistry 2008, 47, 2975-2986. | spa |
dc.relation.references | (94) Han, W.-G. y Noodleman, L. Inorganica chimica acta 2008, 361, 973-986. | spa |
dc.relation.references | (95) Mitic, N.; Clay, M. D.; Saleh, L.; Bollinger, J. M. y Solomon, E. I. Journal of the American Chemical Society 2007, 129, 9049-9065. | spa |
dc.relation.references | (96) Winget, P.;Weber, E. J.; Cramer, C. J. y Truhlar, D. G. Physical Chemistry Chemical Physics 2000, 2, 1231-1239. | spa |
dc.relation.references | (97) Skyner, R. E.; McDonagh, J. L.; Groom, C. R.; van Mourik, T. y Mitchell, J. B. O. Phys. Chem. Chem. Phys. 2015, 17, 6174-6191. | spa |
dc.relation.references | (98) Wang, Z. y Sargent, E. H. Matter 2021, 4, 12-14. | spa |
dc.relation.references | (99) Tapia, O. y Goscinski, O. Molecular Physics 1975, 29, 1653-1661. | spa |
dc.relation.references | (100) Tomasi, J.; Mennucci, B. y Cammi, R. Chemical reviews 2005, 105, 2999-3094. | spa |
dc.relation.references | (101) Still, W. C.; Tempczyk, A.; Hawley, R. C. y Hendrickson, T. Journal of the American Chemical Society 1990, 112, 6127-6129. | spa |
dc.relation.references | (102) Marenich, A. V.; Cramer, C. J. y Truhlar, D. G. The Journal of Physical Chemistry B 2009, 113, 6378-6396. | spa |
dc.relation.references | (103) Onufriev, A. V. y Case, D. A. Annual review of biophysics 2019, 48, 275-296. | spa |
dc.relation.references | (104) Hubbard, T. y Blundell, T. Protein Engineering, Design and Selection 1987, 1, 159-171. | spa |
dc.relation.references | (105) Bank, P. D. Nature New Biol 1971, 233, 10-1038. | spa |
dc.relation.references | (106) Kennard, O.; Watson, D. y Town, W. Journal of Chemical Documentation 1972, 12, 14-19. | spa |
dc.relation.references | (107) Bhagwat, M. y Aravind, L. Comparative genomics 2008, 177-186. | spa |
dc.relation.references | (108) ˇSali, A. y Blundell, T. L. Journal of Molecular Biology 1993, 234, 779-815. | spa |
dc.relation.references | (109) Shen, M.-y. y Sali, A. Protein science 2006, 15, 2507-2524. | spa |
dc.relation.references | (110) Harris, J. Phys. Rev. B 1985, 31, 1770-1779. | spa |
dc.relation.references | (111) Vydrov, O. A. y Van Voorhis, T. The Journal of chemical physics 2010, 133. | spa |
dc.relation.references | (112) Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, S. y Grimme, S. Wiley Interdisciplinary Reviews: Computational Molecular Science 2021, 11, e1493. | spa |
dc.relation.references | (113) Grimme, S.; Bannwarth, C. y Shushkov, P. Journal of chemical theory and computation 2017, 13, 1989-2009. | spa |
dc.relation.references | (114) Bannwarth, C.; Ehlert, S. y Grimme, S. Journal of chemical theory and computation 2019, 15, 1652-1671. | spa |
dc.relation.references | (115) Nakamura, M.; Shishido, N.; Nunomura, A.; Smith, M. A.; Perry, G.; Hayashi, Y.; Nakayama, K. y Hayashi, T. Biochemistry 2007, 46, 12737-12743. | spa |
dc.relation.references | (116) Frisch, M. J. et al. Gaussian˜16 Revision C.01, Gaussian Inc. Wallingford CT, 2016. | spa |
dc.relation.references | (117) Hehre, W. J. y Lathan, W. A. The Journal of Chemical Physics 1972, 56, 5255-5257. | spa |
dc.relation.references | (118) Dunning Jr, T. H. The Journal of chemical physics 1989, 90, 1007-1023. | spa |
dc.relation.references | (119) Mujika, J. I.; Pedregal, J. R.-G.; López, X.; Ugalde, J. M.; Rodríguez-Santiago, L.; Sodupe, M. y Maréchal, J.-D. Chemical science 2017, 8, 5041-5049. | spa |
dc.relation.references | (120) Puello-Silva, J. y Alí-Torres, J. The Journal of Physical Chemistry B 2024, 128, 7022-7032. | spa |
dc.relation.references | (121) Webb, B. y Sali, A. Current protocols in bioinformatics 2016, 54, 5-6. | spa |
dc.relation.references | (122) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C. y Ferrin, T. E. Journal of computational chemistry 2004, 25, 1605-1612. | spa |
dc.relation.references | (123) Spicher, S. y Grimme, S. Journal of Chemical Theory and Computation 2021, 17, 1701-1714. | spa |
dc.relation.references | (124) Kruse, H. y Grimme, S. The Journal of Chemical Physics 2012, 136. | spa |
dc.relation.references | (125) Rimola, A.; Alí-Torres, J.; Rodríguez-Rodríguez, C.; Poater, J.; Matito, E.; Solá, M. y Sodupe, M. The Journal of Physical Chemistry A 2011, 115, PMID: 21699142, 12659-12666. | spa |
dc.relation.references | (126) Ali-Torres, J.; Mirats, A.; Marechal, J.-D.; Rodriguez-Santiago, L. y Sodupe, M. The Journal of Physical Chemistry B 2014, 118, 4840-4850. | spa |
dc.relation.references | (127) Puentes-Díaz, N.; Chaparro, D.; Reyes-Marquez, V.; Morales-Morales, D.; Flores- Gaspar, A. y Alí-Torres, J. Journal of Alzheimer’s Disease 2024, 99, S383-S396. | spa |
dc.relation.references | (128) Etaiw, S. E. H.; Abd El-Aziz, D. M.; Abd El-Zaher, E. H. y Ali, E. A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2011, 79, 1331-1337. | spa |
dc.relation.references | (129) Fallah-Mehrjardi, M.; Kargar, H.; Behjatmanesh-Ardakani, R.; Ashfaq, M.; Munawar, K. S. y Tahir, M. N. Journal of Molecular Structure 2022, 1251, 132037. | spa |
dc.relation.references | (130) Malik, M. A.; Dar, O. A.; Gull, P.; Wani, M. Y. y Hashmi, A. A. MedChemComm 2018, 9, 409-436. | spa |
dc.relation.references | (131) Juyal, V. K.; Pathak, A.; Panwar, M.; Thakuri, S. C.; Prakash, O.; Agrwal, A. y Nand, V. Journal of Organometallic Chemistry 2023, 999, 122825. | spa |
dc.relation.references | (132) Bertini, S.; Coletti, A.; Floris, B.; Conte, V. y Galloni, P. Journal of Inorganic Biochemistry 2015, 147, Celebrating contributions in vanadium science in 2014 adapted | spa |
dc.relation.references | (133) En Principles of Biochemistry, 6.a ed.; W. H. Freeman & Company: 2009; cap. 13, p´ag. 531. | spa |
dc.relation.references | (134) Chaparro, D.; Flores-Gaspar, A. y Al´ı-Torres, J. Journal of Alzheimer’s Disease 2021, 82, S179-S193. | spa |
dc.relation.references | (135) Hider, R. C. y Zhou, T. Annals of the New York Academy of Sciences 2005, 1054, 141-154. | spa |
dc.relation.references | (136) Kelly, C. P.; Cramer, C. J. y Truhlar, D. G. The Journal of Physical Chemistry B 2006, 110, 16066-16081. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales | spa |
dc.subject.ddc | 540 - Química y ciencias afines::541 - Química física | spa |
dc.subject.lemb | ENFERMEDAD DE ALZHEIMER | spa |
dc.subject.lemb | Alzheimer's disease | eng |
dc.subject.lemb | ESTRUCTURA ELECTRONICA | spa |
dc.subject.lemb | Electronic structure | eng |
dc.subject.lemb | NEUROPEPTIDOS | spa |
dc.subject.lemb | Neuropeptides | eng |
dc.subject.lemb | NEUROTRANSMISORES | spa |
dc.subject.lemb | Neurotransmitters | eng |
dc.subject.lemb | PRECURSOR DE PROTEINA BETA AMILOIDE | spa |
dc.subject.lemb | Amyloid beta-protein precursor | eng |
dc.subject.lemb | PROTEINA BETA AMILOIDE | spa |
dc.subject.lemb | Amyloid beta-protein | eng |
dc.subject.proposal | Enfermedad de Alzheimer | spa |
dc.subject.proposal | Iones de hierro | spa |
dc.subject.proposal | Estrés oxidativo | spa |
dc.subject.proposal | Agentes multifuncionales | spa |
dc.subject.proposal | DFT | eng |
dc.subject.proposal | xTB-GFN2 | spa |
dc.subject.proposal | Alzheimer’s disease | eng |
dc.subject.proposal | Iron ions | eng |
dc.subject.proposal | Oxidative stress | eng |
dc.subject.proposal | Multifunctional agents | eng |
dc.title | Estructura electrónica y molecular de complejos de amiloide Beta (Aβ)con Fe2+/3+ (Fe2+/3+-Aβ) asociados a la enfermedad de Alzheimer | spa |
dc.title.translated | Electronic and molecular structure of Beta-Amyloid (Aβ) complexes with Fe2+/3+ (Fe2+/3+-Aβ) associated to Alzheimer’s disease | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 9297709.2025.pdf
- Tamaño:
- 12.82 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: