Observadores relativistas y termodinámica del colapso gravitacional de cascarones negros

dc.contributor.advisorArenas Salazar, José Robel
dc.contributor.authorPulido González, Walter Alexis
dc.date.accessioned2022-08-23T19:56:31Z
dc.date.available2022-08-23T19:56:31Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractSe estudia el colapso de un cascarón de polvo delgado desde dos enfoques diferentes: clásico y semiclásico. En el enfoque clásico se identifican superficies críticas cuyas coordenadas de tiempo y espacio intercambian sus papeles, las cuales se asocian con la presencia de horizontes cuasi-locales, sobre los que se realiza un estudio de las propiedades gravitacionales y termodinámicas. A continuación, para el enfoque semiclásico se incorpora un campo escalar, para el cascarón en colapso, con el que se calculan la densidad de energía y entropía asociadas al observador relativista FREFOS, en contraste con el observador FIDO. Con lo anterior se discute e interpretan los resultados a luz de la existencia de una densidad de energía negativa ante la presencia de un campo gravitacional fuerte. (Texto tomado de la fuente)spa
dc.description.abstractThe collapse of a thin dust shell is studied from two different approaches: classical and semiclassical. In the classical approach, critical surfaces are identified whose coordinates of time and space exchange their roles, which are associated with the presence of quasi-local horizons, on which a study of the gravitational and thermodynamic properties is carried out. Next, for the semiclassical approach, a scalar field is incorporated, for the collapsing shell, with which the energy density and entropy associated with the relativistic observer FREFOS are calculated , in contrast to the FIDO observer. With the above, the results are discussed and interpreted in light of the existence of a negative energy density in the presence of a strong gravitational field.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.format.extent194 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82039
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesM. Alcubierre, Introduction to 3+1 numerical relativity. Oxford University Press, Oxford, UK. (2006).spa
dc.relation.referencesJ.R. Oppenheimer, H. Snyder, On continued gravitational contraction. Phys.Rev. 56, (1939) 455.spa
dc.relation.referencesD.V Fursaev, Can One Understand Black Hole Entropy without Knowing Much about Quantum Gravity?, Phys. Part. Nucl.36, (2005) 81.spa
dc.relation.referencesJ. Cano, W. Pulido, La paradoja de la pérdida de información de los agujeros negros, Revista Momento. Número 58, (2019) 59-88.spa
dc.relation.referencesX. Calmet, (Ed.), Quantum Aspects of Black Holes, Fundamental Theories of Physics. Vol 178.spa
dc.relation.referencesY. Takahashi, H. Umezawa, Collective Phenomena 2, (1975) 55.spa
dc.relation.referencesH. Umezawa. Advanced Field Theory. Micro, Macro and Thermal Physics. American Institute of Physics, 1980.spa
dc.relation.referencesW. Pulido, H. Quevedo, Black shells and naked shells, International Journal Of Geometric Methods in Modern Physics. (2021).spa
dc.relation.referencesW. Israel, Thermo- eld dynamics of black holes, Phys. Lett.A57, (1976) 107.spa
dc.relation.referencesS. Mukohyama, W. Israel, Black holes, brick walls, and the Boulware state, Phys. Rev.D58, (1998) 104005.spa
dc.relation.referencesW. Israel, Black hole thermodynamics, in current trends in relativistic astrophysics. Ed. L. Fernández, L.M. González. Springer Lectures notes in Physics LNP 617, (2003) 15.spa
dc.relation.referencesW. Israel. A massless rewall, (2014).spa
dc.relation.referencesJ.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cimento. 4, (1972) 737.spa
dc.relation.referencesJ.D. Bekenstein, Black Holes and Entropy, Phys. Rev. D7, (1973) 2333.spa
dc.relation.referencesJ.D. Bekenstein, Generalized second law of thermodynamics in black-hole physics, Phys. Rev. D9, (1974) 3292.spa
dc.relation.referencesJ.D. Bekenstein, Statistical black-hole thermodynamics, Phys. Rev. D12, (1975) 3077.spa
dc.relation.referencesJ.M. Bardeen, B. Carter, S. Hawking, The four laws of black hole mechanics, Comm. Math. Phys. 31, (1973) 161.spa
dc.relation.referencesS.W. Hawking, Particle creation by black holes, Commun. Math, Phys. 43, (1975) 199.spa
dc.relation.referencesJ.R Arenas, W. Pulido, Agujeros negros cuánticos y el efecto Hawking, Revista Momento. Número 59E, (2019) 1-13.spa
dc.relation.referencesB. Carter, General relativity, an Einstein Centenary Survey. Ed. by. S.W. Hawking and W. Israel. (Cambridge University Press, 1979) Cap 6.spa
dc.relation.referencesS.D. Sorkin, Black holes and relativistic stars. (The university of Chicago Press, 1998) Cap.9.spa
dc.relation.referencesG.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D15, (1977) 2752.spa
dc.relation.referencesG. t'Hooft, On the quantum structure of a black hole, Nucl.Phys B256, (1985) 727.spa
dc.relation.referencesA. Strominger, C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B379 (1996) 99.spa
dc.relation.referencesJ.M. Maldacena, A. Strominger, Statistical Entropy of Four-Dimensional Extremal Black Holes, Phys. Rev. Lett. 77 (1996) 428.spa
dc.relation.referencesC.G. Callan, J.M. Maldacena, D-brane Approach to Black Hole Quantum Mechanics, Nucl. Phys. B472 (1996) 591.spa
dc.relation.referencesE.T. Akhmedov, Black Hole Thermodynamics from the Point of View of Superstring Theory, Int. J. Mod. Phys. A15 (2000) 1.spa
dc.relation.referencesA. Corichi, Black holes and entropy in loop quantum gravity: An overview. (2009).spa
dc.relation.referencesS. Mukohyama, The origin of black hole entropy, PhD. Thesis, Kyoto University, (1998).spa
dc.relation.referencesL. Bombelli, R.K. Koul, J. Lee, and R.D, Sorkin, Quantum source of entropy for black holes, Phys. Rev. D34, (1986) 373.spa
dc.relation.referencesM. Srednicki, Entropy and area, Phys. Rev. Lett. 71, (1993) 666.spa
dc.relation.referencesJ.R. Arenas, J.M. Tejeiro, Black Hole Entanglement Entropy. XXVIII Spanish Relativity Meeting. ERE (2005) 385.spa
dc.relation.referencesJ. M. Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity Adv. Theor. Math. Phys. 2, (1998) 231.spa
dc.relation.referencesJ. M. Maldacena, Int. J. Theor. Phys. 38, (1999) 1113.spa
dc.relation.referencesL. Susskind, J. Lindesay, An introduction to black holes, information and the string theory revolution, (World Scienti c Publishing Co. 2005) Cap. 12.spa
dc.relation.referencesPapantonopoulos, E., (Ed.), Physics of Black Holes: A Guided Tour, Lect. Notes Phys. 769 (Springer, Berlin Heidelberg 2009).spa
dc.relation.referencesJ.M. Maldacena, Eternal Black Holes in AdS JHEP 04, (2003) 021.spa
dc.relation.referencesA. Almheiri, D. Marolf, J. Polchinski, and J. Sully, Black Holes: Complementarity or Firewalls?, J High Energy Phys 2013, 62 (2013).spa
dc.relation.referencesJ. Preskill, Do Black Holes Destroy Information?, (1992).spa
dc.relation.referencesG. Horowitz, D. Marolf, Where is the Information Stored in Black Holes?, Phys, Rev. D55, (1997) 3654.spa
dc.relation.referencesG. Horowitz, Quantum States of Black Holes, (1997).spa
dc.relation.referencesV. Mashkevich, Conservative Model of Black Hole and Lifting of the Information Loss Paradox, (1997).spa
dc.relation.referencesG. Horowitz, J. Maldacena, The black hole nal state, JHEP 02 (2004) 008.spa
dc.relation.referencesP.Kraus, F. Wilczek, Self-Interaction Correction to Black Hole Radiance,Nucl. Phys. B433 (1995) 403.spa
dc.relation.referencesP.Kraus, F. Wilczek, Effect of Self-Interaction on Charged Black Hole Radiance, Nucl. Phys. B437 (1995) 231.spa
dc.relation.referencesM. Parikh, F. Wilczek, Hawking Radiation as Tunneling, Phys. Rev. Lett. 85 (2000) 5042.spa
dc.relation.referencesB. Zhang, Q. Cai, M. Zhan, L. You, Hidden messenger revealed in Hawking radiation: A resolution to the paradox of black hole information loss, Phys. Lett. B675 (2009) 98.spa
dc.relation.referencesW. Israel, Z. Yun, Band-aid for information loss from black holes, Phys. Rev. D 82, 124036.spa
dc.relation.referencesL. Susskind, Black holes and the information paradox. Scienti c American, Volume 276, April 1997, p. 40-45.spa
dc.relation.referencesJ. D. Bekenstein, Information in the Holographic Universe. Scienti c American, Volume 289, Number 2, August 2003, p. 61.spa
dc.relation.referencesI. Klebanov, J. Maldacena, Solving quantum eld theories via curved spacetimes. Physics Today, Volume 62, January 2009. p.28.spa
dc.relation.referencesL. Susskind, L. Thorlacius, J. Uglum, The Stretched Horizon and Black Hole Complementarity, Phys, Rev. D48 (1993) 3743.spa
dc.relation.referencesS.W. Hawking, Information Loss in Black Holes, Phys.Rev. D72 (2005) 084013.spa
dc.relation.referencesZ. Merali, Fire in the hole. Nature, Volume 496, April 2013, p. 21-23.spa
dc.relation.referencesS.W. Hawking, Information preservation and weather forecasting for black holes, (2014).spa
dc.relation.referencesS.W. Hawking, G.F.R. Ellis, The large scale structure of space-time. (Cambridge University Press, 1973).spa
dc.relation.referencesL. Ryder, Introduction to general relativity (Cambridge University Press, 2009).spa
dc.relation.referencesR. Penrose, The Question of Cosmic Censorship, Chapter 5 in Black Holes and Relativistic Stars, Robert Wald (editor), (1994).spa
dc.relation.referencesR. Penrose, Singularities and time-asymmetry, Chapter 12 in General Relativity: An Einstein Centenary Survey (Hawking and Israel, editors), (1979).spa
dc.relation.referencesN.D. Birrel, P.C. Davies, Quantum elds in curved space. (Cambridge University Press, 1984).spa
dc.relation.referencesS.W. Hawking, Black holes and thermodynamics, Phys. Rev. D13, (1976) 191.spa
dc.relation.referencesA. Das, Finite temperature eld theory. (World Scienti c Publishing Co. 1997) Cap 1.spa
dc.relation.referencesJ. Tejeiro, Principios de relatividad general. (Facultad de Ciencias. Notas de Clase, 2005) Cáp. 8.spa
dc.relation.referencesD. Page, black hole information, (1993).spa
dc.relation.referencesE. Poisson, A relativist's toolkit. The mathematics of black-hole mechanics. (Cambridge University Press, 2004).spa
dc.relation.referencesG. Darmois, Memorial des sciences mathematiques XXV, Fascicule XXV ch V (Gauthier-Villars, Paris, france, 1927).spa
dc.relation.referencesW. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo cimiento 44B, 1 (1966); and corrections in ibid. 48B, 463 (1966).spa
dc.relation.referencesK. Lanczos, Flachenhafte verteiliung der materie in der Einsteinschen gravitationstheorie, Ann.Phys. (Leipzig) 74, 518 (1924).spa
dc.relation.referencesC.S. Helrich, Modern Thermodynamics with Statistical Mechanics. Springer-Verlag Heidelberg, (2009).spa
dc.relation.referencesIsrael W, Gravitational Collapse and Causality. Phys.Rev. 153 (1967) 1388-1393.spa
dc.relation.referencesJ. S. Hoye, I. Linnerud, K. Olaussen and R. Sollie, Evolution of Spherical Shells in General Relativity. Physica Scripta. Vol. 31, 97-102, (1985).spa
dc.relation.referencesE. Bittencourt, V. Freitas, J. Salim, G. Santos, Radiating spherical collapse for an inhomogeneous interior solution, (2018).spa
dc.relation.referencesD. Nu~nez, H. Quevedo and M. Salgado, Phys. Rev. D58 (1998) 083506.spa
dc.relation.referencesR. Penrose, Phys. Rev. Lett. 14. (1965) 57.spa
dc.relation.referencesE. Schnetter, B. Krishnan and F. Beyer, Introduction to dynamical horizons in numerical relativity, Phys. Rev. D 74 (2006) 024028.spa
dc.relation.referencesS. Hayward, General laws of black hole dynamics, Phys. Rev. D 49 (1994) 6467-6474.spa
dc.relation.referencesF. Melia, The Apparent (gravitational) horizon in cosmology, Amer. J. Phys. 86 (2018) 585-593.spa
dc.relation.referencesE. A, Martínez, Fundamental thermodynamical equation of a self-gravitating system, Phys. Rev. D53 (1996) 7062.spa
dc.relation.referencesJ.P.S, Lemos and O.B. Zaslavskii, Entropy of quasiblack holes, Phys. Rev. D81, (2010) 064012.spa
dc.relation.referencesJ. R. Arenas, J. M. Tejeiro, Entanglement Entropy of Black Shells. Nuovo Cim. B125 (2010):1223-1248.spa
dc.relation.referencesW. Israel, Gedanken Experiments in Black Hole Thermodynamics. Black Holes: Theory and Observation, (2003) 339-363.spa
dc.relation.referencesW.G. Unruh, Notes on black-hole evaporation, Phys. Rev. D14, (1976) 870.spa
dc.relation.referencesS. S. Seahra, Naked shell singularities on the brane, Phys. Rev. D 71 (2005) 084020.spa
dc.relation.referencesA. Carrasco F, Trapped surfaces in spacetimes with symmetries and applications to uniqueness theorems. (2012).spa
dc.relation.referencesD.G. Boulware, Quantum eld theory in Schwarzschild and Rindler spaces, Phys. Rev, D11, 1404 (1975).spa
dc.relation.referencesS.A. Fulling, Aspects of Quantum Field Theory in Curved Space-time. Cambridge University Press. (1989).spa
dc.relation.referencesJ.R. Arenas, Agujeros Negros Cuánticos. Notas de Clase. (2016).spa
dc.relation.referencesR.M. Wald, General Relativity. the University chicago Press. (1984).spa
dc.relation.referencesO. Keller Quantum Theory of Near-Field Electrodynamics. Springer-Verlag Berlin Heidelberg. (2011).spa
dc.relation.referencesJ. Mathews, Matemáticas para Físicos, Editorial Reverté, (1979).spa
dc.relation.referencesH. Terashima, Entanglement entropy of the black hole horizon, Phys. Rev. D61, 104016 (2000).spa
dc.relation.referencesS. Liberati, Vacuum E ects in Gravitational Fields: Theory and Detectability S. Liberati, (2000).spa
dc.relation.referencesV. P. Frolov, D. V. Fursaev, Thermal Fields, Entropy, and Black Holes, Class. Quantum Grav. 15, (1998) 2041.spa
dc.relation.referencesJ. L. Alvarez, H. Quevedo, and A. S anchez, Uni ed geometric description of black hole thermodynamics, Phys. Rev. D 77, 084004 (2008).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc110 - Metafísica::118 - Fuerza y energíaspa
dc.subject.lembTERMODINAMICAspa
dc.subject.lembThermodynamicseng
dc.subject.lembCOLAPSO GRAVITACIONALspa
dc.subject.lembGravitational collapseeng
dc.subject.lembAGUJEROS NEGROS (ASTRONOMIA)spa
dc.subject.lembBlack holes (astronomy)eng
dc.subject.proposalAgujeros negrosspa
dc.subject.proposalColapso gravitacionalspa
dc.subject.proposalCascarones negrosspa
dc.subject.proposalBlack holeseng
dc.subject.proposalGravitational collapseeng
dc.subject.proposalBlack shellseng
dc.titleObservadores relativistas y termodinámica del colapso gravitacional de cascarones negrosspa
dc.title.translatedRelativistic observers and thermodynamics of the gravitational collapse of black shellseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
79750439.2022.pdf
Tamaño:
4.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: