Estudio de las propiedades electrónicas y magnéticas del CrN dopado con Y por medio de la teoría del funcional de la densidad
dc.contributor.advisor | Garay Tapia, Andrés Manuel | |
dc.contributor.advisor | Restrepo Parra, Elisabeth | |
dc.contributor.author | León Pinzón, Luis Felipe | |
dc.contributor.orcid | León Pinzón, Luis Felipe [0000-0001-7293-3537] | spa |
dc.contributor.researchgroup | PCM Computational Applications | spa |
dc.date.accessioned | 2024-01-23T16:48:37Z | |
dc.date.available | 2024-01-23T16:48:37Z | |
dc.date.issued | 2021 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | Por medio de la teoría del funcional de la densidad y la aproximación GGA se realizaron estudios estructurales, magnéticos y electrónicos a diferentes estructuras cristalinas de CrN y del YN, como estructura de mínima energía, momento magnético, parámetros de red densidad de estados, y estructura de bandas con despliegue. Se evaluaron los pseudo potenciales PBE y PBesol encontrando que PBE calcula mejor los parámetro de red y los momentos magnéticos. Esto se hizo con el fin de describir sus propiedades físicas y para verificar cual pseupotencial mejora el funcionamiento de DFT en estas estructuras e implementarlo en el estudio de aleaciones. Se construyeron aleaciones solidas sustitucionales aleatorias de (Cr,Y)N por medio del método de estructuras cuasialeatorias especiales (SQS) con diferentes concentraciones de Cr. Se encontró que la mayoría de estas aleaciones cambian sus configuraciones magnéticas iniciales a configuraciones ferromagnéticas debido al cambio en el ambiente químico y por ende a la diferencia en aportes de los espines arriba y abajo. Este fenómeno es interesante para aplicaciones en espintronica. Por medio de las estructuras de bandas calculadas se encontró que las aleaciones solidas sustitucionales tienen comportamientos semiconductores o semimetalicos, y algunas con coeficientes de Seebeck considerablemente altos como para tenerlas en cuenta para aplicaciones en termoeléctricos (Texto tomado de la fuente) | spa |
dc.description.abstract | By means of the density functional theory and the GGA approach, structural, magnetic and electronic studies were carried out on different crystal structures of CrN and YN, such as minimum energy structure, magnetic moment, network parameters, density of states, and structure. of use of bands with. The pseudo potentials PBE and PBesol were evaluated, finding that PBE better calculates the red parameters and the magnetic moments. This was done in order to describe their physical properties and to verify which pseudopotential improves the performance of DFT in these structures and implement it in the study of alloys. Solid substitutional random alloys of (Cr,Y)N were constructed by means of the special quasi-random structures (SQS) method with different concentrations of Cr. It was found that most of these alloys change their initial magnetic configurations to ferromagnetic configurations due to the change in the chemical environment and therefore to the difference in the contributions of the spines above and below. This phenomenon is interesting for applications in spintronics. By means of the calculated band structures, it was found that the substitutional solid alloys have semiconductor or semimetallic behaviors, and some with Seebeck coefficients high enough to take them into account for thermoelectric applications. | eng |
dc.description.curriculararea | Ciencias Naturales.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.methods | Se usó Teoría del funcional de la Densidad para describir las propiedades, estructurales, electrónicas y magnéticas del CrN dopado con Y por medio del software VASP. Se implementó "special quasirandom structures" (SQS) para la construcción de las celdas atómicas y Python para el procesamiento de datos. Finalmente se usó el módulo BoltzTrap2 de Python para estudiar propiedades termoeléctricas | spa |
dc.description.researcharea | Modelamiento y simulación de materiales por teoría de densidad funcional | spa |
dc.format.extent | xxiv, 128 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85410 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
dc.relation.references | Sanjeev K. Gupta, Sanjay D. Gupta, Himadri R. Soni, Venu Mankad y Prafulla K. Jha. “First-principles studies of the superconductivity and vibrational properties of transition-metal nitrides TMN (TM = Ti, V, and Cr)”. En: Materials Chemistry and Physics 143.2 (2014), págs. 503-513. | spa |
dc.relation.references | A. Fernondez Guillermet, J. Häglund y G. Grimvall. “Cohesive properties of 4d-transitionmetal carbides and nitrides in the NaCl-type structure”. En: Physical Review B 45.20 (1992), págs. 11557-11567. | spa |
dc.relation.references | F. Nita, C. Mastail y G. Abadias. “Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth”. En: Physical Review B 93.6 (2016), págs. 1-13. | spa |
dc.relation.references | Shijo Nagao, K. Nordlund y R. Nowak. “Anisotropic elasticity of IVB transition-metal mononitrides determined by ab initio calculations”. En: Physical Review B - Condensed Matter and Materials Physics 73.14 (2006), págs. 1-6. | spa |
dc.relation.references | D. A. Papaconstantopoulos, W. E. Pickett, B.M. Klein y L. L. Boyer. “Electronic properties of transition-metal nitrides: The group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN”. En: PHYSICAL REVIEW B 31.2 (1985), págs. 752-761. | spa |
dc.relation.references | H. Shimizu, M. Shirai y N. Suzuki. Electronic structure and magnetism of transitionmetal mononitrides. 1997. | spa |
dc.relation.references | A. Filippetti, W. E. Pickett y B. M. Klein. “Competition between magnetic and structural transitions in CrN”. En: Physical Review B - Condensed Matter and Materials Physics 59.10 (1999), págs. 7043-7050. | spa |
dc.relation.references | C. Stampfl, W. Mannstadt, R. Asahi y A. J. Freeman. “Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations”. En: Physical Review B - Condensed Matter and Materials Physics 63.15 (2001), págs. 1-11. | spa |
dc.relation.references | E. I. Isaev, R. Ahuja, S. I. Simak, A. I. Lichtenstein, Yu Kh Vekilov, B. Johansson e I. A. Abrikosov. “Anomalously enhanced superconductivity and ab initio lattice dynamics in transition metal carbides and nitrides”. En: Physical Review B - Condensed Matter and Materials Physics 72.6 (2005), págs. 1-5. | spa |
dc.relation.references | David Holec, Martin Friák, Jörg Neugebauer y Paul H. Mayrhofer. “Trends in the elastic response of binary early transition metal nitrides”. En: Physical Review B - Condensed Matter and Materials Physics 85.6 (2012) | spa |
dc.relation.references | Hugh O. Pierson. “Carbides of Group VI”. En: Handbook of Refractory Carbides and Nitrides (1996), págs. 100-117. | spa |
dc.relation.references | Khan Alam, Steven M. Disseler, William D. Ratcliff, Julie A. Borchers, Rodrigo PoncePérez, Gregorio H. Cocoletzi, Noboru Takeuchi, Andrew Foley, Andrea Richard, David C. Ingram y Arthur R. Smith. “Structural and magnetic phase transitions in chromium nitride thin films grown by rf nitrogen plasma molecular beam epitaxy”. En: Physical Review B 96.10 (2017), págs. 1-10. | spa |
dc.relation.references | Liangcai Zhou, Fritz Körmann, David Holec, Matthias Bartosik, Blazej Grabowski, Jörg Neugebauer y Paul H. Mayrhofer. “Structural stability and thermodynamics of CrN magnetic phases from ab initio calculations and experiment”. En: Physical Review B - Condensed Matter and Materials Physics 90.18 (2014), págs. 1-12 | spa |
dc.relation.references | J. Ebad-Allah, B. Kugelmann, F. Rivadulla y C. A. Kuntscher. “Infrared study of the magnetostructural phase transition in correlated CrN”. En: Physical Review B 94.19 (2016), págs. 18-20. | spa |
dc.relation.references | E. Mozafari, B. Alling, P. Steneteg e Igor A. Abrikosov. “Role of N defects in paramagnetic CrN at finite temperatures from first principles”. En: Physical Review B - Condensed Matter and Materials Physics 91.9 (2015), págs. 1-9 | spa |
dc.relation.references | Tomas Rojas y Sergio E. Ulloa. “Strain fields and electronic structure of antiferromagnetic CrN”. En: Physical Review B 96.12 (2017), págs. 1-7. | spa |
dc.relation.references | Tomas Rojas y Sergio E. Ulloa. “Energetics and electronic structure of native point defects in antiferromagnetic CrN”. En: Physical Review B 98.21 (2018), págs. 1-9. | spa |
dc.relation.references | G. Jeffrey Snyder y Eric S. Toberer. “Complex thermoelectric materials”. En: Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group 7.February (2010), págs. 101-110. | spa |
dc.relation.references | A. Alfonsov, B. Peters, F. Y. Yang, B. Büchner y S. Wurmehl. “Nuclear magnetic resonance study of thin Co2 FeAl0.5 Si0.5 Heusler films with varying thickness”. En: Physical Review B - Condensed Matter and Materials Physics 91.6 (2015), págs. 1-8. | spa |
dc.relation.references | V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono e Y. Tserkovnyak. “Antiferromagnetic spintronics”. En: Reviews of Modern Physics 90.1 (2018), pág. 15005. | spa |
dc.relation.references | T. Jungwirth, X. Marti, P. Wadley y J. Wunderlich. “Antiferromagnetic spintronics”. En: Nature Nanotechnology 11.3 (2016), págs. 231-241. | spa |
dc.relation.references | Camilo X. Quintela, Jacob P. Podkaminer, Maria N. Luckyanova, Tula R. Paudel, Eric L. Thies, Daniel A. Hillsberry, Dmitri A. Tenne, Evgeny Y. Tsymbal, Gang Chen, Chang Beom Eom y Francisco Rivadulla. “Epitaxial CrN Thin films with high thermoelectric figure of merit”. En: Advanced Materials 27.19 (2015), págs. 3032-3037. | spa |
dc.relation.references | Sit Kerdsongpanya, Bo Sun, Fredrik Eriksson, Jens Jensen, Jun Lu, Yee Kan Koh, Ngo Van Nong, Benjamin Balke, Björn Alling y Per Eklund. “Experimental and theoretical investigation of Cr1-xScxN solid solutions for thermoelectrics”. En: Journal of Applied Physics 120.21 (2016). | spa |
dc.relation.references | Sangyeop Lee, Keivan Esfarjani, Tengfei Luo, Jiawei Zhou, Zhiting Tian y Gang Chen. “Resonant bonding leads to low lattice thermal conductivity”. En: Nature Communications 5 (2014), págs. 1-8. | spa |
dc.relation.references | Youcef Cherchab, Bouhalouane Amrani, Nadir Sekkal, Mohamed Ghezali y Khadija Talbi. “Structural and electronic properties of bulk YN and of the YN/ScN superlattice”. En: Physica E: Low-Dimensional Systems and Nanostructures 40.3 (2008), págs. 606-617 | spa |
dc.relation.references | A. Louhadj, Mohamed Ghezali, F. Badi, Noureddine Mehnane, Youcef Cherchab, Bouhalouane Amrani, Hamza Abid y Nadir Sekkal. “Electronic structure of ScN, YN, LaN and GdN superlattices”. En: Superlattices and Microstructures 46.3 (2009), págs. 435-442. | spa |
dc.relation.references | W. Sukkabot. “Structural and magnetic properties of transition-metal doped scandium nitride (ScN): Spin density functional theory”. En: Physica B: Condensed Matter 570.June (2019), págs. 236-240. | spa |
dc.relation.references | F. Rovere, D. Music, J. M. Schneider y P. H. Mayrhofer. “Experimental and computational study on the effect of yttrium on the phase stability of sputtered Cr-Al-Y-N hard coatings”. En: Acta Materialia 58.7 (2010), págs. 2708-2715. | spa |
dc.relation.references | Liangcai Zhou, David Holec y Paul H Mayrhofer. “Ab initio study of the alloying effect of transition metals on structure, stability and ductility of CrN”. En: Journal of Physics D: Applied Physics 46.36 (2013). | spa |
dc.relation.references | L. A. Salguero, L. Mancera, J. A. Rodríguez y N. Takeuchi. “First principles calculations of the ground state properties and structural phase transformation in YN”. En: Physica Status Solidi (B) Basic Research 243.8 (2003), págs. 1808-1812. | spa |
dc.relation.references | L. M. Corliss, N. Elliott y J. M. Hastings. “Antiferromagnetic structure of CrN”. En: Physical Review 117.4 (1960), págs. 929-935. | spa |
dc.relation.references | J. D. Browne, P. R. Liddell, R. Street y T. Mills. “An investigation of the antiferromagnetic transition of CrN”. En: Physica Status Solidi (a) 1.4 (1970), págs. 715-723. | spa |
dc.relation.references | M. Roubin N. Eddine, E. F. Bertaut y J. Paris. “Etude cristallographique de Cr(1- x)V(x)N a Basse temperature”. En: Acta Cryst. 33 (1977), págs. 3010-3013. | spa |
dc.relation.references | Francisco Rivadulla, Manuel Bãobre-López, Camilo X. Quintela, Alberto P˜ıeiro, Victor Pardo, Daniel Baldomir, Manuel Arturo López-Quintela, José Rivas, Carlos A. Ramos, Horacio Salva, Jian Shi Zhou y John B. Goodenough. “Reduction of the bulk modulus at high pressureinCrN”. En: Nature Materials 8.12 (2009), págs. 947-951. | spa |
dc.relation.references | Shanmin Wang, Xiaohui Yu, Jianzhong Zhang, Miao Chen, Jinlong Zhu, Liping Wang, Duanwei He, Zhijun Lin, Ruifeng Zhang, Kurt Leinenweber y Yusheng Zhao. “Experimental invalidation of phase-transition-induced elastic softening in CrN”. En: Physical Review B - Condensed Matter and Materials Physics 86.6 (2012), págs. 1-4. | spa |
dc.relation.references | X. Y. Zhang, J. S. Chawla, R. P. Deng y D. Gall. “Epitaxial suppression of the metalinsulator transition in CrN”. En: Physical Review B - Condensed Matter and Materials Physics 84.7 (2011), págs. 1-4. | spa |
dc.relation.references | Anna Mrozińska, Jerzy Przystawa y Jenö Sòlyom. “First-order antiferromagnetic transition in CrN”. En: Physical Review B 19.1 (1979), págs. 331-337. | spa |
dc.relation.references | A. S. Botana, F. Tran, V. Pardo, D. Baldomir y P. Blaha. “Electronic structure of CrN: A comparison between different exchange correlation potentials”. En: Physical Review B - Condensed Matter and Materials Physics 85.23 (2012), págs. 1-9. | spa |
dc.relation.references | Marco Marín-Suárez, Leidy L. Alzate-Vargas, Jorge David, Mauricio Arroyave-Franco y Mario E. Vélez. “Electronic and Topological Analysis for New Phases of Chromium Nitride”. En: Physica Status Solidi (A) Applications and Materials Science 215.1 (2018), págs. 1-9. | spa |
dc.relation.references | Alessio Filippetti y Nicola A. Hill. “Magnetic stress as a driving force of structural distortions: The case of CrN”. En: Physical Review Letters 85.24 (2000), págs. 5166-5169 | spa |
dc.relation.references | Aditi Herwadkar y Walter R.L. Lambrecht. “Electronic structure of CrN: A borderline Mott insulator”. En: Physical Review B - Condensed Matter and Materials Physics 79.3 (2009), págs. 1-10. | spa |
dc.relation.references | D. Gall, C. S. Shin, R. T. Haasch, I. Petrov y J. E. Greene. “Band gap in epitaxial NaCl-structure CrN(001) layers”. En: Journal of Applied Physics 91.9 (2002), págs. 5882-5886 | spa |
dc.relation.references | Costel Constantin, Muhammad B. Haider, David Ingram y Arthur R. Smith. “Metal/- semiconductor phase transition in chromium nitride(001) grown by rf-plasma-assisted molecular-beam epitaxy”. En: Applied Physics Letters 85.26 (2004), págs. 6371-6373. | spa |
dc.relation.references | A. Ney, R. Rajaram, S. S.P. Parkin, T. Kammermeier y S. Dhar. “Magnetic properties of epitaxial CrN films”. En: Applied Physics Letters 89.11 (2006), págs. 4-7. | spa |
dc.relation.references | P. Subramanya Herle, M. S. Hegde, N. Y. Vasathacharya, Sam Philip, M. V. Rama Rao y T. Sripathi. “Synthesis of TiN, VN, and CrN from Ammonolysis of TiS2, VS2, and Cr2S3”. En: Journal of Solid State Chemistry 134.1 (1997), págs. 120-127 | spa |
dc.relation.references | M. G. Brik y C. G. Ma. “First-principles studies of the electronic and elastic properties of metal nitrides XN (X = Sc, Ti, V, Cr, Zr, Nb)”. En: Computational Materials Science 51.1 (2012), págs. 380-388. | spa |
dc.relation.references | Donald J. Siegel, Louis G. Hector y James B. Adams. “Ab initio study of Al-ceramic interfacial adhesion”. En: Physical Review B - Condensed Matter and Materials Physics 67.9 (2003), págs. 1-4. | spa |
dc.relation.references | Jeffrey C. Grossman, Ari Mizel, Michel Côté, Marvin L. Cohen y Steven G. Louie. “Transition metals and their carbides and nitrides: Trends in electronic and structural properties”. En: Physical Review B - Condensed Matter and Materials Physics 60.9 (1999), págs. 6343-6347. | spa |
dc.relation.references | E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Yu Kh Vekilov, M. I. Katsnelson, A. I. Lichtenstein y B. Johansson. “Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study”. En: Journal of Applied Physics 101.12 (2007). | spa |
dc.relation.references | R. M. Ibberson y R. Cywinski. “The magnetic and structural transitions in CrN and (CrMo)N”. En: Physica B: Physics of Condensed Matter 180-181.PART 1 (1992), págs. 329-332. | spa |
dc.relation.references | M. Modarresi, A. Mogulkoc, Y. Mogulkoc y A. N. Rudenko. “Lateral Spin Valve Based on the Two-Dimensional CrN/P/CrN Heterostructure”. En: Physical Review Applied 11.6 (2019), pág. 1. | spa |
dc.relation.references | A. Mavromaras, S. Matar, B. Siberchicot y G. Demazeau. “Investigation of the magnetic structure of CrN”. En: Journal of Magnetism and Magnetic Materials 134.1 (1994), págs. 34-40. | spa |
dc.relation.references | B. Alling. “Theory of the ferromagnetism in Ti1-x CrxN solid solutions”. En: Physical Review B - Condensed Matter and Materials Physics 82.5 (2010), págs. 1-9. | spa |
dc.relation.references | Mohamed Amine Ghebouli, Brahim Ghebouli, Aldjia Zeghad, Tayeb Chihi, Messaoud Fatmi y Sameh Ibrahim Ahmed. “First-principles calculations to investigate structural, elastic, electronic, lattice dynamic and optical properties for scandium and yttrium nitrides in zinc blend structure”. En: Journal of Materials Research and Technology 14 (2021), págs. 1958-1968. | spa |
dc.relation.references | Chinedu E. Ekuma, Diola Bagayoko, Mark Jarrell y Juana Moreno. “Electronic, structural, and elastic properties of metal nitrides XN (X = Sc, Y): A first principle study”. En: AIP Advances 2.3 (2012), págs. 0-11. | spa |
dc.relation.references | Bakhtiar Ul Haq, A. Afaq, Galila Abdellatif, R. Ahmed, S. Naseem y R. Khenata. “First principles study of scandium nitride and yttrium nitride alloy system: Prospective material for optoelectronics”. En: Superlattices and Microstructures 85 (2015), págs. 24-33. | spa |
dc.relation.references | Patricio Fuentealba Jorge David, Doris Guerra. “Teoría de las funcionales de la densidad”. En: (), págs. 1-3. | spa |
dc.relation.references | Home Search, Collections Journals, About Contact y My Iopscience. “Non-Abelian density functional theory”. En: 8933 (). | spa |
dc.relation.references | U. von Barth. “Basic Density-Functional Theory an Overview”. En: Physica Scripta T109 (2004), pág. 9. | spa |
dc.relation.references | Georg Kresse, Doris Vogtenhuber, Martijn Marsman, Merzuk Kaltak, Ferenc Karsai y Martin Schlipf. Vienna Ab initio Simulation Package. Ver. 5.4.4. 2021. | spa |
dc.relation.references | John P. Perdew, Matthias Ernzerhof y Kieron Burke. “The ABC of DFT”. En: Journal of Chemical Physics 105.22 (2007), págs. 9982-9985. | spa |
dc.relation.references | John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson, Mark R. Pederson, D. J. Singh y Carlos Fiolhais. “Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation (Physical Review B (1993) 48, 7, (4978))”. En: Physical Review B 48.7 (1993), pág. 4978. | spa |
dc.relation.references | Axel D. Becke. “Densityâfunctional thermochemistry. I. The effect of the exchangeâonly gradient correction”. En: Journal of Chemical Physics 96.3 (1992), págs. 2155-2160. | spa |
dc.relation.references | B. Hammer, K. W. Jacobsen y J. K. Nørskov. “Role of nonlocal exchange correlation in activated adsorption”. En: Physical Review Letters 70.25 (1993), págs. 3971-3974 | spa |
dc.relation.references | Gábor I. Csonka, John P. Perdew, Adrienn Ruzsinszky, Pier H.T. Philipsen, Sébastien Lebègue, Joachim Paier, Oleg A. Vydrov y János G. Ángyán. “Assessing the performance of recent density functionals for bulk solids”. En: Physical Review B - Condensed Matter and Materials Physics 79.15 (2009), págs. 1-14. | spa |
dc.relation.references | V. Ozolin, a y M. Körling. “Full-potential calculations using the generalized gradient approximation: Structural properties of transition metals”. En: Physical Review B 48.24 (1993), págs. 18304-18307. | spa |
dc.relation.references | C. Filippi, D. J. Singh y C. J. Umrigar. “All-electron local-density and generalizedgradient calculations of the structural properties of semiconductors”. En: Physical Review B 50.20 (1994), págs. 14947-14951. | spa |
dc.relation.references | John P. Perdew y Yue Wang. “Erratum: Accurate and simple analytic representation of the electron-gas correlation energy (Physical Review B (1992) 45 (13244) DOI: 10.1103/PhysRevB.45.13244)”. En: Physical Review B 98.7 (2018), págs. 244-249. | spa |
dc.relation.references | John P. Perdew, Jianmin Tao, Viktor N. Staroverov y Gustavo E. Scuseria. “Metageneralized gradient approximation: Explanation of a realistic nonempirical density functional”. En: Journal of Chemical Physics 120.15 (2004), págs. 6898-6911. | spa |
dc.relation.references | R. O. Jones. “Density Functional Theory: Past, present, . . . future?” En: PeterGrunberg-Institut PGI-1 and German Research School for Simulation Sciences 124 (2014), págs. 1-24. | spa |
dc.relation.references | Shobhana Narasimhan y Stefano de Gironcoli. “Ab initio calculation of the thermal properties of Cu: Performance of the LDA and GGA”. En: Physical Review B - Condensed Matter and Materials Physics 65.6 (2002), págs. 1-7. | spa |
dc.relation.references | Blazej Grabowski, Tilmann Hickel y Jörg Neugebauer. “Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlationrelated error bars and chemical trends”. En: Physical Review B - Condensed Matter and Materials Physics 76.2 (2007). | spa |
dc.relation.references | Stefan Kurth y J. Perdew. “Density-functional correction of random-phase-approximation correlation with results for jellium surface energies”. En: Physical Review B - Condensed Matter and Materials Physics 59.16 (1999), págs. 10461-10468. | spa |
dc.relation.references | John P. Perdew, Adrienn Ruzsinszky, Gábor I. Csonka, Oleg A. Vydrov, Gustavo E. Scuseria, Lucian A. Constantin, Xiaolan Zhou y Kieron Burke. “Perdew et al. Reply:” en: Physical Review Letters 101.23 (2008), pág. 239702 | spa |
dc.relation.references | Charles Kittel. Introduction to Solid State Physics, 8th edition. 2004. | spa |
dc.relation.references | Hendrik J., Monkhorst y James D. Pack. “Special points for Brillonin-zone integrations* Hendrik”. En: Physical Review B 13.12 (1976), págs. 5188-5192. | spa |
dc.relation.references | Uthpala Herath, Pedram Tavadze, Xu He, Eric Bousquet, Sobhit Singh, Francisco Muñoz y Aldo H. Romero. “PyProcar: A Python library for electronic structure pre/postprocessing”. En: Computer Physics Communications 251 (2020), pág. 107080. | spa |
dc.relation.references | Wei Ku, Tom Berlijn y Chi Cheng Lee. “Unfolding first-principles band structures”. En: Physical Review Letters 104.21 (2010), págs. 1-4. | spa |
dc.relation.references | Andrea Damascelli, Zahid Hussain y Zhi Xun Shen. “Angle-resolved photoemission studies of the cuprate superconductors”. En: Reviews of Modern Physics 75.2 (2003), págs. 473-541. | spa |
dc.relation.references | Vei Wang, Nan Xu, Jin Cheng Liu, Gang Tang y Wen Tong Geng. “VASPKIT: A userfriendly interface facilitating high-throughput computing and analysis using VASP code”. En: Computer Physics Communications 267 (2021), pág. 108033. | spa |
dc.relation.references | Rolf E. Hummel. Electronic Properties of Materials. 1993. | spa |
dc.relation.references | Alex Zunger, S. H. Wei, L. G. Ferreira y James E. Bernard. “Special quasirandom structures”. En: Physical Review Letters 65.3 (1990), págs. 353-356 | spa |
dc.relation.references | Dongwon Shin, Axel Van De Walle, Yi Wang y Zi Kui Liu. “First-principles study of ternary fcc solution phases from special quasirandom structures”. En: Physical Review B - Condensed Matter and Materials Physics 76.14 (2007), págs. 1-10. | spa |
dc.relation.references | Koichi Momma. Visualization for Electronic and Structural Analysis. Ver. 3.5.4. 2021. | spa |
dc.relation.references | Georg K. H. Madsen, Jesús Carrete y Matthieu J. Verstraete. “BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients”. En: Comput. Phys. Commun. 231 (2018), págs. 140 -145. | spa |
dc.relation.references | Kristin Persson. Materials Project. 2021 | spa |
dc.relation.references | Center for Autonomous Materials Design. AFLOW. Automatic - FLOW for Materials Discovery. 2021 | spa |
dc.relation.references | Francis Birch. “Finite elastic strain of cubic crystals”. En: Physical Review 71.11 (1947), págs. 809-824. | spa |
dc.relation.references | G.F.S. “The volume changes of five gases under high pressures”. En: Journal of the Franklin Institute 197.1 (1924), pág. 98. | spa |
dc.relation.references | Mois I. Aroyo, Asen Kirov, Cesar Capillas, J. M. Perez-Mato y Hans Wondratschek. “Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups”. En: Acta Crystallographica Section A: Foundations of Crystallography 62.2 (2006), págs. 115-128. | spa |
dc.relation.references | A van de Walle y M Asta. “Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams”. En: Modelling and Simulation in Materials Science and Engineering 10.5 (2002), págs. 521-538. | spa |
dc.relation.references | A. van de Walle, M. D. Asta y G. Ceder. “The Alloy Theoretic Automated Toolkit: A User Guide”. En: Calphad 26 (2002), págs. 539-553. | spa |
dc.relation.references | Peter Steneteg, Björn Alling e Igor A. Abrikosov. “Equation of state of paramagnetic CrN from ab initio molecular dynamics”. En: Physical Review B - Condensed Matter and Materials Physics 85.14 (2012), págs. 1-7. | spa |
dc.relation.references | Paula Mori-Sánchez, A. Martín Pendás y Víctor Luaña. “A classification of covalent, ionic, and metallic solids based on the electron density”. En: Journal of the American Chemical Society 124.49 (2002), págs. 14721-14723. | spa |
dc.relation.references | Tawinan Cheiwchanchamnangij y Walter R.L. Lambrecht. “Quasiparticle self-consistent GW band structure of CrN”. En: Physical Review B 101.8 (2020), págs. 1-8. | spa |
dc.relation.references | Mar Fernández. “FÍSICA DEL ESTADO SÓLIDO Curso 2016-2017”. En: (2017), págs. 1-5. | spa |
dc.relation.references | P. E. Blöchl. “Projector augmented-wave method”. En: Physical Review B 50.24 (1994), págs. 17953-17979. | spa |
dc.relation.references | D. Joubert. “From ultrasoft pseudopotentials to the projector augmented-wave method”. En: Physical Review B - Condensed Matter and Materials Physics 59.3 (1999), págs. 1758-1775. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física::539 - Física moderna | spa |
dc.subject.proposal | DFT | spa |
dc.subject.proposal | CrN | spa |
dc.subject.proposal | YN | spa |
dc.subject.proposal | SQS | spa |
dc.subject.proposal | DOS | spa |
dc.subject.proposal | Bandas | spa |
dc.subject.proposal | Estructura cristalina | spa |
dc.subject.proposal | CrYN | spa |
dc.subject.proposal | Coeficiente de Seebeck | spa |
dc.subject.unesco | Termodinámica | |
dc.subject.unesco | Thermodynamics | |
dc.title | Estudio de las propiedades electrónicas y magnéticas del CrN dopado con Y por medio de la teoría del funcional de la densidad | spa |
dc.title.translated | Study of the electronic and magnetic properties of Y-doped CrN by means of density functional theory | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Administradores | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Consejeros | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Grupos comunitarios | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Padres y familias | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
dcterms.audience.professionaldevelopment | Responsables políticos | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053849088.2022.pdf
- Tamaño:
- 21.62 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: